中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (3): 355-367 DOI: 10.7536/PC200550 Previous Articles   Next Articles

• Review •

Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N)

Xiansheng Luo1, Hanlin Deng1, Jiangying Zhao2, Zhihua Li2, Chunpeng Chai1, Muhua Huang1,*()   

  1. 1 School of Material Science and Engineering, Beijing Institute of Technology,Beijing 100081, China
    2 Gansu Yinguang Chemical Industry Group Co., Ltd,Baiyin 730900, China;
  • Received: Revised: Online: Published:
  • Contact: Muhua Huang
  • Supported by:
    the National Natural Science Foundation of China(21772013); Beijing Natural Science Foundation(2202049)
Richhtml ( 53 ) PDF ( 841 ) Cited
Export

EndNote

Ris

BibTeX

A brand-new nitrogenated graphene-like two-dimensional material(C2N) has attracted considerable attention due to its special two-dimension nitro-rich network, which possesses regularly distributed N-containing holes. This article summarizes recent proceeding of the C2N material including synthesis, excellent mechanical, optical absorption, thermal, electrical and magnetic properties, as well as various applications, such as electronic devices, adsorption materials, green catalysts, drug carriers and so on. The C2N material is predicted to cause a research upsurge in the future.

Contents

1 Introduction

2 Structure and properties of C2N

2.1 Monolayer structure

2.2 Mechanical property

2.3 Optical property

2.4 Thermal property

2.5 Electronic and magnetic property

3 Synthesis and characterization of C2N

3.1 Bottom-up method

3.2 Top-down method

4 Applications of C2N

4.1 Electronic devices

4.2 Gas adsorption and separation

4.3 Green catalysis

4.4 Biological applications

5 Conclusion and outlook

Fig.1 (1) Novel two-dimensional materials: h-BN[3] and graphene[4].(2) Representative nitro-rich infinite framework: CTF-1[10,11], aza-CMP[13], aza-MGP[14], g-C3N4[15], C3N[21,22], and C2N
Fig.2 Top view of atomic structure of single-layer C2N[26]
Fig.3 Illustration of the armchair and zigzag directions, and strain-stress relations for monolayer h2D-C2N with different types of strain[27]
Fig.4 Single-photon- and two-photon-induced fluorescence of C2N QDs, and photograph of “C 2N” characters composed from a C2N QD-based ink under UV irradiation[34]
Fig.5 Atomistic configurations of C2N/SiO2, and time evolutions of C2N total energy as well as of C2N and SiO2 temperatures during thermal relaxation[37]
Fig.6 Synthesis of C2N materials(1)[25]
Fig.7 Synthesis of C2N materials(2)[46]
Fig.8 Synthesis of C2N materials(3)[47]
Table 1 Comparison on C2N materials via different ways.
Fig.9 Synthesis and TEM images of C2N nanosheet and quantum dot[34,50]
