中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (3): 368-379 DOI: 10.7536/PC200556 Previous Articles   Next Articles

• Review •

Classification of Microfluidic System and Applications in Nanoparticles Synthesis

Dong Yang1,2,*(), Keyi Gao1,2, Baiqin Yang1,2, Lei Lei1,2, Lixia Wang1,2, Chaohua Xue3,*()   

  1. 1 Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology,Xi’an 710021, China
    2 College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology,Xi’an 710021, China
    3 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology,Xi’an 710021, China
  • Received: Revised: Online: Published:
  • Contact: Dong Yang, Chaohua Xue
  • Supported by:
    the National Natural Science Foundation of China(21505089); the 61th Batch of National Postdoctoral Funds Second-Class, China(202101710)
Richhtml ( 30 ) PDF ( 1204 ) Cited
Export

EndNote

Ris

BibTeX

Microfluidic synthesis technique is attracting considerable interest in the synthesis of inorganic nanomaterials, especially in precise regulation of nanoparticles, due to their miniaturization of reaction apparatus, precisely controlling the substances exchange. Given the demand for detailed experiments, the micro-reactors can be redesigned and adjusted, as well as multiple experimental steps integrated into one system to perform multi-step chemical reactions and realize the preparation of composite materials. In summary, various micro-reactors are briefly introduced, different flow statuses of the fluid in the micro-reactors are discussed, and the typical microfluidic synthesis applications in nanomaterial synthesis were exemplified in this review. Finally, the development trend in the microfluidic system is summarized.

