English
新闻公告
More
化学进展 2013, Vol. 25 Issue (06): 900-914 DOI: 10.7536/PC120804 前一篇   后一篇

• 综述与评论 •

Baeyer-Villiger氧化反应的不同催化体系

颜范勇, 李楚盈, 梁小乐, 代林枫, 王猛, 陈莉*   

  1. 天津工业大学 天津工业大学中空纤维膜材料与膜过程国家重点实验室 天津 300387
  • 收稿日期:2012-08-01 修回日期:2012-12-01 出版日期:2013-06-25 发布日期:2013-05-02
  • 通讯作者: 陈莉 E-mail:chenlis11@yahoo.com.cn
  • 基金资助:

    国家自然科学基金项目(No. 20976123)资助

Different Catalyst Systems for Baeyer-Villiger Reaction

Yan Fanyong, Li Chuying, Liang Xiaole, Dai Linfeng, Wang Meng, Chen Li*   

  1. State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2012-08-01 Revised:2012-12-01 Online:2013-06-25 Published:2013-05-02

Baeyer-Villiger氧化反应能控制产物的立体化学结构, 在有机合成中对功能基转化和环扩张有重要的意义, 因此氧化所得的产物可以广泛应用于合成许多天然产物和药物中间体以及一些高分子材料的单体等, 是目前有机化学研究的热点之一。随着对该反应研究的深入, 其催化剂的类型也在不断地增多, 包括均相催化剂、非均相催化剂、生物催化剂。均相催化剂选择性和转化率虽高, 但不及非均相催化剂重复利用率高。生物催化剂绿色环保, 是未来研究的重点之一。本文从均相催化、非均相催化和生物催化三个方面对Baeyer-Villiger氧化反应相关的研究新进展进行了阐述, 重点介绍了不同催化体系下催化剂与反应底物之间的作用, 总结了有关催化反应的机理, 并对Baeyer-Villiger氧化反应的发展进行了展望。

Baeyer-Villiger reaction can take control of the stereochemical structure of the product. It is significant in organic synthesis for the conversion of functional groups and ring expansion.The oxide product of Baeyer-Villiger reaction can be widely used in the synthesis of many natural products and pharmaceutical intermediates, as well as some polymer material monomer. With the further research on Baeyer-Villiger reaction, the types of catalysts are increasing continuously, including homogeneous catalysts, heterogeneous catalysts, biocatalysts. Homogeneous catalyst often brings excellent conversion rate and good selectivity, but has lower recycling rate than the heterogeneous catalyst. And the environmentally-friendly biocatalysts are still the focus of the study. In this review, we provide an overview of the latest achievements in Baeyer-Villiger reaction from the aspects of homogeneous catalysis, heterogeneous catalysis and biocatalysis, especially with an emphasis on the clarification of the relationship between catalysts and substrates in different catalyst systems. The mechanisms of the reaction are summarized in detail in the review. And the future advance of Baeyer-Villiger reaction is prospected. Contents
1 Introduction
2 Homogeneous catalysis
2.1 Transition metal complexe catalysts
2.2 Acid catalysts
3 Heterogeneous catalysis
3.1 Liquid-liquid two-phase catalysis
3.2 Solid-liquid two-phase catalysis
4 Biocatalysis
4.1 Lipase
4.2 Monooxygenase (BVMOs)
5 Conclusion and outlook

中图分类号: 

()

