中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (2/3): 244-259 DOI: 10.7536/PC150901 Previous Articles   Next Articles

• Review and comments •

Molecular Machines Driven by Acid-Base Chemistry and Their Applications

Zhang Shuangjin1, Yang Yang1*, Sun Xiaoqiang1, Yin Fanghua1, Jiang Juli2, Wang Leyong2   

  1. 1. School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China;
    2 School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21572026), the Priority Academic Program Development of Jiangsu Higher Education Institutions and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (No. BM2012110).
PDF ( 637 ) Cited
Export

EndNote

Ris

BibTeX

As one of the important parts of the molecular machines, molecular machines driven by acid-base chemistry play the crucial role in molecular machines, and have attracted more and more attentions for the applications in the design and construction of controllable molecular machines. At the same time, owing to the great progresses in theory studies of the molecular machine, several different kinds of functional and practical molecular machines driven by acid-base stimuli have been reported and utilized in supramolecular gels, supramolecular catalysts, supramolecular vesicles, supramolecular nanovalves, supramolecular polymers, and so on. In this paper, the design and applications of acid-base controllable molecular machines based on pseudorotaxanes, rotaxanes, and catenanes are reviewed, and the prospects of such molecular machines are also described.

Contents
1 Introduction
2 Molecular machines driven by acid-base chemistry
2.1 Acid-base driven molecular machines based on pseudorotaxanes
2.2 Acid-base driven rotaxanes-based molecular machines
2.3 Catenane-type molecular machines driven by acid-base stimuli
3 The applications of acid-base driven molecular machines
3.1 Supramolecular gel
3.2 Treatment of paraquat poisoning and supramolecular vesicles
3.3 Supramolecular catalysis
3.4 Supramolecular nanovalve
3.5 Supramolecular polymer
4 Conclusion and outlook

CLC Number: 

