English
新闻公告
More
化学进展 2021, Vol. 33 Issue (11): 2103-2115 DOI: 10.7536/PC200877 前一篇   后一篇

• 综述 •

生物杂化体介导的半人工光合作用:机理、进展及展望

胡安东, 周顺桂, 叶捷*()   

  1. 福建农林大学资源与环境学院 福州 350002
  • 收稿日期:2020-08-30 修回日期:2020-11-02 出版日期:2020-12-28 发布日期:2020-12-28
  • 通讯作者: 叶捷
  • 基金资助:
    国家自然科学基金项目(41925028); 国家自然科学基金项目(41977281)

The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis

Andong Hu, Shungui Zhou, Jie Ye()   

  1. College of Resources and Environment, Fujian Agriculture and Forestry University,Fuzhou 350002, China
  • Received:2020-08-30 Revised:2020-11-02 Online:2020-12-28 Published:2020-12-28
  • Contact: Jie Ye
  • Supported by:
    National Natural Science Foundation of China(41925028); National Natural Science Foundation of China(41977281)

半人工光合系统通过利用人工光合系统与自然光合系统关键功能组分的协同效应以实现太阳能-化学能的转化。生物杂化体介导的半人工光合系统(biohybrid mediated semi-artificial photosynthetic system, BMSAPS)创新性地耦合了光敏剂优异的光捕获特性及生物催化剂高效的催化能力,从而利用太阳能高效驱动特定的化学转化过程。强化光敏剂与生物催化剂微界面间电子的产生、传输及利用是提高BMSAPS性能的关键。本文从BMSAPS的基本原理出发,分析了BMSAPS构建的关键科学问题及研究现状,阐述了该系统光生电子传递的相关机制及研究手段,总结了其在可再生能源转化、二氧化碳减排等方面的研究进展,并就未来的研究方向提出展望。本文有助于加深对BMSAPS的认识,从而为进一步优化其在能源生产和环境修复领域的应用提供理论基础和技术支撑。

Semi-artificial photosynthetic system could realize the solar-to-chemical energy conversion by utilizing the synergistic effects of key functional components of artificial and natural photosynthetic systems. The biohybrid mediated semi-artificial photosynthetic system(BMSAPS) can effectively trigger the specific solar-to-chemical conversion due to the excellent light-harvesting properties of photosensitizers and highly-efficient biological catalytic abilities of biocatalysts. Enhancing the photoelectron generation, transfer and utilization on the micro-interface of photosensitizer-biocatalyst hybrids is considered to be crucial for improving the performance of BMSAPS. This review innovatively concludes the key scientific issues and research status on the BMSAPS construction based on its constituent elements. Meanwhile, the relevant mechanisms and research methods for the photogenerated electron transport in the BMSAPS are also described. In addition, the research progress of the BMSAPS on different fields such as the renewable energy conversion and CO2 emission reduction are summarized, followed by the future research directions. This review is expected to deepen the understanding of the BMSAPS, thereby providing the theoretical foundation and technical support for further optimizing its application in the field of energy production and environmental restoration.

