中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (08): 1409-1426 DOI: 10.7536/PC140331 Previous Articles   Next Articles

• Review •

Research Advances of Polypseudorotaxanes

Sun Shu1,2, Shi Jianbing1, Dong Yuping1, Hu Xiaoyu*2, Wang Leyong*2   

  1. 1. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Lab for Supramolecular Chemistry and Dynamic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21202083)

PDF ( 1934 ) Cited
Export

EndNote

Ris

BibTeX

Polypseudorotaxanes have attracted great interest in the past twenty years, due to their potential applications in the fabrication of stimuli-responsive materials, self-healing materials, molecular machines and fluorescent sensors. Depending on the location of the pseudorotaxane unit, polypseudorotaxanes can be mainly divided into three types: main-chain polypseudorotaxanes, side-chain polypseudorotaxanes, and others (such as branched and crosslinked polypseudorotaxanes). In this review, the recent advances of these three types of polypseudorotaxanes constructed by supramolecular macrocycles, such as crown ether, cyclodextrin, calixarene, cucurbituril, and pillararene are reviewed, and their future developments are also briefly prospected.

Contents
1 Introduction
2 Crown ether based polypseudorotaxanes
2.1 Crown ether based main-chain polypseudorotaxanes
2.2 Crown ether based side-chain polypseudorotaxanes
2.3 Crown ether based crosslinked polypseudorotaxanes
3 Cyclodextrin-based polypseudorotaxanes
3.1 Cyclodextrin-based main-chain polypseudorotaxanes
3.2 Cyclodextrin-based side-chain polypseudorotaxanes
3.3 Other types of cyclodextrin-based polypseudorotaxanes
4 Calixarene-based polypseudorotaxanes
5 Cucurbituril-based polypseudorotaxanes
5.1 Cucurbituril-based main-chain polypseudorotaxanes
5.2 Cucurbituril-based side-chain polypseudorotaxanes
6 Pillararene-based polypseudorotaxanes
6.1 Pillararene-based main-chain polypseudorotaxanes
6.2 Pillararene-based side-chain polypseudorotaxanes
6.3 Pillararene-based crosslinked polypseudorotaxanes
7 Conclusion and outlook

CLC Number: 

