中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (8): 1131-1147 DOI: 10.7536/PC160209 Previous Articles   Next Articles

• Review and comments •

Synthesis of Dendrimer-Like Porous Silica Nanoparticles and Their Applications in Advanced Carrier

Du Xin1*, Zhao Caixia1, Huang Hongwei2, Wen Yongqiang1, Zhang Xueji1   

  1. 1. Research Center for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China;
    2. School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21501009), the High-Level Talent Introduction Plan of University of Science & Technology Beijing ( No. 06500017) and the Fundamental Research Funds for the Central Universities (No. FRF-TP-15-019A1)
PDF ( 918 ) Cited
Export

EndNote

Ris

BibTeX

Dendrimer-like porous silica nanoparticles, which have center-radial pore structures with gradually increasing pore sizes from particle interior to particle surface, are a kind of new porous material. Compared with conventional mesoporous silica nanoparticles (MSNs) with uniform hexagonal ordered mesopores, dendrimer-like nanoparticles have remarkable structure advantages due to their unique open three-dimensional dendritic superstructures, such as high pore permeability and high accessibility to internal surface, thus being in favor of mass (molecules and even nanoparticles) transfer process along center-radial pore channels, loading in the interior of dendritic nanoparticles or reacting with active sites in the particles. Therefore, they are very promising platforms to construct advanced adsorbents, nanocatalysts and drugs and gene nanocarriers. In this review, we first introduce a series of synthesis methods and the intrinsic mechanism about how to regulate the dendritic structure, then analyze their unique structural characteristics and the corresponding physicochemical properties, subsequently present a few examples of interesting applications mainly in catalysis, biomedicine, environment and energy, and other important fields, finally conclude with an outlook on the prospects and challenges in terms of their controlled synthesis and potential applications.

Contents
1 Introduction
2 Structural characteristics and properties
3 Synthesis strategies
3.1 Oil-water biphase stratification method
3.2 Special microemulsion systems
3.3 Dynamic ethyl ether emulsion systems
3.4 Dynamic polystyrene template
3.5 Soft template caused by strong counterion
3.6 Other approaches
4 Applications
4.1 Catalysis
4.2 Biomedical and biotechnological applications
4.3 Other applications

CLC Number: 