Contents

1 Introduction

2 The basic principles of BMSAPS

3 The BMSAPS construction

3.1 Photosensitizers

3.2 Biocatalysts

4 The typical BMSAPS

4.1 Photoelectrode-biohybrid system

4.2 Inorganic semiconductor-biohybrid system

4.3 Plasmon-biohybrid system

4.4 Research methods for typical biohybrid system

5 The BMSAPS application

5.1 Carbon dioxide fixation

5.2 Nitrogen fixation

5.3 Hydrogen production

6 Outlook

()
表1 常见的生物杂化体介导的半人工光合系统(BMSAPS)
Table 1 Common biohybrid mediated semi-artificial photosynthetic system(BMSAPS)
图1 半导体光催化示意图(价带(valence band,VB),导带(conduction band,CB),禁带宽度(band gap))
Fig. 1 Schematic diagram of semiconductor photocatalysis(valence band, VB; conduction band, CB; band gap)
图2 良好生物相容性的光敏剂与生物体结合图像:(a)CdS-M. thermoacetica杂化体系[24];(b)CdS-T. denitrificans杂化体系[46];(c)CdS-M. barkeri杂化体系[47];(d)AglnS2/In2S3-E. coli杂化体系[52];(e)PDI/PFP-M. thermoacetica杂化体系[53];(f)碳点-叶绿体杂化体系[54]
Fig. 2 The images of biocompatible photosensitizers bound to organisms.(a) CdS-M. thermoacetica hybrid system[24];(b) CdS-T. denitrificans hybrid system[46];(c) CdS-M. barkeri hybrid system[47];(d) AglnS2/In2S3-E. coli hybrid system[52];(e) PDI/PFP-M. thermoacetica hybrid system[53];(f) carbon dots-chloroplast hybrid system[54]
图3 部分BMSAPS中光敏剂的简化能带图
Fig. 3 Simplified band diagram of photosensitizer in BMSAPS
图4 常见的生物酶催化剂[51,74]
Fig. 4 Common bio-enzyme catalysts[51,74]
图5 光电极-生物杂化体系电子传递示意图:(a)p型NiO还原CO2的光电化学电池示意图[83];(b)酶串联还原CO2生产甲醇示意图[85];(c)纳米线-细菌光电化学电池系统原理图[87]
Fig. 5 Electron transfer schematic diagram of photelectrode-biohybrid system.(a) Schematic diagram of photoelectrochemical cell for the reduction of CO2 by p-type NiO[83];(b) schematic diagram of the production of methanol from CO2 by enzyme cascade[85];(c) schematics of the close-packed nanowire-bacteria hybrid system[87]
图6 无机半导体-生物杂化体系电子传递示意图:(a)CdS-M. thermoacetica电荷转移示意图[88];(b)CdS-M. thermoacetica电荷转移和CO2固定途径示意图[89]
Fig. 6 Electron transfer mechanism diagram of inorganic semiconductor-biohybrid system.(a) Schematic of CdS-M. thermoacetica charge transfer[88];(b) schematic diagram of CdS-M. thermoacetica charge transfer and CO2 fixation pathway[89]
图7 等离激元电子产生及利用示意图:(a)等离激元金纳米颗粒受激发的电子转移示意图[92];(b)AuNCs-M. thermoacetica电子转移和CO2固定途径示意图[31]
Fig. 7 Schematic diagram of plasma electron generation and utilization.(a) Schematic diagram of electron transfer of excited plasma gold nanoparticles[92];(b) schematic diagram of AuNCs-M. thermoacetica charge transfer and CO2 fixation pathway[31]
表2 BMSAPS研究方法
Table 2 The research methods of BMSAPS
Methods Roles Specific steps ref
Transient absorption(TA)
spectroscopy
Characterizing the electrons transfer Measuring with an Ultrafast
systems Helios TA system
88
Time-resolved infrared(TRIR)
spectroscopy
Characterizing the instantaneous lifetime changes of group Measuring with self-made device 88
NADH/NAD ratio Characterizing intracellular redox potential changes Measuring with MAK037,
Sigma-Aldrich kit
26
Incident photon-to-current
conversion efficiency(IPCE)
Characterizing photon-to-current conversion efficiency Measuring with a motorized monochromator(M10; Jasco Corp.) 42
Structure illumination microscopy(SIM) Characterizing intracellular gold nanoclusters Measuring with an ELYRA PS.1 system(Zeiss) 31
Intracellular ROS Characterizing intracellular reactive oxygen species Measuring with fluorometric intracellular ROS assay MAK143 Kit 31
Real-time polymerase chain reaction(PCR) Characterizing of gene expression Using kits to extract and measuring with LightCycler 96 46
Flow cytometry Characterizing of cell total protein, total nucleic acid, etc. Staining with green fluorescent dye and measuring with flow cytometer 47
Scanning electrochemical
microscopy(SECM)
Characterizing photocurrent of BMSAPS Measuring with a VersaSCAN
SECM instrument(AMETEK Inc., Berwyn, USA)
47
Fluorescence spectroscopy Characterizing synthesis of cadmium sulfide Measuring with fluorescence spectroscopy(FP-6500, JASCO) 97
Proteomics Characterizing protein expression of BMSAPS Extraction, digestion and quantitative analysis of extracellular proteins 89
Metabolomics Characterizing metabolites of BMSAPS Extracting intracellular metabolites and using LC-MS for quantitative analysis 89
Circular dichroic(CD) spectrum Characterizing secondary structure of protein Measuring with spectrometer(JASCO J-715) 100
图8 BMSAPS分析技术:(a,b)分别为瞬时吸收光谱的原理图及其数据表征图[88,98];(c,d)分别为结构光照明显微镜原理图及其数据表征图[31,99];(e,f)分别为扫描电化学显微镜原理图及其数据表征图[47]
Fig. 8 The analytical techniques for BMSAPS.(a) and(b) respectively represent schematic diagram and data characterization diagram of transient absorption spectroscopy[88,98];(c) and(d) respectively represent schematic diagram and data characterization image of the structure illumination microscopy[31,99];(e) and(f) respectively represent schematic diagram and data characterization images of scanning electrochemical microscopy[47]
[1]
Shih C F, Zhang T, Li J H, Bai C L. Joule, 2018, 2(10): 1925.

