中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (12): 1899-1907 DOI: 10.7536/PC180409 Previous Articles   Next Articles

• Review •

Preparation of Hollow Mesoporous Materials by Polymer-Based Templates

Zhichao Yu1, Chun Tang1, Li Yao1, Qing Gao1, Zushun Xu1, Tingting Yang1,2*   

  1. 1. Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062;
    2. Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
  • Received: Revised: Online: Published:
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(No.51503059) and the Open Research Project of Engineering Research Center of Nano-Geo Materials of Ministry of Education(No.NGM2016KF012).
PDF ( 556 ) Cited
Export

EndNote

Ris

BibTeX

Hollow mesoporous materials (HMMs), especially the silica-based and carbon-based HMMs, are of great importance on account of their tunable pore sizes and structures, chemical stability, facile surface functionalization, high guest molecules uploading and broad applications in the field of catalysis, biology and energy storage. Template method is one of the most effective methods to prepare HMMs. Controlling HMMs can be realized by modulating the templates. Polymer-based templates, including micelles, self-assemblies of block polymers, polymer latex particles, natural/synthetic macromolecules and sophisticate-structured macromolecules (dentrimer and brushes), are successfully applied in preparing HMMs in desired forms. Recent progress in the synthesis of hollow mesoporous materials with different polymer-based templates are reviewed. Compared with the conventional surfactant/inorganic oxide templates, polymer-based templates are easy to undergo surface modification and possess ampler self-assembly morphologies such as spheres, vesicles and rods under more gentle and controllable synthetic conditions. Especially the unique hollow cavity of HMMs is more efficient to capture the noble metal nanoparticles as cores. Applications of noble-metal-uploading hollow mesoporous materials as catalytic carriers are discussed mainly in three aspects including chemical catalysis, electrocatalysis and photoelectric catalysis. At the same time, the problems hindering the development of HMMs are pointed out, and the application prospect of HMMs in catalysis is prospected.
Contents
1 Introduction
2 Polymer-based templates
2.1 Self-assemblies of block copolymers
2.2 Emulsion droplet and polymer latex particles
2.3 Natural/synthetic biological macromolecules
2.4 Sophisticate-structured polymers
3 Hollow mesoporous materials as catalytic carriers
4 Conclusion

CLC Number: 