[1] Baeyer A, Villiger V. Ber. Dtsch. Chem. Ges., 1899, 32: 3625-3633
[2] Jiménez-Sanchidrin C, Ruiz J R. Tetrahedron, 2008, 64: 2011-2026
[3] Michelin R A, Sgarbossa P, Scarso A, Strukul G. Coordin. Chem. Rev., 2010, 254: 646-660
[4] Grein F, Chen A C, Edwards D, Crudden C M. J. Org. Chem., 2006, 71: 861-872
[5] 李秀荣(Li X R), 毛建新(Mao J X), 徐羽展(Xu Y Z), 项波卡(Xiang B K), 郑小明(Zheng X M). 石油化工(Petrochemical Technology), 2004, 33: 684-689
[6] Balke K, Kadow M, Mallin H, Sa S, Bornscheuer U T. Org. Biomol. Chem., 2012, 10: 6249-6265
[7] Riebel A, Dudek H M, de Gonzalo G, Stepniak P, Rychlewski L, Fraaije M W. Appl. Microbiol. Biotechnol., 2012, 95: 1479-1489
[8] Rafelt J S, Clark J H. Catal. Today, 2000, 57: 33-44
[9] Rocha G M S R O, Santos T M, Bispo C S S. Catal. Lett., 2011, 141: 100-110
[10] Pazmino D E T, Dudek H M, Fraaije M W. Chem. Biol., 2010, 14: 138-144
[11] Fink M J, Rudroff F, Mihovilovic M D. Bioorg. Med. Chem. Lett., 2011, 21: 6135-6138
[12] 冯小明(Feng X M), 彭云贵(Peng Y G), 蒋耀忠(Jiang Y Z). 合成化学(Chinese Journal of Synthetic Chemistry), 1999, 7: 374-381
[13] Ten Brink G J, Arends I W C E, Sheldon R A. Chem. Rev., 2004, 104: 4105-4123
[14] 牛棱渊(Niu L Y). 西北师范大学硕士论文(Master Dissertation of Northwest Normal University), 2011
[15] 张萍(Zhang P). 南京工业大学博士学位论文(Doctoral Dissertation of Nanjing University of Technology), 2006
[16] Leisch H, Morley K, Lau P C K. Chem. Rev., 2011, 111: 4165-4222
[17] Cole-Hamilton D J. Science, 2003, 299: 1702-1706
[18] Jacobson S E, Tang R, Mares F. J. Chem. Soc. Chem. Commun., 1978, 888-889
[19] Alegria E C B A, Martins L M D R S, Kirillova M V, Pombeiro A J. Appl. Catal. A: Gen., 2012, 443: 27-32
[20] Zhou L, Liu X H, Ji J, Zhang Y H, Hu X L, Lin L L, Feng X M. J. Am. Chem. Soc., 2012, 134: 17023-17026
[21] Brunetta A, Sgarbossa P, Strukul G. Catal. Today, 2005, 99: 227-232
[22] Rocha G M S R O, Santos T M, Bispo C S S. Catal. Lett., 2011, 141: 100-110
[23] Watanabe A, Uchida T, Ito K, Katsuki T. Tetrahedron Lett., 2002, 43: 4481-4485
[24] Malkov A V, Friscourt F, Bell M, Swarbrick M E, Pavel K, Kocovsk P. J. Org. Chem., 2008, 73: 3996-4003
[25] Petersen K S, Stoltz B M. Tetrahedron, 2011, 67: 4352-4357
[26] Xu S M, Wang Z, Zhang X M, Ding K L. Eur. J. Org. Chem., 2011, 110-116
[27] Reyes L, Diaz-Sanchez C, Iuga C. J. Phys. Chem. A, 2012, 116: 7712-7717
[28] Bach R D. J. Org. Chem., 2012, 77: 6801-6815
[29] Hunt K W, Grieco P A. Org. Lett., 2000, 2: 1717-1719
[30] Kosaka N, Hiyama T, Nozaki K. Macromolecules, 2004, 37: 4484-4487
[31] Ichikawa H, Usami Y, Arimoto M. Tetrahedron Lett., 2005, 46: 8665-8668
[32] Zarraga M, Salas V, Miranda A, Arroyo P, Paz C. Tetrahedron, 2008, 19: 796-799
[33] Mariana M A, Morzyckib J W, Iglesias-Arteaga M A. Steroids, 2011, 76: 317-323
[34] Uyanik M, Nakashima D, Ishihara K. Angew. Chem. Int. Edit., 2012, 51: 9093-9096
[35] Sasakura N, Nakano K, Ichikawa Y, Kotsuki H. RSC Adv., 2012, 2: 6135-6139
[36] Steffen R A, Teixeira S, Sepulveda J, Rinaldi R, Schuchardt U. J. Mol. Catal. A: Chem., 2008, 287: 41-44