doi: 10.1016/j.joule.2018.08.016     URL    
[2]
Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Angew. Chem. Int. Ed., 2013, 52(29): 7372.

doi: 10.1002/anie.201207199     URL    
[3]
Amao Y. ChemCatChem, 2011, 3(3): 458.

doi: 10.1002/cctc.v3.3     URL    
[4]
Faunce T, Styring S, Wasielewski M R, Brudvig G W, Rutherford A W, Messinger J, Lee A F, Hill C L, de Groot H, Fontecave M, MacFarlane D R, Hankamer B, Nocera D G, Tiede D M, Dau H, Hillier W, Wang L Z, Amal R. Energy Environ. Sci., 2013, 6(4): 1074.

doi: 10.1039/c3ee40534f     URL    
[5]
Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440(7082): 295.

doi: 10.1038/440295a     URL    
[6]
Guo L J, Li R, Liu J X, Xi Q, Fan C M. Progress in Chemistry, 2020, 32(01): 46.
(郭丽君, 李瑞, 刘建新, 席庆, 樊彩梅. 化学进展, 2020, 32(01): 46.)
[7]
Li Z S, Luo W J, Zhang M L, Feng J Y, Zou Z G. Energy Environ. Sci., 2013, 6(2): 347.

doi: 10.1039/C2EE22618A     URL    
[8]
Graetzel M, Janssen R A J, Mitzi D B, Sargent E H. Nature, 2012, 488(7411): 304.

doi: 10.1038/nature11476     URL    
[9]
Zhu X G, Long S P, Ort D R. Annu. Rev. Plant Biol., 2010, 61(1): 235.

doi: 10.1146/arplant.2010.61.issue-1     URL    
[10]
Wen F Y, Li C. Acc. Chem. Res., 2013, 46(11): 2355.

doi: 10.1021/ar300224u     URL    
[11]
Lee S H, Choi D S, Kuk S K, Park C B. Angew. Chem. Int. Ed., 2018, 57(27): 7958.

doi: 10.1002/anie.v57.27     URL    
[12]
Seel C J, Gulder T. ChemBioChem, 2019, 20(15): 1871.

doi: 10.1002/cbic.v20.15     URL    
[13]
Yan C Z, Xue X L, Zhang W J, Li X J, Liu J, Yang S Y, Hu Y, Chen R P, Yan Y P, Zhu G Y, Kang Z H, Kang D J, Liu J, Jin Z. Nano Energy, 2017, 39: 539.

doi: 10.1016/j.nanoen.2017.07.039     URL    
[14]
Zhang W J, Hu Y, Yan C Z, Hong D C, Chen R P, Xue X L, Yang S Y, Tian Y X, Tie Z X, Jin Z. Nanoscale, 2019, 11(18): 9053.

doi: 10.1039/C9NR01732A     URL    
[15]
Xue X L, Chen R P, Yan C Z, Zhao P Y, Hu Y, Zhang W J, Yang S Y, Jin Z. Nano Res., 2019, 12(6): 1229.

doi: 10.1007/s12274-018-2268-5     URL    
[16]
Andrei V, Reuillard B, Reisner E. Nat. Mater., 2020, 19(2): 189.

doi: 10.1038/s41563-019-0501-6     URL    
[17]
Xue X L, Chen R P, Chen H W, Hu Y, Ding Q Q, Liu Z T, Ma L B, Zhu G Y, Zhang W J, Yu Q, Liu J, Ma J, Jin Z. Nano Lett., 2018, 18(11): 7372.

doi: 10.1021/acs.nanolett.8b03655     URL    
[18]
Xue X L, Chen R P, Yan C Z, Hu Y, Zhang W J, Yang S Y, Ma L B, Zhu G Y, Jin Z. Nanoscale, 2019, 11(21): 10439.