Fig.10 C2N material used as electrode materials[70]
Fig.11 Application of C2N materials in adsorption separation:(1) hydrogen storage[82],(2) greenhouse gas adsorption[83],(3) acidic polluted gas adsorption[85]
Fig.8 C2N-based green catalysts:(1) CO2reduction[96],(2) water splitting[93],(3) N2fixation[102]
Fig.13 C2N-based biological materials:(1) protein immobilization[117],(2) DNA immobilization[115](3) drug carriers[119]
[1]
Bernardi M, Palummo M, Grossman J C. Nano Lett., 2013, 13:3664.
[2]
Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D, Ye P D. ACS Nano, 2014, 8:4033.
[3]
Li L H, Chen Y. Adv. Funct. Mater., 2016, 26:2594.
[4]
Chen H Q, Müller M B, Gilmore K J, Wallace G G, Li D. Adv. Mater., 2008, 20:3557.
[5]
Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8:902.
[6]
Wu Z S, Ren W C, Wen L, Gao L B, Zhao J P, Chen Z P, Zhou G M, Li F, Cheng H M. ACS Nano, 2010, 4:3187.
[7]
Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z T, Johnson A T C, Drndi M. Nano Lett., 2010, 10:2915.
[8]
Lee S U, Belosludov R V, Mizuseki H, Kawazoe Y. Small, 2009, 5:1769.
[9]
Chen X, He D P, Mu S C. Progress in Chemistry, 2013, 25(8):60.
陈旭, 何大平, 木士春. 化学进展. 2013, 25(8):60.
[10]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47:3450.
[11]
Yu S Y, Mahmood J, Noh H J, Seo J M, Jung S M, Shin S H, Im Y K, Jeon I Y, Baek J B. Angew. Chem. Int. Ed., 2018, 57:8438.
[12]
Liu M Y, Huang Q, Wang S L, Li Z Y, Li B Y, Jin S B, Tan B E. Angew. Chem. Int. Ed., 2018, 57:11968.
[13]
Kou Y, Xu Y H, Guo Z Q, Jiang D L. Angew. Chem. Int. Ed., 2011, 50:8753.
[14]
Yuan F Y, Li J, Namuangruk S, Kungwan N, Guo J, Wang C C. Chem. Mater., 2017, 29:3971.
[15]
Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8:76.
[16]
Zhang J S, Wang B, Wang X C. Progress in Chemistry, 2014, 26(1):19.
张金水, 王博, 王心晨. 化学进展, 2014, 26(1):19.
[17]
Sun J Y, Li X X, Yang J L. Nanoscale, 2018, 10:3738.
[18]
Qi Y H, Liu L, Liang Y H, Hu J S, Cui W Q, Progress in Chemistry, 2015, 27(1):38.
齐跃红, 刘利, 梁英华, 胡金山, 崔文权. 化学进展, 2015, 27(1):38.
[19]
Pan Z, Zhang G, Wang X. Angew. Chem., Int. Ed., 2019,58∶7102.
[20]
Fang Y X, Xu Y T, Li X C, Ma Y W, Wang X C. Angew. Chem. Int. Ed., 2018, 57:9749.
[21]
Mahmood J, Lee E K, Jung M, Shin D, Choi H J, Seo J M, Jung S M, Kim D, Li F, Lah M S, Park N, Shin H J, Oh J H, Baek J B. PNAS, 2016, 113:7414.
[22]
Yang S, Li W, Ye C, Wang G, Tian H, Zhu C, He P, Ding G, Xie X, Liu Y, Lifshitz Y, Lee S, Kang Z, Jiang M. Adv. Mater., 2017,29∶1605625.
[23]
Alhameedi K, Hussain T, Bae H, Jayatilaka D, Lee H, Karton A. Carbon, 2019, 152:344.
[24]
Makaremi M, Mortazavi B, Singh C V. J. Phys. Chem. C, 2017, 121(34):18575.
[25]