[1] Stöber W,Fink A,Bohn E.J.Colloid Interface Sci.,1968,26:62.
[2] Kresge C T,Leonowicz M E,Roth W J,Vartuli J C,Beck J S.Nature,1992,359:710.
[3] Zhao D Y,Feng J L,Huo Q S,Melosh N,Fredrickson G H,Chmelka B F,Stucky G D,Science,1998,279:548.
[4] Vallet-Regí M,Balas F,Arcos D.Angew.Chem.Int.Ed.,2007,46:7548.
[5] Slowing I I,Trewyn B G,Giri S,Lin V S Y.Adv.Funct.Mater.,2007,17:1225.
[6] Trewyn B G,Slowing I I,Giri S,Chen H T,Lin V S Y.Acc.Chem.Res.,2007,40:846.
[7] Trewyn B G,Giri S,Slowing I I,Lin V S Y.Chem.Commun.,2007,32:36.
[8] Wang S.Microporous Mesoporous Mater.,2009,117:1.
[9] Hom C,Lu J,Tamanoi F.J.Mater.Chem.,2009,19:6308.
[10] Zhao Y,Vivero-Escoto J L,Slowing I I,Trewyn B G,Lin V S Y.Expert Opin.Drug Deliv.,2010,7:1013.
[11] Che S,Liu Z,Ohsuna T,Sakamoto K,Terasaki O,Tatsumi T,Nature,2004,429:281.
[12] Zheng Y,Lin L H,Ye X J,Guo F S,Wang X C,Angew.Chem.Int.Ed.,2014,53:11926.
[13] Shopsowitz K E,Hao Q,Hamad W Y,Maclachlan M J,Nature,2010,468:422.
[14] Slowing I I,Vivero-Escoto J L,Wu C W,Lin V S Y.Adv.Drug Delivery Rev.,2008,60:1278.
[15] Vivero-Escoto J L,Slowing I I,Trewyn B G,Lin V S Y.Small,2010,6:1952.
[16] Du X,Li X,Xiong L,Zhang X,Kleitz F,Qiao S Z,Biomaterials,2016,91:90.
[17] Tang F,Li L,Chen D.Adv.Mater.,2012,24:1504.
[18] Ambrogio M W,Thomas C R,Zhao Y L,Zink J I,Stoddart J F.Acc.Chem.Res.,2011,44:903.
[19] Tarn D,Ashley C E,Xue M,Carnes E C,Zink J I,Brinker C J.Acc.Chem.Res.,2013,46:792.
[20] Li Z,Barnes J C,Bosoy A,Stoddart J F,Zink J I.Chem.Soc.Rev.,2012,41:2590.
[21] Zhang Y,Hsu B Y W,Ren C,Li X,Wang J.Chem.Soc.Rev.,2015,44:315.
[22] He Q,Shi J.J.Mater.Chem.,2011,21:5845.
[23] He Q,Shi J.Adv.Mater.,2014,26:391.
[24] Yang P,Gai S,Lin J.Chem.Soc.Rev.,2012,41:3679.
[25] Wang K,He X,Yang X,Shi H.Acc.Chem.Res.,2013,46:1367.
[26] Coll C,Bernardos A,Martínez-Máñez R,Sancenón F.Acc.Chem.Res.,2013,46:339.
[27] Mamaeva V,Sahlgren C,Lindén M.Adv.Drug Delivery Rev.,2013,65:689.
[28] Vivero-Escoto J L,Huxford-Phillips R C,Lin W.Chem.Soc.Rev.,2012,41:2673.
[29] Ciriminna R,Fidalgo A,Pandarus V,Béland F,Ilharco L M,Pagliaro M.Chem.Rev.,2013,113:6592.
[30] Rosenholm J M,Sahlgren C,Lindén M.Nanoscale,2010,2:1870.
[31] Lee J E,Lee N,Kim T,Kim J,Hyeon T.Acc.Chem.Res.,2011,44:893.
[32] Lin Y S,Hurley K R,Haynes C L.J.Phys.Chem.Lett.,2012,3:364.
[33] Popat A,Hartono S B,Stahr F,Liu J,Qiao S Z,Lu G Q.Nanoscale,2011,3:2801.
[34] Cotí K K,Belowich M E,Liong M,Ambrogio M W,Lau Y A,Khatib H A,Zink J I,Khashab N M,Stoddart J F.Nanoscale,2009,1:16.
[35] Rosenholm J M,Sahlgren C,Lindén M.Nanoscale,2010,2:1870.
[36] Argyo C,Weiss V,Bräuchle C,Bein T.Chem.Mater.,2014,26:435.
[37] Rosenholm J M,Mamaeva V,Sahlgren C,Lindén M.Nanomedicine,2012,7:111.
[38] Du X,Qiao S Z.Small,2015,11:32.
[39] Du X,He J.Nanoscale,2011,3:3984.
[40] Mintzer M A,Grinstaff M W.Chem.Soc.Rev.,2011,40:173.
[41] Medina S H,El-Sayed M E.Chem.Rev.,2009,109:3141.
[42] Khandare J,Calderón M,Dagia N M,Haag R.Chem.Soc.Rev.,2012,41:2824.