Contents

1 Introduction

2 Microfluidic system

2.1 Microchannel reactor

2.2 Tubular microreactor

3 Fluid status in microfluidic

3.1 Monophasic laminar fluid

3.2 Polyphase droplet flow

4 Microfluidic synthesis of nanoparticles

4.1 Noble metal nanoparticles

4.2 Quantum dots

4.3 Silica nanoparticles

4.4 Magnetic nanoparticles

4.5 Hybrid nanoparticles

5 Conclusion and outlook

Fig.1 Schematic showing components of the microfluidic system used for nanoparticle synthesis.(A) fluid flow in microchannels,(B) nanoparticles of different morphologies
Fig.2 The microchannel reactor prepared by etching polymethyl methacrylate polymer materials[24]
Fig.3 Tubular microfluidic reaction device with mixing function[47,48],(A) Y-type hybrid microfluidic device,(B) screw-type tubular hybrid microfluidic device
Fig.4 Schematic of liquid flow in a microfluidic device:(A) monophasic laminar fluid,(B) polyphase droplet flow
Fig.5 Fluid in the tube reactor fell within a laminar regime, exhibiting a parabolic velocity profile
Fig.6 Schematic of generating droplets by microfluidic device:(A) T-type structure,(B) cross-type structure,(C) Y-type structure,(D) coaxial flow structure
Table 1 Calculation formula and physical meaning description of dimensionless quantity
Fig.7 Microfluidic device that directly generates reactive droplets and promotes droplet mixing[64]
Fig.8 Microfluidic device for generating reaction liquid droplets after collision mixing[77]
Fig.9 (A) Images of three-phase fluid stream and process of reagent addition,(B) schematic of a microfluidic device that can be used for multi-step reactions[78]
Table 2 Quantum dots prepared using different microfluidic devices
Fig.10 (A) Starting from initial growth of gold nuclei on the surface of the iron oxide core particles,(B) over a closed shell,(C) to a thick gold shell[77]
[1]
Kim H, Beack S, Han S, Shin M, Lee T, Park Y, Kim K S, Yetisen A K, Yun S H, Kwon W, Hahn S K. Adv. Mater., 2018, 30(10):1701460.
[2]
Yang D, Ma J Z, Xue C H, Wang L X, Wang X. J. Pharm. Biomed. Anal., 2018, 159:119.
[3]
Chimene D, Alge D L, Gaharwar A K. Adv. Mater., 2015, 27(45):7261.
[4]
Biju V. Chem. Soc. Rev., 2014, 43(3):744.
[5]
Yang D, Ma J Z, Zhang Q L, Li N N, Yang J C, Raju P A, Peng M L, Luo Y L, Hui W L, Chen C, Cui Y L. Anal. Chem., 2013, 85(14):6688.
[6]
Kim S H, Lee S Y, Yang S M, Yi G R. NPG Asia Mater., 2011, 3(1):25.
[7]
He T X, Lang Q L, Wang J, Luo G A. Progress in Chemistry, 2018, 30:1734.
何天稀, 梁琼麟, 王九, 罗国安. 化学进展, 2018, 30:1734.
[8]
Rawlings A E, Bramble J P, Tang A A S, Somner L A, Monnington A E, Cooke D J, McPherson M J, Tomlinson D C, Staniland S S. Chem. Sci., 2015, 6(10):5586.
[9]
Ma J P, Lee S M Y, Yi C Q, Li C W. Lab Chip, 2017, 17(2):209.
[10]
Wang J, Shang L R, Cheng Y, Ding H B, Zhao Y J, Gu Z Z. Small, 2015, 11(32):3890.
[11]
Shang L R, Fu F F, Cheng Y, Yu Y R, Wang J, Gu Z Z, Zhao Y J. Small, 2017, 13(4):1600286.
[12]
Jensen K F. AIChE J., 2017, 63(3):858.
[13]