[1] Fang X, Zhao X, Fang W, Chen C, Zheng N. Nanoscale, 2013, 5:2205.
[2] Zhang Y, Yue Q, Yu L, Yang X, Hou X, Zhao D, Cheng X, Deng Y. Adv. Mater., 2018, 26:1800345.
[3] Wang J G, Li F, Zhou H J, Sun P C, Ding D T, Chen T H. Chem. Mater., 2009, 21:612.
[4] Wang J, Xiao Q, Zhou H, Sun P, Yuan Z, Li B, Ding D, Shi A C, Chen T. Adv. Mater., 2006, 18:3284.
[5] Yu M, Wang H, Zhou X, Yuan P, Yu C. J. Am. Chem. Soc., 2007, 129:14576.
[6] Chen H, He J. Chem. Commun., 2008, 37:4422.
[7] Jia B, Qin M, Zhang Z, Zhang Z, Chu A, Zhang L, Liu Y, Lu H F, Qu X H. Carbon, 2013, 62:472.
[8] Shi J, Yao Q, Li X, Zhou G, Fu S. Am. Mineral., 2012, 97:1381.
[9] Du J, Chen Y, Zhang Y, C. Han C, Fischer K, Schmidt M.J. Am. Chem. Soc., 2003, 125:14710.
[10] Niu D, Ma Z, Li Y, Shi J. J. Am. Chem. Soc., 2010, 132:15144
[11] Yang Z C, Zhang Y, Kong J H, Wong S Y, Li X, Wang J. Chem. Mater., 2013, 25:704.
[12] Lee H, Park J, Choi S, Son J, Oh M. Small, 2013, 4:561.
[13] Nonoyama T, Kinoshita T, Higuchi M, Nagata K, Tanaka M, Sato K, Kato K. J. Am. Chem. Soc., 2012, 134:8841.
[14] Yao S, Jin B, Liu B, Shao C, Zhao R, Wang X, Tang R. Adv. Mater., 2017, 29:1605903.
[15] Liu D, Sasidharan M, Nakashima K. J. Colloid. Interface Sci., 2011, 358:354.
[16] Li Y, Bastakoti B P, Imura M, Tang J, Aldalbahi A, Torad N L, Yamauchi Y. Chem. Eur. J., 2015, 21:6375.
[17] Li N, Niu D, Jiang Y, Xu C, Pan S, He J, Chen J, Zhang L,Li Y. Chem. Mater., 2017, 29:10377.
[18] Yoon H, Hong J, Park C, Dong W, Sang E.Mater. Lett.,2009, 63:2047.
[19] Teng Z, Han Y, J Li, F Yan, Yang W. Micropor. Mesopor. Mat., 2010, 127:67.
[20] Ma X, Zhang J, Dang M, Wang J, Tu Z, Yuwen L, Chen G, Su X, Teng Z.J. Colloid Interface Sci., 2016, 475:66.
[21] Yang S M, Sokolov I, Coombs N, Kresge C T, Ozin G A. Adv. Mater., 1999, 11:1427.
[22] Chen H, He J, Tang H, Yan C. Chem. Mater., 2008, 20:5894.
[23] Chen H, Hu T, Zhang X, Huo K, Chu P K, He J. Langmuir, 2010, 26:13556.
[24] Du X, He J. Chem. Eur. J., 2011, 17:8165.
[25] Zhang H, Ye F, Xu H, Liu L, Guo H. Mater. Lett., 2010, 64:1473.
[26] Prieto G, Tüysüz H, Duyckaerts N, Knossalla J, Wang G H, Schüth F. Chem. Rev., 2016, 116:14056.
[27] Wang G H, Hilgert J, Richter F H, Wang F, Bongard H J, Spliethoff B, Weidenthaler C, Schüth F. Nature Mater., 2014, 13:293.
[28] Sakai T, Alexandridis P. Langmuir, 2004, 20:8426.
[29] Sakai T, Alexandridis P. J. Phys. Chem. B, 2005, 109:7766.
[30] Wang C, Daimon H, Lee Y, Lee Y, Kim J, Sun S. J. Am. Chem. Soc., 2007, 129:6974.
[31] Yin A X, Min X Q, Zhang Y W, Yan C H. J. Am. Chem. Soc., 2011,133:3816.
[32] Yin A X, Min X Q, Zhu W, Wu H S, Zhang Y W, Yan C H. Chem. Commun., 2012, 48:543.
[33] Mazinani B, Beitollahi A, Masrom A, Samiee L, Ahmadi Z. Ceram. Int., 2017, 43:11786.
[34] Li Y, Chen J, Xu Q, He L, Chen Z. J. Phys. Chem. C, 2009, 113:10085.
[35] Zhou F, Li S, Vo C, Yuan J, Chai S, Gao Q, Armes S, Lu C, Cheng S.Langmuir, 2007, 23:9737.
[36] Pi M, Yang T, Yuan J, Fujii S, Kakigi Y, Nakamura Y, Cheng S. Colloids Surfaces B, 2010, 78:193.
[37] Chai S, Zhang J, Yang T, Yuan J, Cheng S. Colloid Surface A, 2010, 356:32.
[38] Zhou H, Luo J, Gao Q, Yang T. J. Appl. Polym. Sci., 2016, 133:44200.
[39] Shimizu K, Cha J, Stucky G D, Morse D E. P. Natl. Acad. Sci. U.S.A., 1998, 95:6234.