[37] 雷自强(Lei Z Q), 何海龙(He H L), 杨志旺(Yang Z W). 西北师范大学学报(自然科学版)(Journal of Northwest Normal University(Natural Science)), 2009, 5: 84-87
[38] Andrade L H, Pedrozo E C, Leite H G, Brondani P B. J. Mol. Catal. B: Enzym., 2011, 73: 63-66
[39] Ten Brink G J, Vis J M, Arends I W C E, Sheldon R A. J. Org. Chem., 2001, 66: 2429-2433
[40] Betzemeier B, Lhermitte F, Knochel P. Synlett., 1999, 489-491
[41] Mathivet T, Monflier E, Castanet Y, Mortreux A, Couturier J L. Tetrahedron Lett., 1998, 39: 9411-9414
[42] Hao X H, Yamazaki O, Yoshida A, Nishikido J. Green Chem., 2003, 5: 524-528
[43] Aida L V, Farlán T A, Consuelo M C. J. Mol. Catal. A: Chem., 2002, 185: 269-277
[44] Palomeque J, Figueras F, Gelbard G. Appl. Catal. A: Gen., 2006, 300: 100-108
[45] Sgarbossa P, Scarso A, Pizzo E, Sbovata S M, Tassan A, Michelin R A, Strukul G. J. Mol. Catal. A: Chem., 2007, 261: 202-206
[46] Sgarbossa P, Scarso A, Michelin R A, Strukul G. Organometallics, 2007, 26: 2714-2719
[47] Greggio G, Sgarbossa P, Scarso A, Michelin R A, Strukul G. Inorg. Chim. Acta, 2008, 361: 3230-3236
[48] Venturello C, Alneri E, Ricci M. J. Org. Chem., 1983, 48: 3831- 3833
[49] Zarrabi S, Mahmoodi N O, Tabatabaeian K, Zanjanchi M A. Chin. Chem. Lett., 2009, 20: 1400-1404
[50] Cavarzan A, Scarso A, Sgarbossa P, Michelin R A, Strukul G. ChemCatChem, 2010, 2: 1296-1302
[51] Baj S, Chrobok A, Siewniak A. Appl. Catal. A: Gen., 2011, 395: 49-52
[52] Bhaurnik A, Kumar P, Kumar R. Catal. Lett., 1996, 40: 47-50
[53] Corma A, Nemeth L T, Renz M, Valencia S. Nature, 2001, 412: 423-425
[54] Corma A, Fornés V, Iborra S, Mifsud M, Renz M. J. Catal., 2004, 221: 67-76
[55] Boronat M, Concepción P, Corma A, Navarro M T, Renz M, Valencia S. Phys. Chem. Chem. Phys., 2009, 11: 2876-2884
[56] Boronat M, Concepción P, Corma A, Renz M. Catal. Today, 2007, 121: 39-44
[57] Boronat M, Concepción P, Corma A, Renz M, Valencia S. J. Catal., 2005, 234: 111-118
[58] Dutta B, Jana S, Bhunia S, Honda H, Koner S. Appl. Catal. A: Gen., 2010, 382: 90-98
[59] Corma A, Navarro M T, Ncmcth L, Michael R. Chem. Commun., 2001, 2190-2191
[60] Corma A, Navarro M T, Renz M. J. Catal., 2003, 219: 242-246
[61] Nowak I, Feliczak A, Nekoksová I, [AKCˇ]ejka J. Appl. Catal. A: Gen., 2007, 321: 40-48
[62] 李圭(Li G), 钟玲(Zhong L), 袁霞(Yuan X), 吴剑(Wu J), 罗和安(Luo H A). 化学反应工程与工艺(Chemical Reaction Engineering and Technology), 2010, 26: 162-166
[63] Subramanian H S, Nettleton E G, Budhi S, Koodali R T. J. Mol. Catal. A: Chem., 2010, 330: 66-72
[64] 杨志旺(Yang Z W), 马振宏(Ma Z H), 牛棱渊(Niu L Y), 马国富(Ma G F), 马恒昌(Ma H C), 雷自强(Lei Z Q). 催化学报(Chinese Journal of Catalysis), 2011, 32: 463-467
[65] Wang S H, Wang Y B, Dai Y M, Jehng J M. Appl. Catal. A: Gen., 2012, 439: 135-141
[66] 刘媛(Liu Y), 陈长林(Chen C L), 徐南平(Xu N P). 催化学报(Chinese Journal of Catalysis), 2004, 25: 801-804
[67] Pillai U R, Sahle-Demessie E. J. Mol. Catal. A: Chem., 2003, 191: 93-100
[68] Jiménez-Sanchidrián C, Hidalgo J M, Llamas R, Ruiz J R. Appl. Catal. A: Gen., 2006, 312: 86-94
[69] Llamas R, Jimenez-Sanchidrin C, Ruiz J R. Tetrahedron, 2007, 63: 1435-1439
[70] Liu H B, Chen T H, Chang D Y, Chen D, He H P, Frost R L. J. Mol. Catal. A: Chem., 2012, 364: 304-310