doi: 10.1039/C9NR02279A     URL    
[19]
Hao Y C, Dong X L, Zhai S R, Ma H C, Wang X Y, Zhang X F. Chem. Eur. J., 2016, 22(52): 18722.

doi: 10.1002/chem.v22.52     URL    
[20]
Schreier M, Curvat L, Giordano F, Steier L, Abate A, Zakeeruddin S M, Luo J S, Mayer M T, Grätzel M. Nat. Commun., 2015, 6(1): 1.
[21]
Luo J, Im J H, Mayer M T, Schreier M, Nazeeruddin M K, Park N G, Tilley S D, Fan H J, Grätzel M. Science, 2014, 345(6204): 1593.

doi: 10.1126/science.1258307     URL    
[22]
Mao J, Li K, Peng T Y. Catal. Sci. Technol., 2013, 3(10): 2481.

doi: 10.1039/c3cy00345k     URL    
[23]
Brown K A, Wilker M B, Boehm M, Dukovic G, King P W. J. Am. Chem. Soc., 2012, 134(12): 5627.

doi: 10.1021/ja2116348     URL    
[24]
Sakimoto K K, Wong A B, Yang P D. Science, 2016, 351(6268): 74.

doi: 10.1126/science.aad3317     pmid: 26721997
[25]
Sakimoto K K, Kornienko N, Cestellos-Blanco S, Lim J, Liu C, Yang P D. J. Am. Chem. Soc., 2018, 140(6): 1978.

doi: 10.1021/jacs.7b11135     pmid: 29364661
[26]
Wang B, Zeng C P, Chu K H, Wu D, Yip H Y, Ye L Q, Wong P K. Adv. Energy Mater., 2017, 7(20): 1700611.
[27]
Wang B, Zhao M M, Zhou Y, Yan S C, Zou Z G. Sci. Sin. Technol., 2017, 47(3): 286.

doi: 10.1360/N092016-00434     URL    
(王冰, 赵美明, 周勇, 闫世成, 邹志刚. 中国科学: 技术科学, 2017, 47(3): 286.)
[28]
Guo J L, Suástegui M, Sakimoto K K, Moody V M, Xiao G, Nocera D G, Joshi N S. Science, 2018, 362(6416): 813.

doi: 10.1126/science.aat9777     URL    
[29]
Liu C, ColÓn B C, Ziesack M, Silver P A, Nocera D G. Science, 2016, 352(6290): 1210.

doi: 10.1126/science.aaf5039     URL    
[30]
Yang D, Zhang Y S, Zhang S H, Cheng Y Q, Wu Y Z, Cai Z Y, Wang X D, Shi J F, Jiang Z Y. ACS Catal., 2019, 9(12): 11492.

doi: 10.1021/acscatal.9b03462     URL    
[31]
Zhang H, Liu H, Tian Z Q, Lu D, Yu Y, Cestellos-Blanco S, Sakimoto K K, Yang P D. Nat. Nanotechnol., 2018, 13(10): 900.

doi: 10.1038/s41565-018-0267-z     pmid: 30275495
[32]
Rowe S F, Le Gall G, Ainsworth E V, Davies J A, Lockwood C W J, Shi L, Elliston A, Roberts I N, Waldron K W, Richardson D J, Clarke T A, Jeuken L J C, Reisner E, Butt J N. ACS Catal., 2017, 7(11): 7558.

doi: 10.1021/acscatal.7b02736     URL    
[33]
Miller M, Robinson W E, Oliveira A R, Heidary N, Kornienko N, Warnan J, Pereira I A C, Reisner E. Angew. Chem., 2019, 131(14): 4649.

doi: 10.1002/ange.v131.14     URL    
[34]
Brown K A, Harris D F, Wilker M B, Rasmussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters J W, Seefeldt L C, King P W. Science, 2016, 352(6284): 448.

doi: 10.1126/science.aaf2091     URL    
[35]
Honda Y, Hagiwara H, Ida S, Ishihara T. Angew. Chem. Int. Ed., 2016, 55(28): 8045.

doi: 10.1002/anie.201600177     URL    
[36]
Deng Y C, Li Z Y, Tang R D, Ouyang K, Liao C J, Fang Y, Ding C X, Yang L H, Su L, Gong D X. Environ. Sci.: Nano, 2020, 7(3): 702.