[43] Wang A Z,Langer R,Farokhzad O C.Annu.Rev.Med.,2012,63:185.
[44] Launey M E,Ritchie R O.Adv.Mater.,2009,21:2103.
[45] Ritchie R O,Nat.Mater.,2011,10:817.
[46] Andrievski R A,Glezer A M.Phys.Usp.,2009,52:315.
[47] Lee J,Singer J P,Thomas E L.Adv.Mater.,2012,24:4782.
[48] Na H K,Kim M H,Park K,Ryoo S R,Lee K E,Jeon H,Ryoo R,Hyeon C,Min D H.Small,2012,8:1752.
[49] Chen Y,Chu C,Zhou Y,Ru Y,Chen H,Chen F,He Q,Zhang Y,Zhang L,Shi J.Small,2011,7:2935.
[50] Chen L,Zhu G,Zhang D,Zhao H,Guo M,Shi W,Qiu S.J.Mater.Chem.,2009,19:2013.
[51] Hartono S B,Gu W,Kleitz F,Liu J,He L,Middelberg A P J,Yu C,Lu G Q,Qiao S Z.ACS Nano,2012,6:2104.
[52] Polshettiwar V,Cha D,Zhang X,Basset J M.Angew.Chem.Int.Ed.,2010,49:9652.
[53] Wang J,Xiao Q,Zhou H,Sun P,Yuan Z,Li B,Ding D,Shi A,Chen T.Adv.Mater.,2006,18:3284.
[54] Lin H P,Cheng Y R,Mou C Y.Chem.Mater.,1998,10:3772.
[55] Oliver S,Kuperman A,Coombs N,Lough A,Ozin G A.Nature,1995,378:47.
[56] Chen H,Hu T,Zhang X,Huo K,Chu P K,He J.Langmuir,2010,26:13556.
[57] Shen D,Yang J,Li X,Zhou L,Zhang R,Li W,Chen L,Wang R,Zhang F,Zhao D.Nano Lett.,2014,14:923.
[58] Yue Q,Li J,Luo W,Zhang Y,Elzatahry A A,Wang X,Wang C,Li W,Cheng X,Alghamdi A,Abdullah A M,Deng Y,Zhao D.J.Am.Chem.Soc.,2015,137:13282.
[59] Yang J,Shen D,Wei Y,Li W,Zhang F,Kong B,Zhang S,Teng W,Fan J,Zhang W,Dou S,Zhao D.Nano Res.,2015,8:2503.
[60] Xu C,Yu M,Noonan O,Zhang J,Song H,Zhang H,Lei C,Niu Y,Huang X,Yang Y,Yu C.Small,2015,11:5949.
[61] Yang Y,Niu Y,Zhang J,Meka A K,Zhang H,Xu C,Lin C X C,Yu M,Yu C.Small,2015,11:2743.
[62] Yang Y,Bernardi S,Song H,Zhang J,Yu M,Reid J C,Strounina E,Searles D J,Yu C.Chem.Mater.,2016,28:704.
[63] Yang H,Liao S,Huang C,Du L,Chen P,Huang P,Fu Z,Li Y.Appl.Surf.Sci.,2014,314:7.
[64] Gai S,Yang P,Ma P,Wang L,Li C,Zhang M,Jun L.Dalton Trans.,2012,41:4511.
[65] Moon D,Lee J.Langmuir,2012,28:12341.
[66] Moon D S,Lee J K.Langmuir,2014,30:15574.
[67] Imalka M,Hong J,Alicia D S,Balkus K J.J.Porous Mater.,2015,22:1.
[68] Xie Y,Wang J,Wang M,Ge X.J.Hazard.Mater.,2015,297:66.
[69] Huang W,Yu X,Tang J,Zhu Y,Zhang Y,Li D.Microporous Mesoporous Mater.,2015,217:225.
[70] Choi Y,Yun Y S,Park H,Park D S,Yun D,Yi J.Chem.Commun.,2014,50:7652.
[71] Gai S,Yang P,Ma P,Wang D,Li C,Li X,Niu N,Lin J.J.Mater.Chem.,2011,21:16420.
[72] Yu K,Zhang X,Tong H,Yan X,Liu S.Mater.Lett.,2013,106:151.
[73] Atabaev T S,Lee J H,Lee J J,Han D W,Hwang Y H,Kim H K,Hong N H.Nanotechnology,2013,24:345603.
[74] Peng H,Xu L,Wu H,Zhang K,Wu P.Chem.Commun.,2013,49:2709.
[75] Rowley H H,Reed R W.J.Am.Chem.Soc.,1951,73:2960.
[76] Lin H,Cui K,Yao Y,Cai Q,Feng Q,Li H.Chem.Lett.,2005,34:918.
[77] Du X,He J.Langmuir,2010,26:10057.
[78] Du X,He J.Langmuir,2011,27:2972.
[79] Du X,Shi B Y,Liang J,Dai J,Bai S,Qiao S Z.Adv.Mater.,2013,25:5981.
[80] Du X,Li X,Huang H,He J,Zhang X.Nanoscale,2015,7:6173.
[81] Chen H,J,Tang H,Yan C.Chem.Mater.,2008,20:5894.
[82] Du X,Li X,He J.ACS Appl.Mater.Interface,2010,2:2365.
[83] Du X,He J.Nanoscale,2012,4:852.
[84] Du X,He J.J.Colloid Interface Sci.,2010,345:269.