[71] Chen T H, Liu H B, Li J H, Chen D, Chang D Y, Kong D J, Ray L F. Chem. Eng. J., 2011, 166: 1017-1021
[72] Lei Z Q, Zhang Q H, Luo J J, He X Y. Tetrahedron Lett., 2005, 46: 3505-3508
[73] Lei Z Q, Zhang Q H, Wang R M. J. Organomet. Chem., 2006, 691: 5767-5773
[74] Praus P, Veteka M, Pospíil M. Mol. Simulat., 2011, 37: 964-974
[75] Lei Z Q, Ma G F, Jia C G. Catal. Commun., 2007, 8: 305-309
[76] Belaroui L S, Sorokin A B, Figueras F, Bengueddach A. C. R. Chim., 2010, 13: 466-472
[77] Olah G A, Yamato T, Iyer P S, Trivedi N J, Singh B P, Prakash G K S. Mater. Chem. Phys., 1987, 17: 21-30
[78] Zhang G H, Wen S X, Lei Z Q. React. Funct. Polym., 2006, 66: 1278-1283
[79] Li C L, Yang Z W, Wu S, Lei Z Q. React. Funct. Polym., 2007, 67: 53-59
[80] Li C L, Wang J Q, Yang Z W, Hu Z A, Lei Z Q. Catal. Commun., 2007, 8: 1202-1208
[81] Tomalia D A, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. Polym. J., 1985, 17: 117-132
[82] Li C L, Lei Z Q, Ma H C, Wu S, Sun Q S. J. Disper. Sci. Technol., 2012, 33: 983-989
[83] Phillips A M F, Romo C. Eur. J. Org. Chem., 1999, 8: 1767-1770
[84] Jain K R, Kühn F E. J. Organomet. Chem., 2007, 692: 5532-5540
[85] Qiu C J, Zhang Y C, Gao Y, Zhao J Q. J. Organomet. Chem., 2009, 694: 3418-3424
[86] Bernini R, Coratti A, Fabrizi G, Goggiamani G. Tetrahedron Lett., 2003, 44: 8991-8994
[87] Cheng M J, Bischof S M, Nielsen R J, Goddard W A, Gunnoe B, Periana R A. Dalton Trans., 2012, 41: 3758-3763
[88] Raja R, Thomas J M, Sankar G. Chem. Commun., 1999, (6): 525-526
[89] Li J X, Le Y Y, Dai W L, Li H X, Fan K N. Catal. Commun., 2008, 9: 1334-1341
[90] Llamas R, Sanchidrián C J, Ruiz J R. Appl. Catal. B: Environ., 2007, 72: 18-25
[91] 李静霞(Li J X), 黄靓(Huang J), 戴维林(Dai W L). Acta Chim. Sinica, 2008, 66: 5-9
[92] 杜金婷(Du J T), 吕效平(Lv X P), 韩萍芳(Han P F), 姜文旭(Jiang W X). 石油化工(Petrochemical Technology), 2009, 38: 1180-1185
[93] Paul M, Pal N, Mondal J, Sasidharan M, Bhaumik A. Chem. Eng. Sci., 2011, 71: 564-572
[94] Gonzlez-Nuez M E, Mello R, Olmos A, Asensio G. J. Org. Chem., 2006, 71: 6432-6436
[95] Chrobok A, Baj S, Pudo W, Jarzebski A. Appl. Catal. A: Gen., 2009, 366: 22-28
[96] 杨志旺(Yang Z W), 陈琴(Chen Q), 马国富(Ma G F), 何海龙(He H L), 雷自强(Lei Z Q). 西北师范大学学报(自然科学版)(Journal of Northwest Normal University(Natural Science)), 2010, 46: 73-77
[97] Yang Z W, Niu L Y, Jia X J, Kang Q X, Ma Z H, Lei Z Q. Catal. Commun., 2011, 12: 798-802
[98] Lei Z Q, Ma G F, Wei L L, Yang Q L, Su B T. J. Catal. Lett., 2008, 124: 330-333
[99] Mahmoodi N O, Heirati S Z D, Ekhlasi-Kazaj K. J. Iran. Chem. Soc., 2012, 9: 521-528
[100] Jeong E Y, Ansari M B, Park S E. ACS Catal., 2011, 1: 855-863
[101] Pazmio D E T, Dudek H M, Fraaije M W. Curr. Opin. Chem. Biol., 2010, 14: 138-144
[102] Secundo F, Fiala S, Marco W F, Gonzalo G, Massimiliano M L, Francesca Z, Gianluca O. Biotechnol. Bioeng., 2011, 108: 491-499
[103] Rioz-Maritnez A, Cuetos A, Rodrguez C, de Gonzalo G, Lavandera I, Fraaije M W, Gotor V. Angew. Chem. Int. Ed., 2011, 50: 8387-8390