[1] Lehn J M. Pure Appl. Chem., 1978, 50: 871.
[2] Lehn J M. Angew. Chem. Int. Ed., 1988, 27: 89.
[3] Gokel G W. Advances in Supramolecular Chemistry. Greenwich CT: JAI Press, 1992. 141.
[4] Tian H, Wang Q C. Chem. Soc. Rev., 2006, 35: 361.
[5] Ma X, Tian H. Chem. Soc. Rev., 2010, 39: 70.
[6] Fang L, Olson M A, Benítez D, Tkatchouk E, Goddard W A, Stoddart J F. Chem. Soc. Rev., 2010, 39: 17.
[7] Hernández J V, Kay E R, Leigh D A. Science, 2004, 306: 1532.
[8] Deng W Q, Flood A H, Stoddart J F, Goddard W A. J. Am. Chem. Soc., 2005, 127: 15994.
[9] Xiao T X, Li S L, Zhang Y J, Lin C, Hu B J, Guan X C, Yu Y H, Jiang J L, Wang L Y. Chem. Sci., 2012, 3: 1417.
[10] Champin B, Mobian P, Sauvage J P. Chem. Soc. Rev., 2007, 36: 358.
[11] Gan Q, Ferrand Y, Bao C Y, Kauffmann B, Grélard A, Jiang H, Huc I. Science, 2011, 331: 1172.
[12] Gan Q, Bao C, Kauffmann B, Grélard A, Xiang J, Liu S, Huc I, Jiang H. Angew. Chem. Int. Ed., 2008, 120: 1739.
[13] Haldar D, Jiang H, Léger J M, Huc I. Angew. Chem. Int. Ed., 2006, 118: 5609.
[14] Vögtle F, Dünnwald T, Schmidt T. Acc. Chem. Res., 1996, 29: 451.
[15] Nepogodiev S A, Stoddart J F. Chem. Rev., 1998, 98: 1959.
[16] Harada A. Acc. Chem. Res., 2001, 34: 456.
[17] Schalley C A, Beizai K, Vögtle F. Acc. Chem. Res., 2001, 34: 465.
[18] Collin J P, Dietrich-Buchecker C, Gavia P, Jimenez-Molero M C, Sauvage J P. Acc. Chem. Res., 2001, 34: 477.
[19] Wenz G, Han B H, Müller A. Chem. Rev., 2006, 106: 782.
[20] Gibson H W, Bheda M C, Engen P T. Prog. Polym. Sci., 1994, 19: 843.
[21] Harada A. Coord. Chem. Rev., 1996, 148: 115.
[22] Raymo F M, Stoddart J F. Chem. Rev., 1999, 99: 1643.
[23] Panova I G, Topchieva I N. Russ. Chem. Rev., 2001, 70: 23.
[24] Takata T, Kihara N, Furusho Y. Adv. Polym. Sci., 2004, 171: 1.
[25] Huang F H, Gibson H W. Prog. Polym. Sci., 2005, 30: 982.
[26] Ashton P R, Philp D, Reddington M V, Slawin A M Z, Spencer N, Stoddart J F, Williams D J. J. Chem. Soc. Chem. Commun., 1991, 1680.
[27] Ashton P R, Campbell P J, Chrystal E J T, Glink P T, Menzer S, Philp D, Spencer N, Stoddart J F, Tasker P A, Williams D J. Angew. Chem. Int. Ed., 1995, 34: 1865.
[28] Glink P T, Schiavo C, Stoddart J F, Williams D J. Chem. Commun., 1996, 1483.
[29] 罗勤慧(Luo Q H). 大环化学——主-客体化合物和超分子(Macrocyclic Chemistry——Host-Guest Compounds and Supramolecules). 北京: 科学出版社(Beijing: Science Press), 2009. 8.
[30] Kohsaka Y, Koyama Y, Takata T. Angew. Chem. Int. Ed., 2011, 50: 10417.
[31] Gong C G, Balanda P B, Gibson H W. Macromolecules, 1998, 31: 5278.
[32] Lee M, Moore R B, Gibson H W. Macromolecules, 2011, 44: 5987.
[33] Wang F, Zheng B, Zhu K L, Zhou Q Z, Zhai C X, Li S J, Li N, Huang F H. Chem. Commun., 2009, 4375.
[34] Wei P F, Li J Y, Yan X Z, Zhou Q Z. Org. Lett., 2013, 16: 126.
[35] Yamaguchi N, Gibson H W. Macromol. Chem. Phys., 2000, 201: 815.
[36] Leung K C F, Mendes P M, Magonov S N, Northrop B H, Kim S, Patel K, Flood A H, Tseng H R, Stoddart J F. J. Am. Chem. Soc., 2006, 128: 10707.
[37] Zhang M M, Xu D H, Yan X Z, Chen J Z, Dong S Y, Zheng B, Huang F H. Angew. Chem. Int. Ed., 2012, 51: 7011.
[38] Chen L, Tian Y K, Ding Y, Tian Y J, Wang F. Macromolecules, 2012, 45: 8412.
[39] Li S, Lu H Y, Shen Y, Chen C F. Macromol. Chem. Physic., 2013, 214: 1596.