[40] Cha J N, Shimizu K, Zhou Y, Christiansen S C, Chmelka B F, Stucky G D, Morse D E. P. Natl. Acad. Sci. U.S.A., 1999, 96:361.
[41] Kroger N, Lorenz S, Brunner E, Sumper M. Science, 1999, 286:1129.
[42] Kroger N, Lorenz S, Brunner E, Sumper M. Science. 2002, 298:584.
[43] Shiomi T, Tsunoda T, Kawai A, Chiku H, Mizukami F, Sakaguchi K. Chem. Commun., 2005, 42:5325.
[44] Shiomi T, Tsunoda T, Kawai A, Mizukami F, Sakaguchi K. Chem. Mater., 2007, 19:4486.
[45] Wibowo D, Zhao C X, Middelberg A P. Langmuir, 2015, 31:1999.
[46] Shi J F,Zhang S H,Wang X L,Yang C,Jiang Z Y. J. Mater. Chem. B, 2014, 2:4289.
[47] Galarneau A, Sartori F, Cangiotti M, Mineva T, Renzo D F,Ottaviani M F. J. Phys. Chem. B, 2010, 114:2140.
[48] Wibowo D, Zhao C, Middelberg A. Chem. Commun., 2014, 50:11325.
[49] Cha J N, Stucky G D, Morse D E, Deming T J. Nature, 2000, 403:289.
[50] Wong M S, Cha J N, Choi K S, Deming T J, Stucky G D. Nano Lett., 2002, 2:583.
[51] Jan J, ChuangT, Chen P, Teng H. Langmuir, 2011, 27:2834.
[52] Ren H, Zhang Y, Su J, Lin P, Wang B, Fang B, Wang S. J. Biotechnol., 2017, 241:33.
[53] Jiang Y, Yang D, Zhang L, Li L, Sun Q, Zhang Y, Li J, Jiang Z. Dalton Trans., 2008, 21(31):4165.
[54] Knecht M R. Wright D W. Langmuir, 2004, 20:4728.
[55] Demadis K D, Neofotistou E. Chem. Mater., 2007, 19:581.
[56] Müllner M, Lunkenbein T, Breu J, Caruso F, Müller A H E. Chem. Mater., 2012, 24:1802.
[57] Al-Marri M J, Kuti Y O, Khraisheh M, Kumar A, Khader M M. Chem. Eng. Tenhnol., 2017, 40:1802.
[58] Stein, Andreas. Adv. Mater., 2003, 15:763.
[59] Taguchi A, Schüth F. Micropor. Mesopor. Mat., 2005, 77:1.
[60] Haruta M, Daté M. Appl. Catal. A-Gen., 2001, 222:427.
[61] Wu S H, Tseng C T, Lin Y S, Lin C H, Hung Y, Mou C Y. J. Mater. Chem., 2011, 21:789.
[62] Wu X, Tan L, Chen D, Meng X, Tang F. Chem. Commun., 2014, 50:539.
[63] Yang Y, Liu X, Li X, Zhao J, Bai S, Liu J, Yang Q. Angew. Chem., Int. Ed., 2012, 51:9164.
[64] He X, Tan L, Chen D, Wu X, Ren X, Zhang Y, Meng X, Tang F. Chem. Commun., 2013, 49:4643.
[65] Xing R, Zhou T, Zhou Y, Ma R, Liu Q, Luo J, Wang J. Nano-Micro Lett., 2018, 10:3.
[66] Zhou T, Zhou Y, Ma R, Liu Q, Zhu Y, Wang J. J. Mater. Chem. A, 2017, 5:12243.
[67] Zhou L, Yang C, Wen J, Fu P, Sun J, Wang H,Yuan Y. J. Mater. Chem. A, 2017, 36:19343.
[68] Pourdayhimi P, Pei W K, Salleh M M, Nur H, Lee S L. Aust. J. Chem., 2016, 69:790.
[69] Fujiwara K, Kuwahara Y, Sumida Y, Yamashita H. Langmuir, 2017, 33:288.
[70] Fujiwara K, Kuwahara Y, Sumida Y, Yamashita H. J. Mater. Chem. A, 2017, 48:25431.
[71] Rostamnia S, Kholdi S. Adv. Powder. Technol., 2018, 29:1167.
[72] Hong Y, Choi I, Seo W. Sci. Rep., 2018, 8:7469.
[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Tao Kai, Wang Jiqian, Xia Daohong, Xu Hai, Lv Jianren, Shan Honghong. Applications of Peptides in Noble Metal Nanoparticles (NMNPs) Preparation [J]. Progress in Chemistry, 2012, 24(07): 1294-1308.
[3] Xia Wenjian, Meng Lingjie, Liu Li, Lu Qinghua. Carbon Nanotubes Decorated with Noble Metal Nanoparticles [J]. Progress in Chemistry, 2010, 22(12): 2298-2308.
[4] Xiao Guina Cai Jiye. Optical Biosensors Based on Localized Surface Plasmon Resonance Effect [J]. Progress in Chemistry, 2010, 22(01): 194-200.