Mahmood J, Lee E K, Jung M, Shin D, Jeon I Y, Jung S M, Choi H J, Seo J M, Bae S Y, Sohn S D, Park N, Oh J H, Shin H J, Baek J B. Nat. Commun., 2015, 6:6486.
[26]
Sahin H. Phys. Rev. B, 2015, 92:085421.
[27]
Guan S, Cheng Y C, Liu C, Han J F, Lu Y H, Yang S A, Yao Y G. Appl. Phys. Lett., 2015, 107:231904.
[28]
Yagmurcukardes M, Horzum S, Torun E, Peeters F M, Tugrul Senger R. Phys. Chem. Chem. Phys., 2016, 18:3144.
[29]
Mortazavi B, Rahaman O, Rabczuk T, Pereira L F C. Carbon, 2016, 106:1.
[30]
Zhang R Q, Li B, Yang J L. Nanoscale, 2015, 7:14062.
[31]
Sun J Y, Zhang R Q, Li X X, Yang J L. Appl. Phys. Lett., 2016, 109:133108.
[32]
Phuc H V, Tuan V V, Hieu N N, Ilyasov V V, Fedorov I A, Hoi B D, Phuong L T T, Hieu N V, Feddi E, Nguyen C V. J. Electron. Mater., 2018, 47:4594.
[33]
Guan Z Y, Ni S. Appl. Phys. A, 2017, 123:678.
[34]
Hu X H, Zhong L F, Shu C H, Fang Z S, Yang M J, Li J, Yu D S. J. Am. Chem. Soc., 2020, 142:4621.
[35]
Ouyang T, Xiao H P, Tang C, Zhang X L, Hu M, Zhong J X. Nanotechnology, 2017, 28:045709.
[36]
Wang X Y, Hong Y, Ma D W, Zhang J C. J. Mater. Chem. C, 2017, 5:5119.
[37]
Rajabpour A, Bazrafshan S, Volz S. Phys. Chem. Chem. Phys., 2019, 21:2507.
[38]
Wang Y S, Song N H, Jia M, Yang D P, Panashe C, Yang Y Y, Wang J J. Phys. Chem. Chem. Phys., 2017, 19:15021.
[39]
He J J, Guo Y D, Yan X H, Zeng H L, Ni Y. Solid State Commun., 2019, 289:61.
[40]
Saraiva-Souza A, Smeu M, da Silva Filho J G, Girão E C, Guo H. J. Mater. Chem. C, 2017, 5:11856.
[41]
He J J, Guo Y D, Yan X H. Sci. Rep., 2017, 7:43922.
[42]
Gong S, Wan W H, Guan S, Tai B, Liu C, Fu B T, Yang S A, Yao Y G. J. Mater. Chem. C, 2017, 5:8424.
[43]
Choudhuri I, Pathak B. ChemPhysChem, 2017, 18:2336.
[44]
Liang Z H, Xu B, Xiang H, Xia Y D, Yin J, Liu Z G. RSC Adv., 2016, 6:54027.
[45]
Mahmood J, Kim D, Jeon I, Lah M S, Baek J. Synlett, 2013, 24:246.
[46]
Shinde S S, Lee C H, Yu J Y, Kim D H, Lee S U, Lee J H. ACS Nano, 2018, 12:596.
[47]
Walczak R, Kurpil B, Savateev A, Heil T, Schmidt J, Qin Q, Antonietti M, Oschatz M. Angew. Chem. Int. Ed., 2018, 57:10765.
[48]
Liu X X, Luo X S, Deng H L, Fan W H, Wang S F, Yang C J, Sun X Y, Chen S L, Huang M H. Chem. Mater., 2019, 31:5421.
[49]
Huang M, Luo X S, Deng H L, Liu X X, CN 109081781, 2018(黄木华, 罗贤升, 邓汉林, 刘向向. CN 109081781, 2018)
[50]
Wang L, Zheng X S, Chen L, Xiong Y J, Xu H X. Angew. Chem. Int. Ed., 2018, 57:3454.
[51]
Xu J T, Mahmood J, Dou Y H, Dou S X, Li F, Dai L M, Baek J B. Adv. Mater., 2017, 29:1702007.
[52]
Hussain T, Searles D J, Hankel M. Carbon, 2020, 160:125.
[53]
Wu D H, Yang B C, Chen H Y, Ruckenstein E. Energy Storage Mater., 2019, 16:574.
[54]
Huang C M, Mahmood J, Wei Z X, Wang D, Liu S H, Zhao Y M, Noh H J, Ma J M, Xu J T, Baek J B. Mater. Today Energy, 2019, 14:100359.
[55]