[104] Rios M Y, Salazar E, Olivo H F. Mol. Catal. B: Enzym., 2008, 54: 61-66
[105] Kotlewska A J, van Rantwijk F, Sheldon R A, Arends I W C E. Green Chem., 2011, 13: 2154-2160
[106] Ratu Ds' B, Gadkowski W, Wawrzenczyk C. Enzym. Microb. Technol., 2009, 45: 156-163
[107] Mihovilovic M D, Rudroff F, Grtzl B, Kapitán P, Snajdrova R, Rydz J, Mach R. Angew. Chem. Int. Ed., 2005, 44: 3609-3613
[108] Geitner K, Kirschner A, Rehdorf J, Schmidt M, Mihovilovic M D, Bornscheuer U T. Tetrahedron-Asymmetry, 2007, 18: 892-895
[109] Jiang B, Luo J, Huang H, Chen Y, Li Z Y. Chin. J. Org. Chem., 2005, 25: 1542-1547
[110] Reetz M T, Wu S. J. Am. Chem. Soc., 2009, 131: 15424-15432
[111] Beneventi E, Ottolina G, Carrea G, Panzeri W, Fronza G, Lau P C K. J. Mol. Catal. B: Enzym., 2009, 58: 164-168
[112] Fink M J, Fischer T C, Rudroff F, Dudek H, Fraaije M W, Mihovilovic M D. J. Mol. Catal. B: Enzym., 2011, 73: 9-16
[113] Piersanti G, Retini M, Espartero J L, Madrona A, Zappia G. Tetrahedron Lett., 2011, 52: 4938-4940
[114] Jensen C N, Cartwright J, Ward J, Hart S, Turkenburg J P, Ali S T, Allen M J, Grogan G. ChemBioChem, 2012, 13: 872-878
[115] Willetts A, Joint I, Gilbert J A, Trimble W, Mühling M. Microb. Biotechnol., 2012, 5: 549-559
[116] Allen M J, Tait K, Mühling M, Weynberg K, Bradley C, Trivedi U, Gharbi K, Nissimov J, Mavromatis K, Jensen C N, Grogan G, Ali S T. J. Bacteriol., 2012, 194: 4753-4754
[117] Meeuwissen S A, Rioz-Martínez A, Gonzalo G, Fraaije M W, Gotor V, van Hest J C M. J. Mater. Chem., 2011, 21: 18923-18926
[118] Cuetos A, Ana R M, Valenzuela M L, Lavandera I, Gonzalo G, Carriedo G A, Gotor V. J. Mol. Catal. B: Enzym., 2012, 74: 178-183
[119] Rodríguez C, Gonzalo G, Gotor V. J. Mol. Catal. B: Enzym., 2012, 74: 138-143
[120] Zhang Z G, Parra L P, Reetz M T. Chem. Eur. J., 2012, 18: 10160-10172
[121] Bucko M, Schenkmayerová A, Gemeiner P, Vikartovská A, Mihovilovic M D, Lacík I. Enzyme Microb. Technol., 2011, 49: 284-288
[122] Schenkmayerova A, Bu[AKcˇ]ko M, Gemeiner P, Chorvát D, Lacík L. Biotechnol. Lett., 2012, 34: 309-314
[123] Polyak I, Reetz M T, Thiel W. J. Am. Chem. Soc., 2012, 134: 2732-2741

[1] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[2] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[3] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[4] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[5] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[6] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[7] 宋欢, 邹琦, 陆克定. HO2非均相摄取系数的测量与参数化[J]. 化学进展, 2021, 33(7): 1175-1187.
[8] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[9] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[10] 杨文清, 谢大乐, 程俊, 唐维克, 汪若冰, 冯乙巳. 负载型BINAP-M类催化剂[J]. 化学进展, 2021, 33(10): 1706-1720.
[11] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[12] 王海潮, 唐明金, 谭照峰, 彭超, 陆克定. 硝酰氯的大气化学[J]. 化学进展, 2020, 32(10): 1535-1546.
[13] 王继乾*, 闫宏宇, 李洁, 张丽艳, 赵玉荣, 徐海*. 基于多肽自组装的人工金属酶[J]. 化学进展, 2018, 30(8): 1121-1132.
[14] 白东亚, 何军邀, 欧阳斌, 黄金, 王普. 手性芳基醇的生物催化不对称合成[J]. 化学进展, 2017, 29(5): 491-501.
[15] 孙佳, 王普, 章鹏鹏, 黄金. 甘油在微生物代谢合成及生物催化中的应用[J]. 化学进展, 2016, 28(9): 1426-1434.