doi: 10.1021/es60080a906     URL    
[37]
Ran J R, Jaroniec M, Qiao S Z. Adv. Mater., 2018, 30(7): 1704649.
[38]
Cestellos-Blanco S, Zhang H, Kim J M, Shen Y X, Yang P D. Nat. Catal., 2020, 3(3): 245.

doi: 10.1038/s41929-020-0428-y     URL    
[39]
Chaudhary Y S, Woolerton T W, Allen C S, Warner J H, Pierce E, Ragsdale S W, Armstrong F A. Chem. Commun., 2012, 48(1): 58.

doi: 10.1039/C1CC16107E     URL    
[40]
Caputo C A, Wang L D, Beranek R, Reisner E. Chem. Sci., 2015, 6(10): 5690.

doi: 10.1039/C5SC02017D     URL    
[41]
Brown K A, Wilker M B, Boehm M, Hamby H, Dukovic G, King P W. ACS Catal., 2016, 6(4): 2201.

doi: 10.1021/acscatal.5b02850     URL    
[42]
Pang H, Zhao G X, Liu G G, Zhang H B, Hai X, Wang S Y, Song H, Ye J H. Small, 2018, 14(19): 1800104.
[43]
Meng J L, Tian Y, Li C F, Lin X, Wang Z Y, Sun L M, Zhou Y N, Li J S, Yang N, Zong Y C, Li F, Cao Y X, Song H. Catal. Sci. Technol., 2019, 9(8): 1911.

doi: 10.1039/C9CY00180H     URL    
[44]
Lu A H, Li Y, Jin S, Wang X, Wu X L, Zeng C P, Li Y, Ding H R, Hao R X, Lv M, Wang C Q, Tang Y Q, Dong H L. Nat. Commun., 2012, 3(1): 1.
[45]
Chava R K, Do J Y, Kang M. Appl. Surf. Sci., 2018, 433: 240.

doi: 10.1016/j.apsusc.2017.09.260     URL    
[46]
Chen M, Zhou X F, Yu Y Q, Liu X, Zeng R J X, Zhou S G, He Z. Environ. Int., 2019, 127: 353.

doi: S0160-4120(19)30049-2     pmid: 30954721
[47]
Ye J, Yu J, Zhang Y Y, Chen M, Liu X, Zhou S G, He Z. Appl. Catal. B: Environ., 2019, 257: 117916.
[48]
Wang B, Jiang Z F, Yu J C, Wang J F, Wong P K. Nanoscale, 2019, 11(19): 9296.

doi: 10.1039/c9nr02896j     pmid: 31049528
[49]
Xu M Y, Tremblay P L, Jiang L L, Zhang T. Green Chem., 2019, 21(9): 2392.

doi: 10.1039/C8GC03695K     URL    
[50]
Cai Z H, Huang L P, Quan X, Zhao Z B, Shi Y, Li Puma G. Appl. Catal. B: Environ., 2020, 267: 118611.
[51]
Zheng D D, Zhang Y, Liu X H, Wang J Y. Photosynth. Res., 2020, 143(2): 221.

doi: 10.1007/s11120-019-00660-7     URL    
[52]
Jiang Z F, Wang B, Yu J C, Wang J F, An T C, Zhao H J, Li H M, Yuan S Q, Wong P K. Nano Energy, 2018, 46: 234.

doi: 10.1016/j.nanoen.2018.02.001     URL    
[53]
Gai P P, Yu W, Zhao H, Qi R L, Li F, Liu L B, Lv F, Wang S. Angew. Chem. Int. Ed., 2020, 59(18): 7224.

doi: 10.1002/anie.v59.18     URL    
[54]
Li W, Wu S S, Zhang H R, Zhang X J, Zhuang J L, Hu C F, Liu Y L, Lei B F, Ma L, Wang X J. Adv. Funct. Mater., 2018, 28(44): 1804004.
[55]
Zhai T Y, Fang X S, Bando Y, Dierre B, Liu B D, Zeng H B, Xu X J, Huang Y, Yuan X L, Sekiguchi T, Golberg D. Adv. Funct. Mater., 2009, 19(15): 2423.

doi: 10.1002/adfm.v19:15     URL    
[56]
Fan Y Z, Chen G P, Li D M, Li F, Luo Y H, Meng Q B. Mater. Res. Bull., 2011, 46(12): 2338.

doi: 10.1016/j.materresbull.2011.08.040     URL    
[57]
Sakimoto K K, Zhang S J, Yang P D. Nano Lett., 2016, 16(9): 5883.