Liu Y H, Hu X, Zhu N, Guo K. Progress in Chemistry, 2018, 30:1133.
刘一寰, 胡欣, 朱宁, 郭凯. 化学进展, 2018, 30:1133.
[14]
Thiele M, Knauer A, Malsch D, Csáki A, Henkel T, Köhler J M, Fritzsche W. Lab Chip, 2017, 17(8):1487.
[15]
Wang K, Lu Y C, Tostado C P, Yang L, Luo G S. Chem. Eng. J., 2013, 227:90.
[16]
Mazutis L, Vasiliauskas R, Weitz D A. Macromol. Biosci., 2015, 15(12):1764.
[17]
Kwon B H, Lee K G, Park T J, Kim H, Lee T J, Lee S J, Jeon D Y. Small, 2012, 8(21):3257.
[18]
Koh C G, Zhang X L, Liu S J, Golan S, Yu B, Yang X J, Guan J J, Jin Y, Talmon Y, Muthusamy N. J. Control. Release, 2010, 141(1):62.
[19]
Liu D F, Cito S, Zhang Y Z, Wang C F, Sikanen T M, Santos H A. Adv. Mater., 2015, 27(14):2298.
[20]
Pessoa A C S N, Sipoli C C, de la Torre L G. Lab Chip, 2017, 17(13):2281.
[21]
Hao N J, Nie Y, Closson A B, Zhang J X J. J. Colloid Interface Sci., 2019, 539:87.
[22]
Wang H Z, Nakamura H, Uehara M, Miyazaki M, Maeda H. Chem. Commun., 2002(14):1462.
[23]
Zhao C X, Middelberg A P J. RSC Adv., 2013, 3(44):21227.
[24]
Yang C H, Wang L S, Chen S Y, Huang M C, Li Y H, Lin Y C, Chen P F, Shaw J F, Huang K S. Int. J. Pharm., 2016, 510(2):493.
[25]
Stroock A D, Dertinger S K, Ajdari A, Mezic I, Stone H A, Whitesides G M. Science., 2002, 295:647.
[26]
Belliveau N M, Huft J, Lin P J, Chen S, Leung A K, Leaver T J, Wild A W, Lee J B, Taylor R J, Tam Y K, Hansen C L, Cullis P R. Mol. Ther. Nucleic Acids, 2012, 1:e37.
[27]
Kašpar O, Koyuncu A H, Pittermannová A, Ulbrich P, Tokárová V. Biomed. Microdevices, 2019, 21(4):88.
[28]
Uson L, Arruebo M, Sebastian V, Santamaria J. Chem. Eng. J., 2018, 340:66.
[29]
Sebastián V, Jensen K F. Nanoscale, 2016, 8(33):15288.
[30]
Ma H Y, Zhang M. J. Mater. Sci., 2014, 49(23):8123.
[31]
Riche C T, Zhang C C, Gupta M, Malmstadt N. Lab Chip, 2014, 14(11):1834.
[32]
Eichler M, Klages C P, Lachmann K. Surface Functionalization of Microfluidic Devices. In: Microsystems for Pharmatechnology, 2016.59.
[33]
Abou Hassan A, Sandre O, Cabuil V, Tabeling P. Chem. Commun., 2008, (15):1783.
[34]
Di D H, Qu X, Liu C, Fang L, Quan P. Int. J. Pharm., 2019, 572:118831.
[35]
Seibt S, Mulvaney P, Förster S. Colloids Surfaces A: Physicochem. Eng. Aspects, 2019, 562:263.
[36]
Seibt S, With S, Bernet A, Schmidt H W, Förster S. Langmuir, 2018, 34(19):5535.
[37]
Abou-Hassan A, Bazzi R, Cabuil V. Angew. Chem., 2009, 121(39):7316.
[38]
Hassan N, Cabuil V, Abou-Hassan A. Angew. Chem. Int. Ed., 2013, 52(7):1994.
[39]
Glasgow W, Fellows B, Qi B, Darroudi T, Kitchens C, Ye L F, Crawford T M, Mefford O T. Particuology, 2016, 26:47.
[40]
Liu Z D, Wakihara T, Oshima K, Nishioka D, Hotta Y, Elangovan S P, Yanaba Y, Yoshikawa T, Chaikittisilp W, Matsuo T, Takewaki T, Okubo T. Angew. Chem. Int. Ed., 2015, 54(19):5683.
[41]
Xu L, Srinivasakannan C, Peng J H, Zhang D, Chen G. Chem. Eng. Process.: Process. Intensif., 2015, 93:44.
[42]
Jiao M X, Zeng J F, Jing L H, Liu C Y, Gao M Y. Chem. Mater., 2015, 27(4):1299.
[43]
Zhang D T, Wu F X, Peng M H, Wang X Y, Xia D G, Guo G S. J. Am. Chem. Soc., 2015, 137(19):6263.