[1] Balzani V, Gómez-López M, Stoddart J F. Acc. Chem. Res., 1998, 31(7):405.
[2] Ballardini R, Balzani V, Credi A, Gandolfi M T, Venturi M. Acc. Chem. Res., 2001, 34(6):445.
[3] Grabuleda X, Jaime C. J. Org. Chem., 1998, 63(26):9635.
[4] Murakami H, Kawabuchi A, Matsumoto R, Ido T, Nakashima N. J. Am. Chem. Soc., 2005, 127(45):15891.
[5] Zhu L, Yan H, Wang X J, Zhao Y. J. Org. Chem., 2012, 77(22):10168.
[6] Raju M V R, Raghunath P, Lin M C, Lin H C. Macromolecules, 2013, 46(17):6731.
[7] Raju M V, Lin, H C. Org. Lett., 2014, 16(21):5564.
[8] Lubbe A S, Ruangsupapichat N, Caroli G, Feringa B L. J. Org. Chem., 2011, 76(21):8599.
[9] Lard M, ten Siethoff L, Generosi J, Månsson A, Linke H. Nano Lett., 2014, 14(6):3041.
[10] Marsella M J, Rahbarnia S, Wilmot N. Org. Biomol. Chem., 2007, 5(3):391.
[11] Grosu Y, Renaudin G, Eroshenko V, Nedelec J M, Grolier J P. Nanoscale, 2015, 7(19):8803.
[12] Liu Y, Flood A H, Bonvallet P A, Vignon S A, Northrop B H, Tseng H R, Jeppesen J O, Huang T J, Brough B, Baller M, Magonov S, Solares S D, Goddard W A, Ho C M, Stoddart J F. J. Am. Chem. Soc., 2005, 127(27):9745.
[13] Bruns C J, Stoddart J F. Acc. Chem. Res., 2014, 47(7):2186.
[14] Dial B E, Pellechia P J, Smith M D, Shimizu K D. J. Am. Chem. Soc., 2012, 134(8):3675.
[15] Kobr L, Zhao K, Shen Y, Shoemaker R K, Rogers C T, Michl J. Cryst. Growth Des., 2014, 14(2):559.
[16] Delius M V, Leigh D A. Chem. Soc. Rev., 2011, 40:3656.
[17] Carlone A, Goldup S M, Lebrasseur N, Leigh D A, Wilson A. J. Am. Chem. Soc., 2012, 134(20):8321.
[18] Alvarez-Pérez M, Goldup S M, Leigh D A, Slawin A M Z. J. Am. Chem. Soc.,2008, 130(6):1836.
[19] Zhang Z J, Han M, Zhang H Y, Liu Y. Org. Lett., 2013, 15(7):1698.
[20] Badjic J D, Ronconi C M, Stoddart J F, Balzani V, Silvi S, Credi A. J. Am. Chem. Soc., 2006, 128(5):1489.
[21] Badjic J D, Balzani V, Credi A, Silvi S, Stoddart J F. Science, 2004, 303(5665):1845.
[22] Chang T, Heiss A M, Cantrill S J, Fyfe M C T, Pease A R, Rowan S J, Stoddart J F, White A J P, Williams D J. Org. Lett., 2000, 2(19):2947.
[23] Forgan R S, Gassensmith J J, Cordes D B, Boyle M M, Hartlieb K J, Friedman D C, Slawin A M, Stoddart J F. J. Am. Chem. Soc., 2012, 134(41):17007.
[24] Blanco V, Chas M, Abella D, Peinador C, Quintela J M. J. Am. Chem. Soc., 2007, 129(45):13978.
[25] Beves J E, Blanco V, Blight B A, Carrillo R, D'Souza D M, Howgego D, Leigh D A, Slawin A M, Symes M D. J. Am. Chem. Soc., 2014, 136(5):2094.
[26] Wang Z, Takashima Y, Yamaguchi H, Harada A. Org. Lett., 2011, 13(16):4356.
[27] Yang C, Ko Y H, Selvapalam N, Origane Y, Mori T, Wada T, Kim K, Inoue Y. Org. Lett., 2007, 9(23):4789.
[28] Zhang C, Li S, Zhang J, Zhu K, Li N, Huang F. Org. Lett., 2007, 9(26):5553.
[29] Zheng B, Zhang M, Dong S, Yan X, Xue M. Org. Lett., 2013, 15(14):3538.
[30] Collin J P, Dietrich-Buchecker C, Gaviña P, Jimenez-Molero M C, Sauvage J P. Acc. Chem. Res., 2001, 34(6):477.
[31] Poleschak I, Kern J M, Sauvage J P. Chem. Commun., 2004, (4):474.
[32] Yang W, Li Y, Liu H, Chi L, Li Y. Small, 2012, 8(4):504.
[33] Zhu K, Vukotic V N, Loeb S J. Angew. Chem. Int. Ed., 2012, 51(9):2168.
[34] Zhou W, Xu J, Zheng H, Liu H, Li Y, Zhu D. J. Org. Chem., 2008, 73(19):7702.
[35] Leigh D A, Morales M A, Perez E M, Wong J K, Saiz C G, Slawin A M, Carmichael A J, Haddleton D M, Brouwer A M, Buma W J, Wurpel G W, Leon S, Zerbetto F. Angew. Chem. Int. Ed., 2005, 44(20):3062.
[36] Saha S, Flood A H, Stoddart J F, Impellizzeri S, Silvi S, Venturi M, Credi A. J. Am. Chem. Soc. 2007, 129(40):12159.
[37] Collier, C P. Science, 1999, 285(5426):391.
[38] Collier C P. Science, 2000, 289(5482):1172.