doi: 10.1021/acs.nanolett.6b02740     pmid: 27537852
[58]
Wei W, Sun P Q, Li Z, Song K S, Su W Y, Wang B, Liu Y Z, Zhao J. Sci. Adv., 2018, 4(2): eaap9253. DOI: 10.1126/sciadv.aap9253.

doi: 10.1126/sciadv.aap9253    
[59]
Wang B, Xiao K M, Jiang Z F, Wang J F, Yu J C, Wong P K. Energy Environ. Sci., 2019, 12(7): 2185.

doi: 10.1039/C9EE00705A     URL    
[60]
Lyu Y, Tian J Q, Li J C, Chen P, Pu K Y. Angew. Chem. Int. Ed., 2018, 57(41): 13484.

doi: 10.1002/anie.201806973     URL    
[61]
Wang B, Queenan B N, Wang S, Nilsson K P R, Bazan G C. Adv. Mater., 2019, 31(22): 1806701.
[62]
Inal S, Rivnay J, Suiu A O, Malliaras G G, McCulloch I. Acc. Chem. Res., 2018, 51(6): 1368.

doi: 10.1021/acs.accounts.7b00624     URL    
[63]
Ravetz B D, Pun A B, Churchill E M, Congreve D N, Rovis T, Campos L M. Nature, 2019, 565(7739): 343.

doi: 10.1038/s41586-018-0835-2     URL    
[64]
Zhou Q Q, Zou Y Q, Lu L Q, Xiao W J. Angew. Chem. Int. Ed., 2019, 58(6): 1586.

doi: 10.1002/anie.v58.6     URL    
[65]
Pitre S P, McTiernan C D, Ismaili H, Scaiano J C. ACS Catal., 2014, 4(8): 2530.

doi: 10.1021/cs5005823     URL    
[66]
Mukherjee A, Schroeder C M. Curr. Opin. Biotech., 2015, 31: 16.

doi: 10.1016/j.copbio.2014.07.010     pmid: 25151058
[67]
Greenwald E C, Mehta S, Zhang J. Chem. Rev., 2018, 118(24): 11707.

doi: 10.1021/acs.chemrev.8b00333     pmid: 30550275
[68]
Maksimov E G, Gostev T S, Kuz’minov F I, Sluchanko N N, Stadnichuk I N, Pashchenko V Z, Rubin A B. Nanotechnologies Russ., 2010, 5(7/8): 531.
[69]
Fang X, Kalathil S, Reisner E. Chem. Soc. Rev., 2020, 49(14): 4926.

doi: 10.1039/c9cs00496c     pmid: 32538416
[70]
Armstrong F A, Hirst J. PNAS, 2011, 108: 14049.

doi: 10.1073/pnas.1103697108     pmid: 21844379
[71]
Reisner E, Powell D J, Cavazza C, Fontecilla-Camps J C, Armstrong F A. J. Am. Chem. Soc., 2009, 131(51): 18457.

doi: 10.1021/ja907923r     pmid: 19928857
[72]
Woolerton T W, Sheard S, Pierce E, Ragsdale S W, Armstrong F A. Energy Environ. Sci., 2011, 4(7): 2393.

doi: 10.1039/c0ee00780c     URL    
[73]
Tran N H, Nguyen D, Dwaraknath S, Mahadevan S, Chavez G, Nguyen A, Dao T, Mullen S, Nguyen T A, Cheruzel L E. J. Am. Chem. Soc., 2013, 135(39): 14484.

doi: 10.1021/ja409337v     URL    
[74]
Hutton G A M, Reuillard B, Martindale B C M, Caputo C A, Lockwood C W J, Butt J N, Reisner E. J. Am. Chem. Soc., 2016, 138(51): 16722.

doi: 10.1021/jacs.6b10146     URL    
[75]
Zhou J, Yang Y, Zhang C Y. Chem. Rev., 2015, 115(21): 11669.

doi: 10.1021/acs.chemrev.5b00049     URL    
[76]
Li X, Chen S Y, Hu W L, Shi S K, Shen W, Zhang X, Wang H P. Carbohydr. Polym., 2009, 76(4): 509.