[44]
Ray A, Varma V B, Jayaneel P J, Sudharsan N M, Wang Z P, Ramanujan R V. Sensor Actuat. B: Chem., 2017, 242:760.
[45]
Ferraro D, Lin Y, Teste B, Talbot D, Malaquin L, Descroix S, Abou-Hassan A. Chem. Commun., 2015, 51(95):16904.
[46]
Varma V B, Wu R G, Wang Z P, Ramanujan R V. Lab Chip, 2017, 17(20):3514.
[47]
Wan Z, Yang H W, Luan W L, Tu S T, Zhou X G. Nanoscale Res. Lett., 2010, 5(1):130.
[48]
Wang K, Zhang H M, Shen Y, Adamo A, Jensen K F. React. Chem. Eng., 2018, 3(5):707.
[49]
Gomez L, Sebastian V, Irusta S, Ibarra A, Arruebo M, Santamaria J. Lab Chip, 2014, 14(2):325.
[50]
Niu G D, Zhou M, Yang X, Park J, Lu N, Wang J G, Kim M J, Wang L D, Xia Y N. Nano Lett., 2016, 16(6):3850.
[51]
Wong W K, Yap S K, Lim Y C, Khan S A, Pelletier F, Corbos E C. React. Chem. Eng., 2017, 2(5):636.
[52]
Niu G D, Zhang L, Ruditskiy A, Wang L D, Xia Y N. Nano Lett., 2018, 18(6):3879.
[53]
Chu L Y, Utada A, Shah R, Kim J W, Weitz D. Angew. Chem. Int. Ed., 2007, 46(47):8970.
[54]
Nabavi S A, Vladisavljevi G T, Bandulasena M V, Arjmandi-Tash O, Manovi V. J. Colloid Interface Sci., 2017, 505:315.
[55]
Bandulasena M V, Vladisavljevi G T, Benyahia B. Chem. Eng. Sci., 2019, 195:657.
[56]
Zou M H, Wang J, Yu Y R, Sun L Y, Wang H, Xu H, Zhao Y J. ACS Appl. Mater. Interfaces, 2018, 10(40):34618.
[57]
Xu L, Peng J H, Yan M, Zhang D, Shen A Q. Chem. Eng. Process.: Process. Intensif., 2016, 102:186.
[58]
Yagyu H, Tanabe Y, Takano S, Hamamoto M. Micro Nano Lett., 2017, 12(8):536.
[59]
Manshadi M K D, Mohammadi M, Monfared L K, Sanati-Nezhad A. Biotechnol. Bioeng., 2020, 117(2):580.
[60]
Hafermann L, Michael Köhler J. J. Nanoparticle Res., 2015, 17(2):99.
[61]
Wang K, Zhang H M, Shen Y, Adamo A, Jensen K F. React. Chem. Eng., 2018, 3(5):707.
[62]
Gobert S R L, Kuhn S, Braeken L, Thomassen L C J. Org. Process Res. Dev., 2017, 21(4):531.
[63]
Trachsel F, Günther A, Khan S, Jensen K F. Chem. Eng. Sci., 2005, 60(21):5729.
[64]
Wojnicki M, Luty-Błocho M, Hessel V, CsapÓ E, Ungor D, Fitzner K. Micromachines, 2018, 9(5):248.
[65]
Lignos I, Stavrakis S, Nedelcu G, Protesescu L, de Mello A J, Kovalenko M V. Nano Lett., 2016, 16(3):1869.
[66]
Bannock J H, Krishnadasan S H, Heeney M, de Mello J C. Mater. Horiz., 2014, 1(4):373.
[67]
Kumar K, Nightingale A M, Krishnadasan S H, Kamaly N, Wylenzinska-Arridge M, Zeissler K, Branford W R, Ware E, de Mello A J, de Mello J C. J. Mater. Chem., 2012, 22(11):4704.
[68]
Kim Y H, Zhang L, Yu T, Jin M S, Qin D, Xia Y N. Small, 2013, 9(20):3462.
[69]
Zhou H B, Yao S H. Lab Chip, 2013, 13(5):962.
[70]
Link D R, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z D, Cristobal G, Marquez M, Weitz D A. Angew. Chem. Int. Ed., 2006, 45(16):2556.
[71]
Shojaeian M, Hardt S. Appl. Phys. Lett., 2018, 112(19):194102.
[72]
Zukas B G, Gupta N R. Ind. Eng. Chem. Res., 2017, 56(25):7184.
[73]
Ma H Y, Jin N, Zhang P, Zhou Y F, Zhao Y C, Zhang X L, Lü H, Liu J. Chem. Eng. Res. Des., 2019, 144:247.
[74]
