English
新闻公告
More
化学进展 2017, Vol. 29 Issue (9): 911-918 DOI: 10.7536/PC170510 前一篇   后一篇

• 综述 •

多溴联苯醚的光催化还原脱溴

赵玉坤, 汪园园, 籍宏伟, 马万红, 陈春城*, 赵进才*   

  1. 中国科学院化学研究所 北京 100190
  • 收稿日期:2017-05-04 修回日期:2017-07-21 出版日期:2017-09-15 发布日期:2017-09-05
  • 通讯作者: 陈春城,e-mail:ccchen@iccas.ac.cn;赵进才,e-mail:jczhao@iccas.ac.cn E-mail:ccchen@iccas.ac.cn;jczhao@iccas.ac.cn
  • 基金资助:
    国家重点基础研究发展规划"973"项目(No.2013CB632405),国家自然科学基金委项目(No.21590811,21521062,21525729)以及中国科学院创新交叉团队项目资助

Photocatalytic Reductive Debromination of Polybrominated Diphenyl Ethers

Yukun Zhao, Yuanyuan Wang, Hongwei Ji, Wanhong Ma, Chuncheng Chen*, Jincai Zhao*   

  1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2017-05-04 Revised:2017-07-21 Online:2017-09-15 Published:2017-09-05
  • Supported by:
    The work was supported by the National Basic Research Program of China (973 Program)(No.2013CB632405),NSFC (No.21590811,21521062,21525729),and the CAS Interdisciplinary Innovation Team of the Chinese Academy of Sciences.
多溴联苯醚(PBDEs)在生态环境中是普遍存在的并已证实具有潜在的毒性,因此PBDEs引起了环境化学领域的广泛关注。光催化技术具有可利用太阳能、反应选择性高且反应条件温和等优点,其在降解PBDEs这类污染物方面具有独特的优势。近年来光催化在降解含卤有机污染物的研究中取得长足进展。本文就多卤代芳烃类化合物中最为典型的PBDEs的光催化还原研究现状进行介绍,并着重阐述TiO2催化剂对PBDEs的光催化还原脱溴反应的基本过程、提高光催化还原效率的途径以及光催化还原脱溴机理等。除此之外,本文也对PBDEs未来光催化还原脱溴的前景进行了简单的展望。
Global extensive concerns have been caused by polybrominated diphenyl ethers (PBDEs),because of their universal existence and potential toxicity in ecological environment. The use of solar energy, high selectivity and the mild reaction conditions make photocatalysis become a promising technique for the removal of these pollutants. Recently, great progress has been made in photocatalytic degradation of polyhalogenated organic pollutions. This review mainly focuses on TiO2-based photocatalytic reduction of PBDEs, which are typical polyhalogenated aromatic hydrocarbons. The ways to improve photocatalytic reductive efficiency and the reaction mechanism have been described. In addition, the promising future of PBDEs photocatalytic reductive debromination is prospected.
Contents
1 Introduction
2 An overview of PBDEs
3 Photocatalytic reductive debromination of PBDEs
3.1 Photocatalytic reductive debromination based on TiO2
3.2 Photoreductive debromination based on halogen bonding under visible light
4 Proton-coupled electron transfer based on photocatalytic reductive process of PBDEs
5 Conclusion

中图分类号: 