doi: 10.1016/j.carbpol.2008.11.014     URL    
[77]
Ye J, Ren G P, Kang L, Zhang Y Y, Liu X, Zhou S G, He Z. iScience, 2020, 23(7): 101287.
[78]
Youn W, Kim J Y, Park J, Kim N, Choi H, Cho H, Choi I S. Adv. Mater., 2020, 32(35): 1907001.
[79]
Park J H, Kim K, Lee J, Choi J Y, Hong D, Yang S H, Caruso F, Lee Y, Choi I S. Angew. Chem., 2014, 126(46): 12628.

doi: 10.1002/ange.201405905     URL    
[80]
Ji Z, Zhang H, Liu H, Yaghi O M, Yang P. PNAS, 2018, 115(42): 10582.

doi: 10.1073/pnas.1808829115     URL    
[81]
Liang K, Richardson J J, Cui J W, Caruso F, Doonan C J, Falcaro P. Adv. Mater., 2016, 28(36): 7910.

doi: 10.1002/adma.201602335     URL    
[82]
Su D Y, Qi J R, Liu X M, Wang L, Zhang H, Xie H, Huang X. Angew. Chem., 2019, 131(12): 4032.

doi: 10.1002/ange.v131.12     URL    
[83]
Bachmeier Andreas S J L. Metalloenzymes as Inspirational Electrocatalysts for Artificial Photosynthesis. Cham: Springer International Publishing, 2017. 179.
[84]
Sokol K P, Robinson W E, Warnan J, Kornienko N, Nowaczyk M M, Ruff A, Zhang J Z, Reisner E. Nat. Energy, 2018, 3(11): 944.

doi: 10.1038/s41560-018-0232-y     URL    
[85]
Kuk S K, Singh R K, Nam D H, Singh R, Lee J K, Park C B. Angew. Chem. Int. Ed., 2017, 56(14): 3827.

doi: 10.1002/anie.201611379     URL    
[86]
Liu C, Gallagher J J, Sakimoto K K, Nichols E M, Chang C J, Chang M C Y, Yang P D. Nano Lett., 2015, 15(5): 3634.

doi: 10.1021/acs.nanolett.5b01254     URL    
[87]
Su Y D, Cestellos-Blanco S, Kim J M, Shen Y X, Kong Q, Lu D, Liu C, Zhang H, Cao Y H, Yang P D. Joule, 2020, 4(4): 800.

doi: 10.1016/j.joule.2020.03.001     URL    
[88]
Kornienko N, Sakimoto K K, Herlihy D M, Nguyen S C, Alivisatos A P, Harris C B, Schwartzberg A, Yang P D. PNAS, 2016, 113(42): 11750.

pmid: 27698140
[89]
Zhang R T, He Y, Yi J, Zhang L J, Shen C P, Liu S J, Liu L F, Liu B H, Qiao L. Chem, 2020, 6(1): 234.

doi: 10.1016/j.chempr.2019.11.002     URL    
[90]
Hou W B, Cronin S B. Adv. Funct. Mater., 2013, 23(13): 1612.

doi: 10.1002/adfm.v23.13     URL    
[91]
Cheng H F, Kamegawa T, Mori K, Yamashita H. Angew. Chem. Int. Ed., 2014, 53(11): 2910.

doi: 10.1002/anie.v53.11     URL    
[92]
Kim Y, Smith J G, Jain P K. Nat. Chem., 2018, 10(7): 763.

doi: 10.1038/s41557-018-0054-3     URL    
[93]
Yin Z, Wang Y, Song C Q, Zheng L H, Ma N, Liu X, Li S W, Lin L L, Li M Z, Xu Y, Li W Z, Hu G, Fang Z Y, Ma D. J. Am. Chem. Soc., 2018, 140(3): 864.

doi: 10.1021/jacs.7b11293     pmid: 29301395
[94]
Xiang Q J, Yu J G, Jaroniec M. Chem. Soc. Rev., 2012, 41(2): 782.

doi: 10.1039/C1CS15172J     URL    
[95]
Zeng Z, Mabe T, Zhang W D, Bagra B, Ji Z W, Yin Z Y, Allado K, Wei J J. ACS Appl. Bio Mater., 2019, 2(3): 1384.

doi: 10.1021/acsabm.8b00580     URL    
[96]
Xiong W, Feng J Y, Ma W M, Zhao J, Li C S, Zou Z G. Chinese Journal of Inorganic Chemistry, 2019, 35(9): 1521.