Frenz L, El Harrak A, Pauly M, BÉgin-Colin S, Griffiths A, Baret J C. Angew. Chem. Int. Ed., 2008, 47(36):6817.
[75]
Wang Y H, Tumarkin E, Velasco D, Abolhasani M, Lau W, Kumacheva E. Lab Chip, 2013, 13(13):2547.
[76]
Song H, Li H W, Munson M S, van Ha T G, Ismagilov R F. Anal. Chem., 2006, 78(14):4839.
[77]
Ahrberg C D, Wook Choi J, Geun Chung B. Sci. Rep., 2020, 10:1737.
[78]
Nightingale A M, Phillips T W, Bannock J H, de Mello J C. Nat. Commun., 2014, 5:3777.
[79]
Wang Y, Yang Y Z, Chen C, Wang S P, Wang H, Jing W W, Tao N J. ACS Sens., 2020, 5(4):1126.
[80]
Yang Q F, Liu J Y, Chen H P, Wang X X, Hang Q M, Shan Z. Progress in Chemistry, 2011, 23:880.
杨群峰, 刘建云, 陈华萍, 王显祥, 黄乾明, 单志. 化学进展, 2011, 23:880.
[81]
Kim D J, Ha D, Zhou Q T, Thokchom A K, Lim J W, Lee J, Park J G, Kim T. Nanoscale, 2017, 9(27):9622.
[82]
Tofighi G, Gaur A, Doronkin D E, Lichtenberg H, Wang W, Wang D, Rinke G, Ewinger A, Dittmeyer R, Grunwaldt J D. J. Phys. Chem. C, 2018, 122(3):1721.
[83]
Liu C, Wu F, Su Q Q, Qian W P. Progress in Chemistry, 2019, 31(10):1396.
刘畅, 吴峰, 苏倩倩, 钱卫平. 化学进展, 2019, 31(10):1396.
[84]
Kwak C H, Kang S M, Jung E, Haldorai Y, Han Y K, Kim W S, Yu T, Huh Y S. J. Ind. Eng. Chem., 2018, 63:405.
[85]
Huang H, Toit H d, Besenhard M O, Ben Jaber S, Dobson P, Parkin I, Gavriilidis A. Chem. Eng. Sci., 2018, 189:422.
[86]
Zhang X D, Ma S, Li A K, Chen L Y, Lu J W, Geng X M, Xie M, Liang X Y, Wan Y F, Yang P. Appl. Nanosci., 2020, 10:661.
[87]
Bandulasena M V, Vladisavljevi G T, Odunmbaku O G, Benyahia B. Chem. Eng. Sci., 2017, 171:233.
[88]
David S, Robert C R, Richard F, Ben F, Cottam, Ramon Vilar, Andrew J deMello C, Paul Wilde. Mater. Lett., 2007, 61:1146.
[89]
Uson L, Sebastian V, Arruebo M, Santamaria J. Chem. Eng. J., 2016, 285:286.
[90]
Panariello L, Damilos S, du Toit H, Wu G W, Radhakrishnan A N P, Parkin I P, Gavriilidis A. React. Chem. Eng., 2020, 5(4):663.
[91]
Lazarus L L, Riche C T, Marin B C, Gupta M, Malmstadt N, Brutchey R L. ACS Appl. Mater. Interfaces, 2012, 4(6):3077.
[92]
Lazarus L L, Yang A S J, Chu S, Brutchey R L, Malmstadt N. Lab Chip, 2010, 10(24):3377.
[93]
Knauer A, Csáki A, Möller F, Hühn C, Fritzsche W, Köhler J M. J. Phys. Chem. C, 2012, 116(16):9251.
[94]
Thiele M, Soh J Z E, Knauer A, Malsch D, Stranik O, Müller R, Csáki A, Henkel T, Köhler J M, Fritzsche W. Chem. Eng. J., 2016, 288:432.
[95]
Lohse S E, Eller J R, Sivapalan S T, Plews M R, Murphy C J. ACS Nano, 2013, 7(5):4135.
[96]
Calamak S, Ulubayram K. J. Mater. Sci., 2019, 54(10):7541.
[97]
Ye Z R, Wang K, Lou M N, Jia X Q, Xu F Y, Ye G X. Microfluid. Nanofluidics, 2020, 24(5):38.
[98]
Sebastian V, Basak S, Jensen K F. AIChE J., 2016, 62(2):373.
[99]
Wang H L, Niu G D, Zhou M, Wang X, Park J, Bao S X, Chi M F, Cai Z S, Xia Y N. ChemCatChem, 2016, 8(9):1658.
[100]
Hafermann L, Köhler J M. Chem. Eng. Technol., 2015, 38(7):1138.
[101]
Song Y J, Sun Q Q, Zhang T, Jin P Y, Han L. J. Nanoparticle Res., 2010, 12(7):2689.
[102]
Miao J L, Zhang F J. J. Mater. Chem. C, 2019, 7(7):1741.