[40] Zeng F, Han Y, Yan Z C, Liu C Y, Chen C F. Polymer, 2013, 54: 6929.
[41] Zeng F, Shen Y, Chen C F. Soft Matter, 2013, 9: 4875.
[42] Li S L, Xiao T X, Hu B J, Zhang Y J, Zhao F, Ji Y, Yu Y H, Lin C, Wang L Y. Chem. Commun., 2011, 47: 10755.
[43] Ji X F, Yao Y, Li J Y, Yan X Z, Huang F H. J. Am. Chem. Soc., 2012, 135: 74.
[44] Szejtli J. Chem. Rev., 1998, 98: 1743.
[45] 刘育(Liu Y), 尤长城(You C C), 张衡益(Zhang H Y). 超分子化学——合成受体的分子识别与组装(Supramolecular Chemistry——Molecular Recognition and Assembly of Synthetic Acceptors). 天津: 南开大学出版社(Tianjin: Nankai University Press), 2001. 168.
[46] Connors K A. Chem. Rev., 1997, 97: 1325.
[47] Wenz G, Han B H, Müller A. Chem. Rev., 2006, 106: 782.
[48] Harada A, Kamachi M. Macromolecules, 1990, 23: 2821.
[49] Harada A, Li J, Kamachi M. Nature, 1992, 356: 325.
[50] Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Chem. Rev., 2009, 109: 5974.
[51] 董海清(Dong H Q), 李永勇(Li Y Y), 李兰(Li L), 时东陆(Shi D L). 化学进展(Progress in Chemistry), 2011, 23(5): 914.
[52] Li J, Harada A, Kamachi M. Polym. J., 1994, 26: 1019.
[53] Li X, Li J. J. Biomed. Mater. Res. A, 2008, 86A: 1055.
[54] Li J, Li X, Zhou Z H, Ni X P, Leong K W. Macromolecules, 2001, 34: 7236.
[55] Li J, Li X, Ni X P, Wang X, Li H Z, Leong K W. Biomaterials, 2006, 27: 4132.
[56] Ni X P, Cheng A, Li J. J. Biomed. Mater. Res. A, 2009, 88A: 1031.
[57] Choi H S, Ooya T, Lee S C, Sasaki S, Kurisawa M, Uyama H, Yui N. Macromolecules, 2004, 37: 6705.
[58] Lee S C, Choi H S, Ooya T, Yui N. Macromolecules, 2004, 37: 7464.
[59] Park C, Oh K, Lee S C, Kim C. Angew. Chem. Int. Ed., 2007, 46: 1455.
[60] Yang Y W, Chen Y, Liu Y. Inorg. Chem., 2006, 45: 3014.
[61] Shi J, Chen Y, Wang Q, Liu Y. Adv. Mater., 2010, 22: 2575.
[62] Nelson A, Belitsky J M, Vidal S, Joiner C S, Baum L G, Stoddart J F. J. Am. Chem. Soc., 2004, 126: 11914.
[63] Taura D, Li S J, Hashidzume A, Harada A. Macromolecules, 2010, 43: 1706.
[64] Ogoshi T, Masuda K, Yamagishi T A, Nakamoto Y. Macromolecules, 2009, 42: 8003.
[65] Ogoshi T, Takashima Y, Yamaguchi H, Harada A. Chem. Commun., 2006, 3702.
[66] Fu Q, Ren J M, Qiao G G. Polym. Chem., 2012, 3: 343.
[67] Zhao Y L, Stoddart J F. Langmuir, 2009, 25: 8442.
[68] Shinkai S. Tetrahedron, 1993, 49: 8933.
[69] Asfari Z, Böhmer V, Harrowfield J, Vicens J. Calixarenes. Netherlands: Kluwer Academic, 2001. 130.
[70] 刘育(Liu Y), 张衡益(Zhang H Y), 李莉(Li L), 王浩(Wang H). 纳米超分子化学——从合成受体到功能组装体(Nanoscale Supramolecular Chemistry——From Synthetic Receptors to Functional Assemblies). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2004. 90.
[71] Yamagishi T A, Kawahara A, Kita J, Hoshima M, Umehara A, Ishida S, Nakamoto Y. Macromolecules, 2001, 34: 6565.
[72] Capici C, Cohen Y, D'Urso A, Gattuso G, Notti A, Pappalardo A, Pappalardo S, Parisi M F, Purrello R, Slovak S, Villari V. Angew. Chem. Int. Ed., 2011, 50: 11956.
[73] Pappalardo A, Ballistreri F P, Destri G L, Mineo P G, Tomaselli G A, Toscano R M, Sfrazzetto G T. Macromolecules, 2012, 45: 7549.
[74] Freeman W A, Mock W L, Shih N Y. J. Am. Chem. Soc., 1981, 103: 7367.
[75] Krasia T C, Steinke J H G. Chem. Commun., 2002, 22.
[76] Tuncel D, Tiftik H B, Salih B. J. Mater. Chem., 2006, 16: 3291.