[85] Dai L,Zhang Q,Li J,Shen X,Mu C,Cai K.ACS Appl.Mater.Interfaces,2015,7:7357.
[86] Zhang H,Li Z,Xu P,Wu R,Jiao Z.Chem.Commun.,2010,46:6783.
[87] Nandiyanto A B D,Kim S G,Iskandar F,Okuyama K.Microporous Mesoporous Mater.,2009,120:447.
[88] Zhang Y,Zhi Z,Jiang T,Zhang J,Wang Z,Wang S.J.Controlled Release,2010,145:257.
[89] Chen P J,Hu S H,Hung W,Chen S Y,Liu D M.J.Mater.Chem.,2012,22:9568.
[90] Chen P J,Hu S H,Fan C T,Li M L,Chen Y Y,Chen S Y,Liu D M,Chem.Commun.,2013,49:892.
[91] Chen P J,Kang Y D,Lin C H,Chen S Y,Hsieh C H,Chen Y Y,Chiang C W,Lee W,Hsu C Y,Liao L D,Fan C T,Li M L,Shyu W C.Adv.Mater.,2015,27:6488.
[92] Zhang K,Xu L,Jiang J,Calin N,Lam K,Zhang S,Wu H,Wu G,Albela B,Bonneviot L,Wu P.J.Am.Chem.Soc.,2013,135:2427.
[93] Yu Y J,Xing J L,Pang J L,Jiang S H,Lam K F,Yang T Q,Xue Q S,Zhang K,Wu P.ACS Appl.Mater.Interfaces,2014,6:22655.
[94] Xiong L,Du X,Shi B,Bi J,Freddy K,Qiao S Z.J.Mater.Chem.B,2015,3:1712.
[95] Wu M,Meng Q,Chen Y,Du Y,Zhang L,Li Y,Zhang L,Shi J.Adv.Mater.,2015,27:215.
[96] Sheng Y,Zeng H C.ACS Appl.Mater.Interfaces,2015,7:13578.
[97] Egger S M,Hurley K R,Datt Ashish,Swindlehurst G,Haynes C L.Chem.Mater.,2015,27:3193.
[98] Min Y,Yang K,Liang Z,Zhang L,Zhang Y.RSC Adv.,2015,5:26269.
[99] Zhang A,Gu L,Hou K,Dai C,Song C,Guo X.RSC Adv.,2015,5:58355.
[100] Kim J H,Yoon S B,Kim J Y,Chae Y B,Yu J S.Colloids Surf.A,2008,77:313.
[101] Yokoi T,Karouji T,Ohta S,Kondo J N,Tatsumi T.Chem.Mater.,2010,22:3900.
[102] Wang J,Xiao Q,Zhou H,Sun P,Li B,Ding D,Chen T.J.Phys.Chem.C,2007,111:16544.
[103] Yoo W.C,Stein A.Chem.Mater.,2011,23:1761.
[104] Paula A J,Montoro L A,Filho A G S,Alves O L.Chem.Commun.,2012,48:591.
[105] Perro A,Duguet E,Lambert O,Taveau J.C,Bourgeat-Lami E,Ravaine S.Angew.Chem.Int.Ed.,2009,48:361.
[106] Désert A,Chaduc I,Fouilloux S,Taveau J C,Lambert O,Lansalot M,Bourgeat-Lami E,Thill A,Spalla O,Ravaine S,Duguet E.Polym.Chem.,2012,3:1130.
[107] Désert A,Hubert C,Fu Z,Moulet L,Majimel J,Barboteau P,Thill A,Lansalot M,Bourgeat-Lami E,Duguet E,Ravaine S.Angew.Chem.Int.Ed.,2013,52:11068.
[108] Suteewong T,Sai H,Hovden R,Muller D,Bradbury M S,Gruner S M,Wiesner U.Science,2013,340:337.
[109] Croissant J,Cattoën X,Man M W C,Dieudonné P,Charnay C,Raehm L,Durand J O.Adv.Mater.,2015,27:145.
[110] Polshettiwar V,Thivolle-Cazat J,Taoufik M,Stoffelbach F,Norsic S,Basset J M.Angew.Chem.Int.Ed.,2011,50:2747.
[111] Fihri A,Cha D,Bouhrara M,Almana N,Polshettiwar V.Chem.Sus.Chem.,2012,5:85.
[112] Fihri A,Bouhrara M,Patil U,Cha D,Saih Y,Polshettiwar V.ACS Catal.,2012,2:1425.
[113] Shen D,Chen L,Yang J,Zhang R,Wei Y,Li X,Li W,Sun Z,Zhu H,Aboubakr A M,Al-Enizi A,Elzatahry A A,Zhang F,Zhao D.ACS Appl.Mater.Interfaces,2015,7:17450.
[114] Sun Z,Cui G,Li H,Tian Y,Yan S.Colloid Surf.A-Physicochem.Eng.Asp.,2016,489:142.
[115] Sun Z,Cui G,Li H,Tian Y,Yan S.Appl.Surf.Sci.,2016,360:252.
[116] Park D S,Yun D,Choi Y,Kim T Y,Oh S,Cho J H,Yi J.Chem.Eng.J.,2013,228:889.