[39] Wang Q C, Qu D H, Ren J, Chen K, Tian H. Angew. Chem. Int. Ed., 2004, 43(20):2661.
[40] Balzani V, Credi A, Venturi M. Chem. Soc. Rev., 2009, 38(6):1542.
[41] Ceroni P, Credi A, Venturi M, Balzani V. Photochem. Photobiol. Sci., 2010, 9(12):1561.
[42] 刘立(Liu L). 南京大学博士论文(Doctoral Dissertation of Nanjing University), 2014.
[43] Elizarov A M, Chiu S H, Stoddart J F. J. Org. Chem., 2002, 67(26):9175.
[44] Vella S J, Tiburcio J, Loeb S J. Chem. Commun., 2007, (45):4752.
[45] Li H, Zhang J N, Zhou W, Zhang H, Zhang Q, Qu D H, Tian H. Org. Lett., 2013, 15(12):3070.
[46] Ma Y X, Meng Z, Chen C F. Org. Lett., 2014, 16(7):1860.
[47] Liu L, Liu Y, Liu P, Wu J, Guan Y, Hu X, Lin C, Yang Y, Sun X, Ma J, Wang L. Chem. Sci., 2013, 4(4):1701.
[48] Matthews O A, Raymo F M, Stoddart J F, White A J P, Williams D J. New J. Chem., 1998, 22:1131.
[49] Grunder S, McGrier P L, Whalley A C, Boyle M M, Stern C, Stoddart J F. J. Am. Chem. Soc., 2013, 135(47):17691.
[50] Buyukcakir O, Yasar F T, Bozdemir O A, Icli B, Akkaya E U. Org. Lett., 2013, 15(5):1012.
[51] Cao Y, Li Y, Hu X Y, Zou X, Xiong S, Lin C, Wang L. Chem. Mater., 2015, 27(3):1110.
[52] Ashton P R, Ballardini R, Balzani V, Gómez-López M, Lawrence S E, Martínez-Díaz M V, Montalti M, Piersanti A, Prodi L, Stoddart J F, Williams D J. J. Am. Chem. Soc., 1997, 119(44):10641.
[53] Ishow E, Credi A, Balzani V, Spadola F, Mandolini L. Chem. Eur. J., 1999, 5(3):984.
[54] Zheng B, Zhang M, Dong S, Liu J, Huang F. Org. Lett., 2012, 14(1):306.
[55] Ji X, Zhang M, Yan X, Li J, Huang F. Chem. Commun., 2013, 49(12):1178.
[56] Zhang H, Wang Q, Liu M, Ma X, Tian H. Org. Lett., 2009, 11(15):3234.
[57] Ashton P R, Ballardini R, Balzani V, Baxter I, Credi A, Fyfe M C T, Gandolfi M T, Gómez-López M, Martínez-Díaz M V, Piersanti A, Spencer N, Stoddart J. F, Venturi M, White A J P, Williams D J. J. Am. Chem. Soc., 1998, 120(46):11932.
[58] Leigh D A, Thomson A R. Org. Lett., 2006, 8(23):5377.
[59] Zhang S J, Wang Q, Cheng M, Qian X H, Yang Y, Jiang J L, Wang L Y. Chin. Chem. Lett., 2015, 26(7):885.
[60] Busseron E, Romuald C, Coutrot F. Chem. Eur. J., 2010, 16(33):10062.
[61] Jiang Q, Zhang H Y, Han M, Ding Z J, Liu Y. Org. Lett., 2010, 12(8):1728.
[62] Zhao Y, Li Y, Lai S W, Yang J, Liu C, Liu H, Che C M, Li Y. Org. Biomol. Chem., 2011, 9(21):7500.
[63] Mateo-Alonso A, Ehli C, Rahman G M A, Guldi D M, Fioravanti G, Marcaccio M, Paolucci F, Prato M. Angew. Chem. Int. Ed., 2007, 46(19):3521.
[64] Mateo-Alonso A, Ehli C, Guldi D M, Prato M. Org. Lett., 2013, 15(1):84.
[65] Li H, Li X, Wu Y, Agren H, Qu D H. J. Org. Chem., 2014, 79(15):6996.
[66] Li H, Li X, Agren H, Qu D H. Org. Lett., 2014, 16(18):4940.
[67] Zhang H, Hu J, Qu D H. Org. Lett., 2012, 14(9), 2334.
[68] Zhang H, Zhou B, Li H, Qu D H, Tian H. J. Org. Chem., 2013, 78(5):2091.
[69] Cao Z Q, Miao Q, Zhang Q, Li H, Qu D H, Tian H. Chem. Commun., 2015, 51(24):4973.
[70] Liu L, Wang Q, Cheng M, Hu X Y, Jiang J L, Wang L Y. Asian J. Org. Chem., 2015, 4(3):221.
[71] Yang W, Li Y, Zhang J, Chen N, Chen S, Liu H, Li Y. J. Org. Chem., 2011, 76(19):7750.
[72] Lewandowski B, Bo G D, Ward J W, Papmeyer M, Kuschel S, Aldegunde M J, Gramlich P M E, Heckmann D, Goldup S M, D'Souza D M, Fernandes A E, Leigh D A. Science, 2013, 339(6116):189.
[73] Li Y, Wang T, Liu M. Tetrahedron, 2007, 63(31):7468.
[74] Kim T H, Choi M S, Sohn B H, Park S Y, Lyoo W S, Lee, T S. Chem. Commun., 2008, (20):2364.
[75] Chen C T, Chen C H, Ong T G. J. Am. Chem. Soc., 2013, 135(14):5294.
[76] Hsueh S Y, Kuo C T, Lu T W, Lai C C, Liu Y H, Hsu H F, Peng S M, Chen C H, Chiu S H. Angew. Chem. Int. Ed., 2010, 49(48):9170.
