中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (6): 655-665 DOI: 10.7536/PC141231 Previous Articles   Next Articles

• Supramolecular Chemistry Issue •

Organic Functional Materials Based on Pillarenes

Xia Mengchan, Yang Yingwei*   

  1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry(NMAC), Jilin University, Changchun 130012, China
  • Received: Revised: Online: Published:
  • Contact: 10.7536/PC141231 E-mail:ywyang@jlu.edu.cn
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51473061, 21272093).
PDF ( 1237 ) Cited
Export

EndNote

Ris

BibTeX

Supramolecular chemistry is originated from synthetic organic chemistry and host-guest chemistry and its development greatly relies on the advance of host-guest chemistry. Synthetic macrocyclic compounds as an important part of host-guest chemistry and supramolecular chemistry have been designed and synthesized to further construct organic functional materials. In the past few decades, scientists have investigated a variety of supramolecular host compounds, including crown ethers, cyclodexrins, calixarenes, cucurbiturils, and pillarenes (or pillar [n]arenes, n=5~15). In particular, pillarenes, which can be easily synthesized and functionalized, have gained great attention for their typically rigid pillar-shape architecture and unique physical and chemical properties. Meanwhile, pillarenes have made great additions to the development of organic functional materials and enriched the contents of supramolecular chemistry and nanoscience. To the best of our knowledge, these pillarene-based organic functional materials have been successfully applied to many different scientific fields including molecular recognition and self-assembly, bacteria and virus inhibition, detection of pesticide and heavy metal ions, stabilization of nanoparticles, optical sensing, catalysis, biological sensing, drug delivery and controlled release, and so on. In this review, we mainly focus on summarizing the research progress of pillarene-based organic functional materials and comment on the bright future of their potential applications.

Contents
1 Introduction
2 Organic functional materials based on pillarenes
2.1 Bacteria/Virus inhibition
2.2 Optical functional materials
2.3 Supramolecular polymeric materials
2.4 Drug delivery systems
2.5 Materials for detection of pesticide and heavy metal ions
2.6 Others
3 Conclusion and outlook

CLC Number: 