[77] Tuncel D, Steinke J H G. Chem. Commun., 2001, 253.
[78] Choi S W, Lee J W, Ko Y H, Kim K. Macromolecules, 2002, 35: 3526.
[79] Kim J, Ahn Y, Park K M, Lee D W, Kim K. Chem. Eur. J., 2010, 16: 12168.
[80] Liu Y, Shi J, Chen Y, Ke C F. Angew. Chem. Int. Ed., 2008, 47: 7293.
[81] Liu Y L, Yu Y, Gao J, Wang Z Q, Zhang X. Angew. Chem. Int. Ed., 2010, 49: 6576.
[82] Liu Y L, Yang H, Wang Z Q, Zhang X. Chem. Asian J., 2013, 8: 1626.
[83] Huang Z H, Yang L L, Liu Y L, Wang Z Q, Scherman O A, Zhang X. Angew. Chem. Int. Ed., 2014, DOI: 10.1002/ange. 201402817.
[84] Tan Y B, Choi S W, Lee J W, Ko Y H, Kim K. Macromolecules, 2002, 35: 7161.
[85] Choi S W, Ritter H. Macromol. Rapid. Comm., 2007, 28: 101.
[86] Yang H, Tan Y B, Hao J C, Yang H B, Liu F W. J. Polym. Sci. Part A: Polym. Chem., 2010, 48: 2135.
[87] Yang H, Hao J C, Tan Y B. J. Polym. Sci. Part A: Polym. Chem., 2011, 49: 2138.
[88] Liu Y, Ke C F, Zhang H Y, Wu W J, Shi J. J. Org. Chem., 2007, 72: 280.
[89] Ogoshi T, Kanai S, Fujinami S, Yamagishi T A, Nakamoto Y. J. Am. Chem. Soc., 2008, 130: 5022.
[90] Cao D R, Kou Y H, Liang J Q, Chen Z Z, Wang L Y, Meier H. Angew. Chem. Int. Ed., 2009, 48: 9721.
[91] Han C Y, Ma F Y, Zhang Z B, Xia B Y, Yu Y H, Huang F H. Org. Lett., 2010, 12: 4360.
[92] Tao H Q, Cao D R, Liu L Z, Kou Y H, Wang L Y, Meier H. Sci. China Chem., 2012, 55: 223.
[93] Hu X B, Chen Z X, Chen L, Zhang L, Hou J L, Li Z T. Chem. Commun., 2012, 48: 10999.
[94] Wang K, Tan L L, Chen D X, Song N, Xi G, Zhang S X A, Li C J, Yang Y W. Org. Biomol. Chem., 2012, 10: 9405.
[95] Zhang Z B, Xia B Y, Han C Y, Yu Y H, Huang F H. Org. Lett., 2010, 12: 3285.
[96] Ogoshi T, Nishida Y, Yamagishi T A, Nakamoto Y. Macromolecules, 2010, 43: 3145.
[97] Ogoshi T, Nishida Y, Yamagishi T A, Nakamoto Y. Macromolecules, 2010, 43: 7068.
[98] Ogoshi T, Hasegawa Y, Aoki T, Ishimori Y, Inagi S, Yamagishi T A. Macromolecules, 2011, 44: 7639.
[99] Ogoshi T, Kayama H, Aoki T, Yamagishi T A, Ohashi R, Mizuno M. Polym. J., 2014, 46: 77.
[100] Hu X Y, Zhang P Y, Wu X, Xia W, Xiao T X, Jiang J L, Lin C, Wang L Y. Polym. Chem., 2012, 3: 3060.
[101] Sun S, Hu X Y, Chen D Z, Shi J B, Dong Y P, Lin C, Pan Y, Wang L Y. Polym. Chem., 2013, 4: 2224.
[102] Sun S, Shi J B, Dong Y P, Lin C, Hu X Y, Wang L Y. Chin. Chem. Lett., 2013, 24: 987.
[103] Ji X F, Chen J Z, Chi X D, Huang F H. ACS Macro. Lett., 2014, 3: 110.
[104] Hu X Y, Wu X, Wang S, Chen D Z, Xia W, Lin C, Pan Y, Wang L Y. Polym. Chem., 2013, 4: 4292.

[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[7] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[8] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[9] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[10] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[11] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[12] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[13] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[14] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.
[15] Jiqian Wang*, Hongyu Yan, Jie Li, Liyan Zhang, Yurong Zhao, Hai Xu*. Artificial Metalloenzymes Based on Peptide Self-Assembly [J]. Progress in Chemistry, 2018, 30(8): 1121-1132.
Viewed
Full text


Abstract

Research Advances of Polypseudorotaxanes