[77] Yu G, Zhou X, Zhang Z, Han C, Mao Z, Gao C, Huang F. J. Am. Chem. Soc., 2012, 134(47):19489.
[78] Sun T, Guo Q, Zhang C, Hao J, Xing P, Su J, Li S, Hao A, Liu G. Langmuir, 2012, 28(23):8625.
[79] Yu G, Xue M, Zhang Z, Li J, Han C, Huang F. J. Am. Chem. Soc., 2012, 134(32):13248.
[80] Wu X, Li Y, Lin C, Hu X Y, Wang L. Chem. Commun., 2015, 51(31):6832.
[81] Cao Y, Hu X Y, Li Y, Zou X, Xiong S, Lin C, Shen Y Z, Wang L. J. Am. Chem. Soc., 2014, 136(30):10762.
[82] Hu X Y, Jia K, Cao Y, Li Y, Qin S, Zhou F, Lin C, Zhang D, Wang L. Chem. Eur. J., 2015, 21(3):1208.
[83] Duan Q, Cao Y, Li Y, Hu X, Xiao T, Lin C. Pan Y, Wang L. J. Am. Chem. Soc., 2013, 135(28):10542.
[84] Monnereau C, Ramos P H, Deutman A B C, Elemans J A A W, Nolte R J M, Rowan A E. J. Am. Chem. Soc., 2010, 132(5):1529.
[85] Slagt V F, van Leeuwen P W, Reek J N. Dalton Trans., 2007, (22):2302.
[86] Dawn A, Fujita N, Haraguchi S, Sada K, Shinkai S. Chem. Commun., 2009, (16):2100.
[87] Jin Q, Zhang L, Cao H, Wang T, Zhu X, Jiang J, Liu M. Langmuir, 2011, 27(22):13847.
[88] Blanco V, Leigh D A, Lewandowska U, Lewandowski B, Marcos V. J. Am. Chem. Soc., 2014, 136(44):15775.
[89] Suzaki Y, Shimada K, Chihara E, Saito T, Tsuchido Y, Osakada K. Org. Lett., 2011, 13(15):3774.
[90] Takashima Y, Osaki M, Ishimaru Y, Yamaguchi H, Harada A. Angew. Chem. Int. Ed., 2011, 50(33):7524.
[91] Leigh D A, Marcos V, Wilson M R. ACS Catal., 2014, 4(12):4490.
[92] Blanco V, Carlone A, Hanni K D, Leigh D A, Lewandowski B. Angew. Chem. Int. Ed., 2012, 51(21):5166.
[93] Blanco V, Leigh D A, Marcos V, Morales-Serna J A, Nussbaumer A L. J. Am. Chem. Soc., 2014, 136(13):4905.
[94] Leung K C F, Nguyen T D, Stoddart J F, Zink J I. Chem. Mater., 2006, 18(25):5919.
[95] Hernandez R, Tseng H R, Wong J W, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2004, 126(11):3370.
[96] Meng H, Xue M, Xia T, Zhao Y L, Tamanoi F, Stoddart J F, Zink J I, Nel A E. J. Am. Chem. Soc., 2010, 132(36):12690.
[97] Angelos S, Yang Y W, Khashab N M, Stoddart J F, Zink J I, J. Am. Chem. Soc., 2009, 131(32):11344.
[98] Nguyen T D, Leung K C F, Liong M, Pentecost C D, Stoddart J F, Zink J I. Org. Lett., 2006, 8(15):3363.
[99] 赵金(Zhao J), 刘育(Liu Y). 化学进展(Progress in Chemistry), 2015, 27(6):687.
[100] Dong S, Zheng B, Zhang M, Yan X, Ding X, Yu Y, Huang F. Macromolecules, 2012, 45(22):9070.
[101] Li S, Weng G H, Lin W, Sun Z B, Zhou M, Zhu B, Ye Y, Wu J. Polym. Chem., 2014, 5(13):3994.
[102] Ma X, Sun R, Li W, Tian H. Polym. Chem., 2011, 2(5):1068.
[103] Sun R, Zhang Q, Wang Q, Ma X. Polymer, 2013, 54(10):2506.
[104] Yao X, Ma X, Tian H. J. Mater. Chem. C, 2014, 2(26):5155.
[1] Ye Yang, Lin Zheping, Jin Wenlu, Wang Shuping, Wu Jing, Li Shijun. Self-Assembly of Mechanically Interlocked Structures via Metal-Mediated Coordination Cooperating with Host-Guest Recognition [J]. Progress in Chemistry, 2015, 27(6): 763-774.
[2] Yang Zaiwen, Liu Xiangrong, Zhao Shunsheng, He Jinmei. Chemically Driven [2] Rotaxane Molecular Shuttles [J]. Progress in Chemistry, 2014, 26(12): 1899-1913.
[3] Sun Shu, Shi Jianbing, Dong Yuping, Hu Xiaoyu, Wang Leyong. Research Advances of Polypseudorotaxanes [J]. Progress in Chemistry, 2014, 26(08): 1409-1426.
[4] Liu Peng, Shao Xueguang, Cai Wensheng*. Application of Pesudorotaxanes/Rotaxanes in Drug Carriers [J]. Progress in Chemistry, 2013, 25(05): 692-697.
[5] . Cyclodextrin-Containing Supramolecular Hydrogels [J]. Progress in Chemistry, 2010, 22(05): 916-926.
[6] Bo Jing,Xiao Chen**,Yongcun Chai. Assembling Poly(pseudo)rotaxanes from Cyclodextrins and Macromolecules [J]. Progress in Chemistry, 2006, 18(10): 1361-1368.