()
[1] van den Berg M, Birnbaum L, Bosveld A T, Brunström B, Cook P, Feeley M, Giesy J P, Hanberg A, Hasegawa R, Kennedy S W, Kubiak T, Larsen J C, van Leeuwen F, Liem A K, Nolt C, Peterson R E, Poellinger L, Safe S, Schrenk D, Tillitt D, Tysklind M, Younes M, Waern F, Zacharewski T. Environ. Health Perspect., 1998, 106:775.
[2] Mandalakis M, Tsapakis M, Tsoga A, Stephanou E G. Atmos. Environ., 2002, 36:4023.
[3] Lohmann R, Macfarlane J K, Gschwend P M. Environ. Sci. Technol., 2005, 39:141.
[4] de Wit C A. Chemosphere, 2002, 46:583.
[5] Alaee M, Ariasb P, Sjödin A, Bergman A. Environ. Int., 2003, 29:683.
[6] Hale R C, Guardia M L, Harvey E, Mainor T M. Chemosphere, 2002, 46:729.
[7] Hansen K J, Johnson H O, Eldridge J S, Butenhoff J L, Dick L A. Environ. Sci. Technol., 2002, 36:1681.
[8] Olsen G W, Burris J M, Ehresman D J, Froehlich J W, Seacat A M, Butenhoff J L, Zobel L R. Environ. Health Perspect., 2007, 115:1298.
[9] Sjodln A, Jakobsson E, Kierkegaard A, Marsh G, Sellstrrm U. J. Chromatogr. A, 1998, 822:83.
[10] van der Oost R, Beyer J, Vermeulen N P E. Environ. Toxicol. Pharmacol., 2003, 1357.
[11] Chong M N, Jin B, Chow C W K, Saint C. Water Res., 2010, 44:2997.
[12] Kolpin D W, Furlong E T, Meyer M T, Thurman E M, Zaugg S D, Barber L B, Buxton H T. Environ. Sci. Technol., 2002, 36:1202.
[13] Ahmad M, Rajapaksha A U, Lim J E, Zhang M, Bolan N, Mohan D, Vithanage M, Lee S S, Ok Y S. Chemosphere, 2014, 99:19.
[14] Luo Y M, Guo W S, Ngo H H, Nghiem L D, Hai F I, Zhang J, Liang S, Wang X C. Sci. Total Environ., 2014, 473/474:619.
[15] Li W C, Tse H F, Fok L. Sci. Total Environ., 2016, 566/567:333.
[16] Su C M. J. Hazard. Mater., 2017, 322:48.
[17] Venier M, Salamova A, Hites R A. Acc. Chem. Res., 2015, 48:1853.
[18] Kirchgeorg T, Dreyer A, Gabrielli P, Gabrieli J, Thompson L G, Barbante C, Ebinghaus R. Environ. Pollut., 2016, 218:804.
[19] Lam J C, Kajiwara N, Ramu K, Tanabe S, Lam P K. Environ. Pollut., 2007, 148:258.
[20] Sellstrom U, Kierkegaard A, Wit C D, Jansson B. Environ. Toxicol. Chem., 1998, 17:1065.
[21] Dumanoglu Y, Kara M, Altiok H, Odabasi M, Elbir T, Bayram A. Atmos. Environ., 2014, 98:168.
[22] Ma X X, Liu S J, Liu Y, Gu G D, Xia C H. Sci. Rep., 2016, 6:25068.
[23] Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R. Environ. Int., 2011, 37:1362.
[24] Yang M T, Zhang X R. Environ. Sci. Technol., 2013, 47:10868.
[25] Delle Site A. J. Phys. Chem. Ref. Data, 2001, 30:187.
[26] 刘汉霞(Liu H X), 张庆华(Zhang Q H), 江桂斌(Jiang G B). 化学进展(Progress in Chemistry), 2005, 17:554.
[27] Guardia M J L, Hale R C, Harvey E. Environ. Sci. Technol., 2006, 40:6247.
[28] Hale R C, LaGuardia M J, Harvey E P, Gaylor M O, Mainor T M, Duff W H. Nature, 2001, 412:140.
[29] Stapleton H M, Alaee M, Letcher R J, Baker J E. Environ. Sci. Technol., 2004, 38:112.
[30] Stapleton H M, Letcher R J, Baker J E. Environ. Sci. Technol., 2004, 38:1054.
[31] Wardrop P, Shimeta J, Nugegoda D, Morrison P D, Miranda A, Tang M, Clarke B O. Environ. Sci. Technol., 2016, 50:4037.
[32] Guigueno M F, Fernie K J. Environ. Res., 2017, 154:398.
[33] Kilunga P I, Sivalingam P, Laffite A, Grandjean D, Mulaji C K, de Alencastro L F, Mpiana P T, Pote J. Chemosphere, 2017, 179:37.
[34] van der Veen I, de Boer J. Chemosphere, 2012, 88:1119.
[35] Koelmans A A, Bakir A, Burton G A, Janssen C R. Environ. Sci. Technol., 2016, 50:3315.
[36] Hakk H. Environ. Int., 2003, 29:801.
[37] Eriksson J, Green N, Marsh G, Bergman A. Environ. Sci. Technol., 2004, 38:3119.
[38] Suh Y W, Buettner G R, Venkataraman S, Treimer S E, Robertson L W, Ludewig G. Environ. Sci. Technol., 2009, 43:2581.
[39] Lee L K, He J Z. Appl. Environ. Microbiol., 2010, 76:794.
[40] Keum Y S, Li Q X. Environ. Sci. Technol., 2005, 39:2280.