[1] Ogoshi T, Yamagishia T. Chem. Commun., 2014, 50: 4776.
[2] Hu X Y, Xiao T, Lin C, Huang F, Wang L. Acc. Chem. Res., 2014, 47: 2041.
[3] Strutt N L, Zhang H, Schneebeli S T, Stoddart J F. Acc. Chem. Res., 2014, 47: 2631.
[4] Yang Y W, Sun Y L, Song N. Acc. Chem. Res., 2014, 47: 1950.
[5] Song N, Yang Y W. Science China Chemistry, 2014, 57: 1185.
[6] Ma X, Tian H. Chem. Soc. Rev., 2010, 39, 70.
[7] Ma X, Tian H. Acc. Chem. Res., 2014, 47, 1971.
[8] Yu G, Ma Y, Han C, Yao Y, Tang G, Mao Z, Gao C, Huang F. J. Am. Chem. Soc., 2013, 135: 10310.
[9] Nierengarten I, Buffet K, Holler M, Vincent S P, Nierengarten J F. Tetrahedron Lett., 2013, 54: 2398.
[10] Zheng D D, Fu D Y, Wu Y, Sun Y L, Tan L L, Zhou T, Ma S Q, Zha X, Yang Y W. Chem. Commun., 2014, 50: 3201.
[11] Zhang H, Strutt N L, Stoll R S, Li H, Zhua Z, Stoddart J F. Chem. Commun., 2011, 47: 11420.
[12] Ogoshi T, Yamafuji D, Kotera D, Aoki T, Fujinami S, Yamagishi T. J. Org. Chem., 2012, 77: 11146.
[13] Ogoshi T, Yoshikoshi K, Aoki T, Yamagishi T. Chem. Commun., 2013, 49: 8785.
[14] Ogoshi T, Kida K, Yamagishi T. J. Am. Chem. Soc., 2012, 134: 20146.
[15] Sun S, Hu X Y, Chen D, Shi J, Dong Y, Lin C, Pan Y, Wang L. Polym. Chem., 2013, 4: 2224.
[16] Sun S, Shi J B, Dong Y P, Lin C, Hu X Y, Wang L Y. Chin. Chem. Lett., 2013, 24: 987.
[17] Xu J F, Chen Y Z, Wu L Z, Tung, C H, Yang Q Z. Org. Lett., 2013, 15: 6148.
[18] Zhang H, Ma X, Guo J, Nguyen K T, Zhang Q, Wang X J, Yan H, Zhua L, Zhao Y. RSC Adv., 2013, 3: 368.
[19] Yu G, Han C, Zhang Z, Chen J, Yan X, Zheng B, Liu S, Huang F. J. Am. Chem. Soc., 2012, 134: 8711.
[20] Xia D, Yu G, Li J, Huang F. Chem. Commun., 2014, 50: 3606.
[21] Yang J, Yu G, Xia D, Huang F. Chem. Commun., 2014, 50: 3993.
[22] Yao Y, Chi X, Zhou Y, Huang F. Chem. Sci., 2014, 5: 2778.
[23] Wang Y, Xu J F, Chen Y Z, Niu L Y, Wu L Z, Tung C H, Yang Q Z. Chem. Commun., 2014, 50: 7001.
[24] Wang K, Wang C Y, Zhang Y, Zhang X A, Yang B, Yang Y W. Chem. Commun., 2014, 50: 94581.
[25] Song N, Chen D X, Qiu Y C, Yang X Y, Xu B, Tian W, Yang Y W. Chem. Commun., 2014, 50: 8231.
[26] Song N, Chen D X, Xia M C, Qiu X L, Ma K, Xu B, Tian W, Yang Y W. Chem. Commun., 2015, 51: 5526.
[27] Yu G, Tang G, Huang F. J. Mater. Chem. C, 2014, 2: 6609.
[28] Wu J, Sun S, Feng X, Shi J, Hu X Y, Wang L. Chem. Commun., 2014, 50: 9122.
[29] Yu G, Yan X, Han C, Huang F. Chem. Soc. Rev., 2013, 42: 6697.
[30] Liu Y, Wang Z, Zhang X. Chem. Soc. Rev., 2012, 41: 5922.
[31] Wang K, Wang C Y, Wang Y, Li H, Bao C Y, Liu J Y, Zhang X A, Yang Y W. Chem. Commun., 2013, 49: 10528.
[32] Dong S, Zheng B, Wang F, Huang F. Acc. Chem. Res., 2014, 47: 1982.
[33] Xia B, Zheng B, Han C, Dong S, Zhang M, Hu B, Yu Y, Huang F. Polym. Chem., 2013, 4: 2019.
[34] Dong S, Yuan J, Huang F. Chem. Sci., 2014, 5: 247.
[35] Gao L, Zhang Z, Zheng B, Huang F. Polym. Chem., 2014, 5: 5734.