[117] Chen Z,Zhao C,Ju E,Ji H,Ren J,Binks B P,Qu X.Adv.Mater.,2016,28:1682.
[118] Bouhrara M,Ranga C,Fihri A,Shaikh R R,Sarawade P,EmwasA H,Hedhili M N,Polshettiwar V.ACS Sustainable Chem.Eng.,2013,1:1192.
[119] Patil U,Fihri A,Emwas A H,Polshettiwar V.Chem.Sci.,2012,3:2224.
[120] Thankamony A S L,Lion C,Pourpoint F,Singh B,Linde A J P,Carnevale D,Bodenhausen G,Vezin H,Lafon O,Polshettiwar V.Angew.Chem.Int.Ed.,2015,54:2190.
[121] Vallet-Regí M,Rámila A,del Real R P,Pérez-Pariente J.Chem.Mater.,2001,13:308.
[122] Huang P,Zeng B,Mai Z,Deng J,Fang Y,Huang W,Zhang H,Yuan J,Wei Y,Zhou W.J.Mater.Chem.B,2016,4:46.
[123] Dai L,Zhang Q,Li J,Shen X,Mu C,Cai K.ACS Appl.Mater.Interfaces,2015,7:7357.
[124] Tao C,Zhu Y,Yu Y,Zhu M,Morta H,Hanagata N.Dalton Trans.,2014,43:5142.
[125] Du X,Shi B,Tang Y,Dai S,Qiao S Z.Biomaterials,2014,35:5580.
[126] Du X,Xiong L,Tang Y,Dai S,Kleitz F,Qiao S Z.Adv.Funct.Mater.,2014,24:7627.
[127] Misson M,Du X,Jin B,Zhang H.Enzyme Microb.Tech.,2016,84:68.
[128] Yang J,Chen W,Shen D,Wei Y,Ran X,Teng W,Fan J,Zhang,Zhao D.J.Mater.Chem.A,2014,2:11045.
[129] Zhang J,Zhang M,Yang C,Wang X.Adv.Mater.,2014,26:4121.
[130] Zheng D D,Pang C Y,Wang X C,Chem.Commun.,2015,51:17467.
[131] Zheng D D,Huang C J,Wang X C,Nanoscale,2015,7:465.
[132] Park D S,Yun D,Kim T Y,Baek J,Yun Y S,Yi J.Chem.Sus.Chem.,2013,6:2281.
[133] Feng L,Li S,Li Y,Li H,Zhang L,Zhai J,Song Y,Liu B,Jiang L,Zhu D.Adv.Mater.,2002,14:1857.
[134] Ming W,Wu D,Benthem R,With G.Nano Lett.,2005,5:2298.
[135] Du X,Liu X,Chen H,He J.J.Phys.Chem.C,2009,113:9063.
[136] Liu X,Du X,He J.Chem.Phys.Chem.,2008,9:305.
[137] Du X,He J.Chem.Eur.J.,2011,17:8165.
[138] Du X,Xing Y,Li X,Huang H,Geng Z,He J,Wen Y,Zhang X.RSC Adv.,2016,6:7864.
[139] Du X,He J.ACS Appl.Mater.Interface,2011,3:1269.
[140] Li X,Du X,He J.Langmuir,2010,26:13528.
[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[3] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[4] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[5] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[6] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[7] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[8] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[9] Lujie Song, Youping Wu, Jianping Deng. Enantioselective Release of Chiral Drugs [J]. Progress in Chemistry, 2021, 33(9): 1550-1559.
[10] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[11] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[12] Qixiao Guan, Heze Guo, Hongjing Dou. Nanocarriers Modified by Cell Membrane and Their Applications in Tumor Immunotherapy [J]. Progress in Chemistry, 2021, 33(10): 1823-1840.
[13] Qiangqiang Yang, Chuan Li, Shuxian Yu, Shuhua Fan, Yuexia Wang, Min Hong. Application of Nanocarriers in Co-Loading siRNA and Chemotherapeutic Drugs to Reverse Multidrug Resistance of Tumor [J]. Progress in Chemistry, 2021, 33(10): 1900-1916.
[14] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[15] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.