[41] Granelli L, Eriksson J, Athanasiadou M, Bergman A. Chemosphere, 2011, 82:839.
[42] Nose K, Hashimoto S, Takahashi S, Noma Y, Sakai S. Chemosphere, 2007, 68:120.
[43] Chen C C, Ma W H, Zhao J C. Chem. Soc. Rev., 2010, 39:4206.
[44] Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J M. Appl. Catal. B:Environ., 2001, 31:145.
[45] Li X Z, Li F B. Environ. Sci. Technol., 2001, 35:2381.
[46] Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier W F. Appl. Catal. B:Environ., 2001, 32:215.
[47] Arabatzis I M, Stergiopoulos T, Bernard M C, Labou D, Neophytides S G, Falaras P. Appl. Catal. B:Environ., 2003, 42:187.
[48] Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G. J. Am. Chem. Soc., 2004, 126:4782.
[49] Sakthivel S, Shankar M V, Palanichamy M, Arabindoo B, Bahnemann D W, Murugesan V. Water Res., 2004, 38:3001.
[50] Huang A, Wang N, Lei M, Zhu L, Zhang Y, Lin Z, Yin D, Tang H. Environ. Sci. Technol., 2013, 47:518.
[51] Huang A Z, Zhang Z M, Wang N, Zhu L H, Zou J. J. Hazard. Mater., 2016, 302:158.
[52] Sun C Y, Zhao D, Chen C C, Ma W H, Zhao J C. Environ. Sci. Technol., 2009, 43:157.
[53] 赵丹(Zhao D), 孙春燕(Sun C Y), 陈春城(Chen C C), 马万红(Ma W H), 赵进才(Zhao J C). 化学进展(Progress in Chemistry), 2009, 21:400.
[54] An T C, Chen J X, Li G Y, Ding X J, Sheng G Y, Fu J M, Mai B X, O'Shea K E. Catalysis Today, 2008, 139:69.
[55] Li L N, Chang W, Wang Y, Ji H W, Chen C C, Ma W H, Zhao J C. Chem. -Eur. J., 2014, 20:11163.
[56] Lei M, Wang N, Zhu L H, Tang H Q. Chemosphere, 2016, 150:536.
[57] Hu J W, Zhuang Y, Luo J, Wei X H, Huang X F. Int. J. Mol. Sci., 2012, 13:9332.
[58] Zhuang Y, Jin L T, Luthy R G. Chemosphere, 2012, 89:426.
[59] Luo S, Yang S G, Sun C, Gu J D. Sci. Total Environ., 2012, 429:300.
[60] Su J Y, Lu N, Zhao J J, Yu H T, Huang H, Dong X L, Quan X. J. Hazard. Mater., 2012, 231/232:105.
[61] Su J Y, Yu H T, Chen S, Quan X, Zhao Q. Sep. Purif. Technol., 2012, 96:154.
[62] Laguna A, Lasanta T, López-de-Luzuriaga J M, Monge M, Naumov P, Olmos M E. J. Am. Chem. Soc., 2010, 132:456.
[63] Lv Y H, Cao X F, Jiang H Y, Song W J, Chen C C, Zhao J C. Appl. Catal. B:Environ., 2016, 194:150.
[64] Sperotto E, van Klink G P M, van Koten G, de Vries J G. Dalton Trans., 2010, 39:10338.
[65] Isse A A, Gennaro A, Lin C Y, Hodgson J L, Coote M L, Guliashvili T. J. Am. Chem. Soc., 2011, 133:6254.
[66] Sun C Y, Zhao J C, Ji H W, Ma W H, Chen C C. Chemosphere, 2012, 89:420.
[67] Sun C Y, Chang W, Ma W H, Chen C C, Zhao J C. Environ. Sci. Technol., 2013, 47:2370.
[68] Kajiwara N, Noma Y, Takigami H. Environ. Sci. Technol., 2008, 42:4404.
[69] Schenker U, Soltermann F, Scheringer M, Hungerbuhler K. Environ. Sci. Technol., 2008, 42:9244.
[70] Bendig P, Vetter W. Environ. Sci. Technol., 2010, 44:1650.
[71] Wang J, Chen S J, Nie X, Tian M, Luo X J, An T C, Mai B X. Chemosphere, 2012, 89:844.
[72] Dawson R E, Hennig A, Weimann D P, Emery D, Ravikumar V, Montenegro J, Takeuchi T, Gabutti S, Mayor M, Mareda J, Schalley C A, Matile S. Nat. Chem., 2010, 2:533.
[73] Shirman T, Arad T, van der Boom M E. Angew. Chem. Int. Ed., 2010, 49:926.
[74] Chang W, Sun C H, Pang X B, Sheng H, Li Y, Ji H W, Song W J, Chen C C, Ma W H, Zhao J C. Angew. Chem. Int. Ed., 2015, 54:2052.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[9] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[10] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[11] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[12] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[13] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[14] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[15] 毕洪飞, 刘劲松, 吴正颖, 索赫, 吕学良, 付云龙. 硫化铟锌的改性合成及光催化特性[J]. 化学进展, 2021, 33(12): 2334-2347.
阅读次数
全文


摘要

多溴联苯醚的光催化还原脱溴