[36] Ogoshi T, Kayama H, Yamafuji D, Aoki T, Yamagishi T. Chem. Sci., 2012, 3: 3221.
[37] Hu X Y, Zhang P, Wu X, Xia W, Xiao T, Jiang J, Lin C, Wang L. Polym. Chem., 2012, 3: 3060.
[38] Guan Y, Ni M, Hu X, Xiao T, Xiong S, Lin C, Wang L. Chem. Commun., 2012, 48: 8529.
[39] Wang X, Han K., Li J, Jia X, Li C. Polym. Chem., 2013, 4: 3998.
[40] Han C, Xia B, Chen J, Yu G, Zhang Z, Dong S, Hu B, Yu Y, Xue M. RSC Adv., 2013, 3: 16089.
[41] Li Z Y, Y Zhang Y, Zhang C W, Chen L J, Wang C, Tan H, Yu Y, Li X, Yang H B. J. Am. Chem. Soc., 2014, 136: 8577.
[42] Duan Q, Cao Y, Li Y, Hu X, Xiao T, Lin C, Pan Y, Wang L. J. Am. Chem. Soc., 2013, 135: 10542.
[43] Cao Y, Hu X Y, Li Y, Zou X, Xiong S, Lin C, Shen Y Z, Wang L. J. Am. Chem. Soc., 2014, 136: 10762.
[44] Zhou J, Chen M, Diao G. ACS Appl. Mater. Interfaces, 2014, 6: 18538.
[45] Chang Y, Yang K, Wei P, Huang S, Pei Y, Zhao W, Pei Z. Angew. Chem. Int. Ed., 2014, 53: 13126.
[46] Yao Y, Xue M, Chen J, Zhang M, Huang F. J. Am. Chem. Soc., 2012, 134: 15712.
[47] Yu G, Zhou X, Zhang Z, Han C, Mao Z, Gao C, Huang F. J. Am. Chem. Soc., 2012, 134: 19489.
[48] Li Z, Yang J, Yu G, He J, Ablizb Z, Huang F. Chem. Commun., 2014, 50: 2841.
[49] Chi X, Xue M, Ma Y, Yan X, Huang F. Chem. Commun., 2013, 49: 8175.
[50] Yu G, Zhang Z, He J, Abliz Z, Huang F. Eur. J.Org.Chem., 2012, 30: 5902.
[51] Yu G, Zhang Z, Han C, Xue M, Zhou Q, Huang F. Chem. Commun., 2012, 48: 2958.
[52] Chi X, Xue M, Yao Y, Huang F. Org. Lett., 2013, 15: 4722.
[53] Li Z, Yang J, Yu G, He J, Abliz Z, Huang F. Org. Lett., 2014, 16: 2066.
[54] Li C, Xu Q, Li J, Yao F, Jia X. Org. Biomol. Chem., 2010, 8: 1568.
[55] Wu L, Fang Y, Jia Y, Yang Y, Liao J, Liu N, Yang X, Feng W, Ming J, Yuan L. Dalton Trans., 2014, 43: 3835.
[56] Fang Y, Wu L, Liao J, Chen L, Yang Y, Liu N, He L, Zou S, Feng W, Yuan L. RSC Adv., 2013, 3: 12376.
[57] Jia Y, Fang Y, Li Y, He L, Fan W, Feng W, Yang Y, Liao J, Liu N, Yuan L. Talanta, 2014, 125: 322.
[58] Smolko V A, Shurpik D N, Shamagsumova R V, Porfireva A V, Evtugyn V G, Yakimova L S, Stoikov I I, Evtugyn G A. Electrochimica Acta, 2014, 147: 726.
[59] Zhou S Y, Song, Liu S X, Chen D X, Jia Q, Yang Y W. Microchim. Acta, 2014, 181: 1551.
[60] Liu D, Song N, Cheng Y C, Chen D X, Jia Q, Yang Y W. RSC Adv., 2014, 4: 49153.
[61] Si W, Hu X B, Liu X H, Fan R, Chen Z, Weng L, Hou J L. Tetrahedron Lett., 2011, 52: 2484.
[62] Hu X B, Chen Z, Tang G, Hou J L, Li Z T. J. Am. Chem. Soc., 2012, 134: 8384.
[63] Chen L, Si W, Zhang L, Tang G, Li Z T, Hou J L. J. Am. Chem. Soc., 2013, 135: 2152.
[64] Si W, Li Z T, Hou J L. Angew. Chem. Int. Ed., 2014, 53: 4578.
[65] Yu G, Xue M, Zhang Z, Li J, Han C, Huang F. J. Am. Chem. Soc., 2012, 134: 13248.
[66] Li C, Ma J, Zhao L, Zhang Y, Yu Y, Shu X, Lia J, Jia X. Chem. Commun., 2013, 49: 1924.
[67] Adiri T, Marciano D, Cohen Y. Chem. Commun., 2013, 49: 7082.
[68] Zhou J, Chen M, Diao G. Chem. Commun., 2014, 50: 11954.