doi: 10.11862/CJIC.2019.186    
(熊威, 冯建勇, 马为民, 赵劲, 李朝升, 邹志刚. 无机化学学报, 2019, 35(9): 1521.)
[97]
Zhang D K, Yamamoto T, Tang D L, Kato Y, Horiuchi S, Ogawa S, Yoshimura E, Suzuki M. Talanta, 2019, 195: 447.

doi: 10.1016/j.talanta.2018.11.092     URL    
[98]
Cook A R, Shen Y Z. Rev. Sci. Instrum., 2009, 80(7): 073106.
[99]
Allen J R, Ross S T, Davidson M W. ChemPhysChem, 2014, 15(4): 566.

doi: 10.1002/cphc.201301086     pmid: 24497374
[100]
Li S Y, Chen W J, Hu X T, Feng F D. ACS Appl. Bio Mater., 2020, 3(4): 2482.

doi: 10.1021/acsabm.0c00194     URL    
[101]
Yu M L, Wang J J, Tang L, Feng C Y, Liu H Y, Zhang H, Peng B, Chen Z M, Xie Q Q. Water Res., 2020, 175: 115673.
[102]
Xia D H, Ng T W, An T C, Li G Y, Li Y, Yip H Y, Zhao H J, Lu A H, Wong P K. Environ. Sci. Technol., 2013, 47(19): 11166.

doi: 10.1021/es402170b     URL    
[103]
Ng T W, Zhang L S, Liu J S, Huang G C, Wang W, Wong P K. Water Res., 2016, 90: 111.

doi: 10.1016/j.watres.2015.12.022     URL    
[104]
Liu C, Sakimoto K K, ColÓn B C, Silver P A, Nocera D G. PNAS, 2017, 114(25): 6450.

doi: 10.1073/pnas.1706371114     URL    
[105]
Lu S T, Guan X, Liu C. Nat. Commun., 2020, 11(1): 1.

doi: 10.1038/s41467-019-13993-7     URL    
[1] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[2] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[3] 陈立香, 李祎頔, 田晓春, 赵峰. 革兰氏阳性电活性菌的电子传递及其应用[J]. 化学进展, 2020, 32(10): 1557-1563.
[4] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[5] 郑秉得, 赵园园, 李洪才, 郑碧远, 柯美荣, 黄剑东*. 可激活抗癌光敏剂[J]. 化学进展, 2018, 30(9): 1403-1414.
[6] 田晓春, 吴雪娥, 赵峰, 姜艳霞, 孙世刚. 电化学联用技术研究微生物的胞外电子传递机制[J]. 化学进展, 2018, 30(8): 1222-1227.
[7] 范淑芬, 辛佳, 黄静怡, 荣伟莉, 郑西来. 基于零价铁的地下水化学还原修复体系中的电子转移有效性和电子竞争机制[J]. 化学进展, 2018, 30(7): 1035-1046.
[8] 刘湘梅, 田康, 薛乘风, 韩艺蕃, 刘淑娟, 赵强*. X射线激发发光体在光动力治疗中的应用[J]. 化学进展, 2017, 29(12): 1488-1498.
[9] 马金莲, 马晨, 汤佳, 周顺桂, 庄莉. 电子穿梭体介导的微生物胞外电子传递:机制及应用[J]. 化学进展, 2015, 27(12): 1833-1840.
[10] 刘利丹, 肖勇, 吴义诚, 陈必链, 赵峰. 微生物电化学系统电子中介体[J]. 化学进展, 2014, 26(11): 1859-1866.
[11] 肖勇, 吴松, 杨朝晖, 郑越, 赵峰. 电化学活性微生物的分离与鉴定[J]. 化学进展, 2013, 25(10): 1771-1780.
[12] 许杰龙, 周顺桂, 袁勇, 王跃强, 庄莉*. 有“生命”的电线:浅析微生物纳米导线电子传递机制及其应用[J]. 化学进展, 2012, (9): 1794-1800.
[13] 郭彦,倪文彬,赵健伟. 从表面电化学实验参数理解活性基团的微观结构[J]. 化学进展, 2009, 21(6): 1149-1153.
[14] 刘洪梅,赵健伟. 分子整流的实验与理论研究进展*[J]. 化学进展, 2009, 21(6): 1154-1163.
[15] 李红茹,谢亭,胡女丹,杨刘峰,张胜涛,高放. 双光子诱导产生单重态氧的三重态光敏剂的研究*[J]. 化学进展, 2009, 21(0708): 1398-1407.