[103]
Ma F, Li C C, Zhang C Y. J. Mater. Chem. B, 2018, 6(39):6173.
[104]
Li C C, Hu J, Lu M, Zhang C Y. Biosens. Bioelectron., 2018, 122:51.
[105]
Hu Y X, Guo Q S, Liu Y Q, Sun Q J, Meng T H, Zhang R G. Progress in Chemistry, 2017, 29:300.
胡先运, 郭庆生, 刘玉乾, 孙清江, 孟铁宏, 张汝国. 化学进展, 2017, 29:300.
[106]
Knowles K E, Hartstein K H, Kilburn T B, Marchioro A, Nelson H D, Whitham P J, Gamelin D R. Chem. Rev., 2016, 116(18):10820.
[107]
Kubendhiran S, Bao Z, Dave K, Liu R S. ACS Appl. Nano Mater., 2019, 2(4):1773.
[108]
Nakamura H, Yamaguchi Y, Miyazaki M, Maeda H, Uehara M, Mulvaney P. Chem. Commun., 2002,(23):2844.
[109]
Shestopalov I, Tice J D, Ismagilov R F. Lab Chip, 2004, 4(4):316.
[110]
Pan J, El-Ballouli A O, Rollny L, Voznyy O, Burlakov V M, Goriely A, Sargent E H, Bakr O M. ACS Nano, 2013, 7(11):10158.
[111]
Chakrabarty A, Marre S, Landis R F, Rotello V M, Maitra U, Guerzo A D, Aymonier C. J. Mater. Chem. C, 2015, 3(29):7561.
[112]
Wang J M, Zhao H F, Zhu Y C, Song Y J. J. Phys. Chem. C, 2017, 121(6):3567.
[113]
Kwak C H, Park J P, Lee S S, Muruganantham R, Kwon S, Roh C, Kim S W, Huh Y S. J. Nanosci. Nanotechnol., 2018, 18(2):1339.
[114]
Hong L Y, Cheung T L, Rao N X, Ouyang Q, Wang Y, Zeng S W, Yang C B, Dang C, Chong P H J, Liu L W, Law W C, Yong K T. RSC Adv., 2017, 7(58):36819.
[115]
Lignos I, Stavrakis S, Kilaj A, de Mello A J. Small, 2015, 11(32):4009.
[116]
Baek J, Shen Y, Lignos I, Bawendi M G, Jensen K F. Angew. Chem. Int. Ed., 2018, 57(34):10915.
[117]
Ippen C, Schneider B, Pries C, Kröpke S, Greco T, Holländer A. Nanotechnology, 2015, 26(8):085604.
[118]
Yashina A, Lignos I, Stavrakis S, Choo J, de Mello A J. J. Mater. Chem. C, 2016, 4(26):6401.
[119]
Naughton M S, Kumar V, Bonita Y, Deshpande K, Kenis P J A. Nanoscale, 2015, 7(38):15895.
[120]
Tian Z H, Xu J H, Wang Y J, Luo G S. Chem. Eng. J., 2016, 285:20.
[121]
Shu Y, Jiang P, Pang D W, Zhang Z L. Nanotechnology, 2015, 26(27):275701.
[122]
Knossalla J, Mezzavilla S, Schüth F. New J. Chem., 2016, 40(5):4361.
[123]
Chung C K, Shih T R, Chang C K, Lai C W, Wu B H. Chem. Eng. J., 2011, 168(2):790.
[124]
Hao N J, Nie Y, Xu Z, Closson A B, Usherwood T, Zhang J X J. Chem. Eng. J., 2019, 366:433.
[125]
Hao N J, Nie Y, Zhang J X J. ACS Sustainable Chem. Eng., 2018, 6(2):1522.
[126]
Hao N J, Nie Y, Tadimety A, Shen T, Zhang J X J. Biomater. Sci., 2018, 6(12):3121.
[127]
Ju M H, Ji X B, Wang C Q, Shen R W, Zhang L X. Chem. Eng. J., 2014, 250:112.
[128]
Carroll N J, Crowder P F, Pylypenko S, Patterson W, Ratnaweera D R, Perahia D, Atanassov P, Petsev D N. ACS Appl. Mater. Interfaces, 2013, 5(9):3524.
[129]
Nie Y, Hao N J, Zhang J X J. Sci. Rep., 2017, 7:12616.
[130]
Hao N J, Nie Y, Tadimety A, Closson A B, Zhang J X J. Mater. Res. Lett., 2017, 5(8):584.
[131]
Tamtaji M, Mohammadi A. J. Flow Chem., 2019, 9(3):161.
[132]
Liu T H, Chang G, Cao R J, Meng L J. Progress in Chemistry, 2015, 27:601.
刘天辉, 常刚, 曹瑞军, 孟令杰. 化学进展, 2015, 27:601.
[133]
Zhang J L, Hong G Y, Ni J Z. Progress in Chemistry, 2009, 21:880.