Wu J B, Wang L W. J. Mater. Chem. A, 2018, 6:2984.
[56]
Lin H, Jin R C, Wang A L, Zhu S G, Li H Z. Ceram. Int., 2019, 45:17996.
[57]
Nguyen H T T, Vu T V, Pham V T, Hieu N N, Phuc H V, Hoi B D, Binh N T T, Idrees M, Amin B, Nguyen C V. RSC Adv., 2020, 10:2967.
[58]
Guan Z Y, Lian C S, Hu S L, Ni S, Li J, Duan W H. J. Phys. Chem. C, 2017, 121:3654.
[59]
Mukhopadhyay T K, Datta A. J. Phys. Chem. C, 2018, 122:28918.
[60]
Li X H, Wang B J, Cai X L, Yu W Y, Zhu Y Y, Li F Y, Fan R X, Zhang Y S, Ke S H. Nanoscale Res. Lett., 2018, 13:300.
[61]
Wang X L, Wang Y Y, Quhe R G, Tang Y N, Dai X Q, Tang W H. J. Alloy. Compd., 2020, 816:152559.
[62]
Ma Z, Wang Y S, Wei Y T, Li C, Zhang X W, Wang F. Phys. Chem. Chem. Phys., 2019, 21:21753.
[63]
Long X, Li X, Wei X L, Cao J X. Chem. Phys. Lett., 2019, 725:75.
[64]
Zheng Z D, Wang X C, Mi W B. Carbon, 2017, 117:393.
[65]
Zheng Z D, Wang X C, Mi W B. Phys. E: Low-Dimensional Syst. Nanostructures, 2017, 94:148.
[66]
Wang X L, Quhe R G, Cui W, Zhi Y S, Huang Y Q, An Y H, Dai X Q, Tang Y N, Chen W G, Wu Z P, Tang W H. Carbon, 2018, 129:738.
[67]
Zhang Z H, Xie Z F, Liu J, Tian Y, Zhang Y, Wei X, Guo T T, Ni L, Fan J B, Weng Y J, Zha Z D, Duan L. Phys. Chem. Chem. Phys., 2020, 22:5873.
[68]
Jiang J W, Wang X C, Song Y, Mi W B. Appl. Surf. Sci., 2018, 440:42.
[69]
Wang D D, Han D X, Liu L, Niu L. RSC Adv., 2016, 6:28484.
[70]
Ding Y C, Xiao B, Li J L, Deng Q J, Xu Y H, Wang H F, Rao D W. J. Phys. Chem. C, 2019, 123:3353.
[71]
Du J, Xia C X, Wang T X, Xiong W Q, Li J B. J. Mater. Chem. C, 2016, 4:9294.
[72]
Tromer R M, da Luz M G E, Ferreira M S, Pereira L F C. J. Phys. Chem. C, 2017, 121:3055.
[73]
Zhu J Z, Zulfiqar M, Zeng S M, Zhao Y C, Ni J. AIP Adv., 2018, 8:055333.
[74]
Yang Y M, Guo M, Zhang G, Li W F. Carbon, 2017, 117:120.
[75]
Bafekry A, Stampfl C, Ghergherehchi M, Farjami S S. Carbon, 2020, 157:371.
[76]
Yang Y M, Li W F, Zhou H C, Zhang X M, Zhao M W. Sci. Rep., 2016, 6:29218.
[77]
Liu B, Law A W K, Zhou K. J. Membr. Sci., 2018, 550:554.
[78]
Qu Y Y, Li F, Zhou H C, Zhao M W. Sci. Rep., 2016, 6:19952.
[79]
Zhu L, Xue Q Z, Li X F, Wu T T, Jin Y K, Xing W. J. Mater. Chem. A, 2015, 3:21351.
[80]
Xu B, Xiang H, Wei Q, Liu J Q, Xia Y D, Yin J, Liu Z G. Phys. Chem. Chem. Phys., 2015, 17:15115.
[81]
Guerrero-AvilÉs R, Orellana W. Int. J. Hydrog. Energy, 2018, 43:22966.
[82]
Varunaa R, Ravindran P. Phys. Chem. Chem. Phys., 2019, 21:25311.
[83]
Liu Y Z, Meng Z S, Guo X J, Xu G J, Rao D W, Wang Y H, Deng K M, Lu R F. Phys. Chem. Chem. Phys., 2017, 19:28323.
[84]
Peng W M, Guo Y H, Zhang Y M, Wu W X, Liu Y X, Zhou Z P. Mater. Chem. Phys., 2020, 240:122184.
[85]
Bhattacharyya K, Pratik S M, Datta A. J. Phys. Chem. C, 2018, 122:2248.
[86]