[69] Zhang H, Ma X, Nguyen K T, Zhao Y. ACS Nano, 2013, 7: 7853.
[1] Min Xue, Fangfang Fan, Yong Yang, Chuanfeng Chen. Syntheses and Functionality of Pillararene-Based Mechanically Interlocked Structures [J]. Progress in Chemistry, 2019, 31(4): 491-504.
[2] Qiang Pei, Aixiang Ding. The Design and Application of Quadruple Hydrogen Bonded Systems [J]. Progress in Chemistry, 2019, 31(2/3): 258-274.
[3] Yawen Li, Wantong Ao, Huilin Jin, Liping Cao. Aggregation-Induced Emission of Tetraphenylethene Derivatives with Macrocycles via Host-Guest Interactions [J]. Progress in Chemistry, 2019, 31(1): 121-134.
[4] Xiang Wang*. Macrocyclic and Supramolecular Chemistry: From Heteracalixaromatics to Coronarenes——In Memory of Professor Zhi-Tang Huang [J]. Progress in Chemistry, 2018, 30(5): 463-475.
[5] Yuping Tang, Yanmei He, Yu Feng, Qinghua Fan. Asymmetric Supramolecular Catalysis Based on Macrocyclic Host Molecules [J]. Progress in Chemistry, 2018, 30(5): 476-490.
[6] Hanxiao Wang, Ying Han, Chuanfeng Chen*. The Directional Threading of Guests and Construction of Orientational Assemblies Based on Three-Dimensional Nonsymmetrical Hosts [J]. Progress in Chemistry, 2018, 30(5): 616-627.
[7] Dong Yunhong, Cao Liping. Functionalization of Cucurbit uril [J]. Progress in Chemistry, 2016, 28(7): 1039-1053.
[8] Ye Yang, Lin Zheping, Jin Wenlu, Wang Shuping, Wu Jing, Li Shijun. Self-Assembly of Mechanically Interlocked Structures via Metal-Mediated Coordination Cooperating with Host-Guest Recognition [J]. Progress in Chemistry, 2015, 27(6): 763-774.
[9] Qian Xiaohong, Jin Can, Zhang Xiaoning, Jiang Yan, Lin Chen, Wang Leyong. Squaramide Derivatives and Their Applications in Ion Recognition [J]. Progress in Chemistry, 2014, 26(10): 1701-1711.
[10] Yang Yong, Dou Dandan. Triply and Quadruply Hydrogen Bonded Systems:Design, Structure and Application [J]. Progress in Chemistry, 2014, 26(05): 706-726.
[11] Xu Liang, Li Yongjun, Li Yuliang. Preparation and Application of Supramolecular Functional Materials Based on π System [J]. Progress in Chemistry, 2014, 26(04): 487-501.
[12] Yang Liu, Lei Ting, Pei Jian*, Liu Chenjiang* . Design Strategy , Processing and Applications of Organic Micro- and Nano-Materials [J]. Progress in Chemistry, 2012, 24(12): 2299-2311.
[13] Liu Zhicheng, Wang Hong, Yang Rui, Li Wei. Synthesis and Application of Phosphorous-Containing Calixarenes and Their Complexes [J]. Progress in Chemistry, 2011, 23(8): 1665-1682.
[14] Shen Xinghai, Zhang Jingjing, Gao Song, Fu Suzhen, Sun Taoxiang, Fu Jing, Zhang Hongjuan, Chen Qingde, Gao Hongcheng. Applications of Typical Supramolecular Systems in the Field of Radiochemistry [J]. Progress in Chemistry, 2011, 23(7): 1386-1399.
[15] Cao Jing, Jiang Yi, Chen Chuan-Feng. Advances on Synthesis and Applications of Iptycenes and Their Derivatives [J]. Progress in Chemistry, 2011, 23(11): 2200-2214.