张吉林, 洪广言, 倪嘉缵. 化学进展, 2009, 21:880.
[134]
Shviro M, Zitoun D. RSC Adv., 2013, 3(5):1380.
[135]
Eluri R, Paul B. J. Nanoparticle Res., 2012, 14(4):800.
[136]
Clifford D M, El-Gendy A A, Lu A J, Pestov D, Carpenter E E. J. Flow Chem., 2014, 4(3):148.
[137]
Gomez L, Arruebo M, Sebastian V, Gutierrez L, Santamaria J. J. Mater. Chem., 2012, 22(40):21420.
[138]
Hao N J, Nie Y, Xu Z, Zhang J X J. J. Colloid Interface Sci., 2019, 542:370.
[139]
Khan S, Jensen K. Adv. Mater., 2007, 19(18):2556.
[140]
Köhler J M, Romanus H, Hübner U, Wagner J. J. Nanomater., 2014, 2007:1.
[141]
Knauer A, Eisenhardt A, Krischok S, Koehler J M. Nanoscale, 2014, 6(10):5230.
[142]
Xu L, Srinivasakannan C, Peng J H, Yan M, Zhang D, Zhang L B. Appl. Surf. Sci., 2015, 331:449.
[143]
Sachdev S, Maugi R, Davis S, Doak S S, Zhou Z X, Platt M. J. Colloid Interface Sci., 2020, 569:204.
[144]
Tao S, Yang M, Chen H H, Ren M Y, Chen G W. J. Colloid Interface Sci., 2017, 486:16.
[145]
Wang W, Yang C, Cui X Q, Bao Q L, Li C M. Microfluid. Nanofluidics, 2010, 9(6):1175.
[146]
Tian S Z, Fu M, Hoheisel W, Mleczko L. Chem. Eng. J., 2016, 289:365.
[147]
Baek J, Shen Y, Lignos I, Bawendi M G, Jensen K F. Angew. Chem., 2018, 130(34):11081.
[148]
Uehara M, Nakamura H, Maeda H. J. Nanosci. Nanotech., 2009, 9(1):577.
[149]
Knauer A, Thete A, Li S, Romanus H, Csáki A, Fritzsche W, Köhler J M. Chem. Eng. J., 2011, 166(3):1164.
[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[3] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[4] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[5] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[6] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[7] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[8] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[9] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.
[10] Yihuan Liu, Xin Hu, Ning Zhu, Kai Guo. Microfluidic Synthesis of Micro-and Nanoparticles [J]. Progress in Chemistry, 2018, 30(8): 1133-1142.
[11] Dongdong Zhang, Jingmin Liu, Yaoyao Liu, Meng Dang, Guozhen Fang, Shuo Wang. The Application of Nanoparticles in Drug Delivery [J]. Progress in Chemistry, 2018, 30(12): 1908-1919.
[12] Zhichao Yu, Chun Tang, Li Yao, Qing Gao, Zushun Xu, Tingting Yang. Preparation of Hollow Mesoporous Materials by Polymer-Based Templates [J]. Progress in Chemistry, 2018, 30(12): 1899-1907.
[13] Hongmei Bi, Xiaojun Han. Design and Fabrication of Magnetically Responsive Drug Delivery Carriers [J]. Progress in Chemistry, 2018, 30(12): 1920-1929.
[14] Du Xin, Zhao Caixia, Huang Hongwei, Wen Yongqiang, Zhang Xueji. Synthesis of Dendrimer-Like Porous Silica Nanoparticles and Their Applications in Advanced Carrier [J]. Progress in Chemistry, 2016, 28(8): 1131-1147.
[15] Hao Rui, Zhang Congyun, Lu Ya, Zhang Dongjie, Hao Yaowu, Liu Yaqing. Preparation and Surface-Enhanced Raman Scattering Effect of Graphene Oxide/(Au/Ag) Hybrid Materials [J]. Progress in Chemistry, 2016, 28(8): 1186-1195.