Su Y T, Ao Z M, Ji Y M, Li G Y, An T C. Appl. Surf. Sci., 2018, 450:484.
[87]
Yong Y L, Cui H L, Zhou Q X, Su X Y, Kuang Y M, Li X H. Appl. Surf. Sci., 2019, 487:488.
[88]
Zhu Y Q, Cao T, Cao C B, Luo J, Chen W X, Zheng L R, Dong J C, Zhang J, Han Y H, Li Z, Chen C, Peng Q, Wang D S, Li Y D. ACS Catal., 2018, 8:10004.
[89]
Wang X C, Chen X F, Thomas A, Fu X Z, Antonietti M. Adv. Mater., 2009, 21:1609.
[90]
Mahmood J, Li F, Jung S M, Okyay M S, Ahmad I, Kim S J, Park N, Jeong H Y, Baek J B. Nat. Nanotechnol., 2017, 12:441.
[91]
Mahmood J, Jung S M, Kim S J, Park J, Yoo J W, Baek J B. Chem. Mater., 2015, 27:4860.
[92]
Mahmood J, Li F, Kim C, Choi H J, Gwon O, Jung S M, Seo J M, Cho S J, Ju Y W, Jeong H Y, Kim G, Baek J B. Nano Energy, 2018, 44:304.
[93]
Zhang X, Chen A, Zhang Z H, Jiao M G, Zhou Z. J. Mater. Chem. A, 2018, 6:11446.
[94]
Li X Y, Zhong W H, Cui P, Li J, Jiang J. J. Phys. Chem. Lett., 2016, 7:1750.
[95]
Kim J, Gwon O, Kwon O, Mahmood J, Kim C, Yang Y J, Lee H, Lee J H, Jeong H Y, Baek J B, Kim G. ACS Nano, 2019, 13:5502.
[96]
Zhao J, Zhao J X, Li F Y, Chen Z F. J. Phys. Chem. C, 2018, 122:19712.
[97]
Huang Q L, Liu H M, An W, Wang Y Q, Feng Y H, Men Y. ACS Sustainable Chem. Eng., 2019, 7:19113.
[98]
Li F Y, Chen Z F. Nanoscale, 2018, 10:15696.
[99]
He B L, Shen J S, Tian Z X. Phys. Chem. Chem. Phys., 2016, 18:24261.
[100]
Li F Y, Liu X Y, Chen Z F. Small Methods, 2019, 3:1800480.
[101]
Zhao J, Chen Z, Zhao J X, Li F Y. Appl. Surf. Sci., 2019, 498:143868.
[102]
Qian Y M, Liu Y Y, Zhao Y, Zhang X H, Yu G H. EcoMat, 2020,2∶12014.
[103]
Chen Z W, Yan J M, Jiang Q. Small Methods, 2019, 3:1800291.
[104]
Zhou Y, Xu Y, Wu L X. Phys. Lett. A, 2020, 384:126326.
[105]
Ashwin Kishore M R, Sjåstad A O, Ravindran P. Carbon, 2019, 141:50.
[106]
Kishore M R A, Ravindran P. ChemPhysChem, 2017, 18:1526.
[107]
Ashwin Kishore M R, Ravindran P. J. Phys. Chem. C, 2017, 121:22216.
[108]
Kumar R, Das D, Singh A K. J. Catal., 2018, 359:143.
[109]
Zhou H, Cai W S, Li J W, Liu X Y, Xiong W, Zhou Y, Xu Z, Wang B, Ye C. Phys. Chem. Chem. Phys., 2020, 22:1485.
[110]
Wang H M, Li X X, Yang J L. ChemPhysChem, 2016, 17:2100.
[111]
Zhang R Q, Zhang L L, Zheng Q J, Gao P F, Zhao J, Yang J L. J. Phys. Chem. Lett., 2018, 9:5419.
[112]
Wang B, Yuan H K, Chang J L, Chen X R, Chen H. Appl. Surf. Sci., 2019, 485:375.
[113]
Zhang X, Chen A, Zhang Z H, Jiao M G, Zhou Z. Nanoscale Adv., 2019, 1:154.
[114]
Luo X K, Wang G Z, Huang Y H, Wang B, Yuan H K, Chen H. Phys. Chem. Chem. Phys., 2017, 19:28216.
[115]
Gu Z L, Zhao L, Liu S T, Duan G X, Perez-Aguilar J M, Luo J D, Li W F, Zhou R H. ACS Nano, 2017, 11:3198.
[116]
Mukhopadhyay T K, Bhattacharyya K, Datta A. ACS Appl. Mater. Interfaces, 2018, 10:13805.
[117]
Li B Y, Li W F, Perez-Aguilar J M, Zhou R H. Small, 2017, 13:1603685.
[118]
Liu L, Zhang S T, Zhao L, Gu Z L, Duan G X, Zhou B, Yang Z X, Zhou R H. Small, 2018, 14:1803509.
[119]
Zhang S T, Liu L, Duan G X, Zhao L, Liu S T, Zhou B, Yang Z X. ACS Appl. Mater. Interfaces, 2019, 11:34575.
[120]
Li X L, Wang H X, Chen H, Zheng Q, Zhang Q B, Mao H Y, Liu Y W, Cai S L, Sun B, Dun C C, Gordon M P, Zheng H M, Reimer J A, Urban J J, Ciston J, Tan T W, Chan E M, Zhang J, Liu Y. Chem, 2020, 6:933.
[121]
Kojima T, Nakae T, Xu Z, Saravanan C, Watanabe K, Nakamura Y, Sakaguchi H. Chem. Asian J., 2019, 14:4400.
[122]
Mahmood J, Ahmad I, Jung M, Seo J M, Yu S Y, Noh H J, Kim Y H, Shin H J, Baek J B. Commun. Chem., 2020, 3:31.
[1] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[2] Jing Zhang, Xiaotao Zhang, Xiaochen Ren, Wenping Hu. Printed Organic Digital Circuits and Its Applications [J]. Progress in Chemistry, 2021, 33(3): 490-502.
[3] Qian Cheng, Jiaming Yu, Xinzhu Huo, Yumeng Shen, Shouxin Liu. Enhancement Luminescence and Applications of Rare Earth Fluoride [J]. Progress in Chemistry, 2019, 31(12): 1681-1695.
[4] Qingyang Xi, Jinsong Liu, Ziquan Li, Kongjun Zhu, Guoan Tai, Ruogu Song. Etching Methods and Application of Molybdenum Disulfide Film [J]. Progress in Chemistry, 2018, 30(6): 847-863.
[5] Shuming Duan, Xiaochen Ren*, Xiaotao Zhang, Shanshan Cheng, Wenping Hu*. Screen Printing of Flexible Electronic Devices [J]. Progress in Chemistry, 2018, 30(4): 429-438.
[6] Honglei Wang, Wenzhen Lv, Xingxing Tang, Lingfeng Chen, Runfeng Chen, Wei Huang. Two-Dimensional Perovskites and Their Applications on Optoelectronic Devices [J]. Progress in Chemistry, 2017, 29(8): 859-869.
[7] Jinjun Wu, Zhen Yang, Jianmei Jiao, Pengfei Sun, Quli Fan, Wei Huang. The Synthesis and Biological Applications of Water-Soluble Perylene Diimides [J]. Progress in Chemistry, 2017, 29(2/3): 216-230.
[8] Zeng Tian, You Yuncheng, Wang Xufeng, Hu Tingsong, Tai Guoan. Chemical Vapor Deposition and Device Application of Two-Dimensional Molybdenum Disulfide-Based Atomic Crystals [J]. Progress in Chemistry, 2016, 28(4): 459-470.
[9] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[10] Sun Mengmeng, He Yong, Yang Wantai, Yin Meizhen. Synthesis and Bio-Application of Poly(Ethylene Phosphate) [J]. Progress in Chemistry, 2013, 25(12): 2093-2102.
[11] Chen Mengjun, Yang Wantai, Yin Meizhen* . Synthesis and Applications of Nanoparticles in Biology [J]. Progress in Chemistry, 2012, 24(12): 2403-2414.
[12] Huang Yanqin|Fan Quli|Huang Wei**. Water-Soluble Conjugated Polyelectrolytes [J]. Progress in Chemistry, 2008, 20(04): 574-585.
[13] Li Yongfang. Conducting Polymers [J]. Progress in Chemistry, 2002, 14(03): 207-.