English
新闻公告
More
化学进展 2018, Vol. 30 Issue (8): 1121-1132 DOI: 10.7536/PC180112 前一篇   后一篇

所属专题: 酶化学

• 综述 •

基于多肽自组装的人工金属酶

王继乾*, 闫宏宇, 李洁, 张丽艳, 赵玉荣, 徐海*   

  1. 中国石油大学(华东)重质油国家重点实验室 生物工程与技术中心 青岛 266580
  • 收稿日期:2018-01-17 修回日期:2018-04-28 出版日期:2018-08-15 发布日期:2018-05-16
  • 通讯作者: 王继乾, 徐海 E-mail:jqwang@upc.edu.cn;xuh@upc.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21673293,21573287,21503275)资助

Artificial Metalloenzymes Based on Peptide Self-Assembly

Jiqian Wang*, Hongyu Yan, Jie Li, Liyan Zhang, Yurong Zhao, Hai Xu*   

  1. State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum(East China), Qingdao 266580, China
  • Received:2018-01-17 Revised:2018-04-28 Online:2018-08-15 Published:2018-05-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(No.21673293, 21573287, 21503275).
模拟酶,又称人工酶,是在分子水平上模拟天然酶活性部位的形状、大小及其微环境等结构特征的分子或分子聚集体。随着纳米科学和超分子技术的发展,构筑具有生物催化活性的超分子模拟酶已经成为科学研究和应用开发领域的热点。肽组装金属酶是以多肽分子为基本单元,在非共价作用力协同作用下形成的超分子组装体。相比其他功能性材料,肽人工金属酶的结构及生物化学性质更接近天然酶,其分子本身更利于修饰改造,且生物相容性和功能性较好,使其在模拟酶方面具有独特优势。本文总结了近年来通过多肽自组装构建人工金属酶的研究进展,重点综述了多肽组装模式、组装体微观结构、超分子结构、金属活性中心微环境以及pH值对模拟酶催化活性的影响。增加自组装微结构的稳定性、增加催化活性以及扩大由人工酶催化的反应类型是肽人工金属酶研究中的主要挑战。构筑更加稳定的肽自组装纳米结构及更加精确的活性中心以模拟天然酶的结构和活性中心是正确的策略。
Mimetic, or artificial enzymes are molecules or molecular aggregates that mimic the structural features of enzyme active center, such as shape, size, and microenvironment at molecular level. With the development of nanoscience and supramolecular technologies, the construction of supramolecular mimetic enzymes with specific catalytic activity has become a hotspot in both scientific research and application. Artificial peptide metalloenzymes have peptide molecules as the basic units, and the self-assembly of peptide supramolecular structure with enzymatic catalytic activity is driven by a series of non-covalent interactions synergistically. The structure and biochemical properties of peptide metalloenzyme are akin to those of natural enzymes. Furthermore, since peptide molecules are biocompatible and easy to be modified, artificial peptides metalloenzymes would be ideal candidates for artificial enzyme fabrication with specific functions. In this review, the progress of the mimetic metalloenzymes fabrication through peptide self-assembly has been summarized. The effects of peptide self-assembly, supramolecular structure, microenvironment of metal active center, as well as pH value on the artificial enzyme catalytic activity has been reviewed. The enhancement of the stability of self-assembled nanostructures, the improvement of catalytic activity and the broadening of the reaction types catalyzed by artificial enzymes are the main challenge in artificial peptides metalloenzyme study. Fabrication more stable peptide self-assembled nanostructure and more precise active centers to mimic those of the natural enzymes might be the right strategies.
Contents
1 Introduction
2 Effects of self-assembly nanostructures on metalloenzyme
2.1 Nanotube
2.2 Nanofibers
2.3 Coiled-coil
3 The secondary structure of peptide self-assemblies in metalloenzyme
3.1 β-hairpin
3.2 α-helix
4 Effects of spatial structure on metalloenzyme
4.1 Regulation of metal ions
4.2 Formation of protein interface
4.3 Hydrophobic interface
5 Metal-free peptide self-assembly artificial enzyme
6 Conclusion and outlook

中图分类号: 

()
[1] Bairoch A. Nucleic Acids Res., 2000, 28:304.
[2] Young D D, Nichols J, Kelly R M, Deiters A. J. Am. Chem. Soc., 2008, 130:10048.
[3] 刘盛华(Liu J J), 吴成泰(Wu C T). 化学通报(Chem.), 1998, 4:001.
[4] Paramonov S E, Jun H W, Hartgerink J D. J. Am. Chem. Soc., 2006, 128:7291.
[5] Cox E H, McLendon G L. Curr. Opin. Chem. Biol., 2000, 4:162.
[6] Wiester M J, Ulmann P A, Mirkin C A. Angew. Chem. Int. Ed., 2011, 50:114.
[7] Friedmann M P, Torbeev V, Zelenay V, Sobol A, Greenwald J, Riek R. PLoS One, 2015, 10(12):e0143948.
[8] Raynal M, Ballester P, Vidal-Ferran A, Leeuwen P W. Chem. Soc. Rev., 2014, 43:1734.
[9] Petrik I D, Liu J, Lu Y. Curr. Opin. Chem. Biol., 2014, 19:67.
[10] Shen X F, Deng X R, Pang Y H. RSC Adv., 2014, 4:21840.
[11] Dublin S N, Conticello V P. J. Am. Chem. Soc., 2008, 130:49.
[12] Dong J J, Canfield J M, Mehta A K, Shokes J E, Tian B,Childers W S,Simmons J A, Mao Z X, Scott R A, Warncke K, Lynn D G. Proc. Natl. Acad. Sci.U.S.A., 2007, 104:13313.
[13] Ayton S, Lei P, Bush A I. Free Radicals Biol. Med., 2013, 62:76.
[14] Lowik D W P M, Leunissen E H P, van den Heuvel M, Hansen M B, van Hest J C M. Chem. Soc. Rev., 2010, 39:3394.
[15] Yang Z H, Zhao X J. Int. J. Nanomed., 2011, 6:303.
[16] Ravichandran R, Venugopal J R, Sundarrajan S, Mukherjee S, Ramakrishna S. Biomaterials, 2012, 33:846.
[17] Cui H G, Cheetham A G, Pashuck E T, Stupp S I. J. Am. Chem. Soc., 2014, 136:12461.
[18] Pedersen C J. J. Am. Chem. Soc., 1967, 89:7017.
[19] Cram D J. J. Inclusion Phenom., 1988, 6:397.
[20] Lehn J M. J. Inclusion Phenom., 1988, 6:351.
[21] Sherrington D C, Taskinen K A. Chem. Soc. Rev., 2001, 30:83.
[22] Yu S J, Huang X, Miao L, Zhu J Y, Yin Y Z, Luo Q, Xu J Y, Shen J C, Liu J Q. Bioorg. Chem., 2010, 38:159.
[23] Whitesides G M, Grzybowski B. Science, 2002, 295:2418.
[24] Maeda Y, Makhlynets O V, Matsui H, Korendovych I V. Annu. Rev. Biomed. Eng., 2016, 18:311.
[25] Jin Q X, Zhang L, Cao H, Wang T Y, Zhu X F, Jiang J, Liu M H. Langmuir, 2011, 27:13847.
[26] Tena-Solsona M, Nanda J, Chotera A, Ashkenasy G, Escuder B. Chem. Eur. J., 2016, 22:6687.
[27] Huang Z P, Luo Q, Guan S W, Gao J X, Wang Y G, Zhang B, Wang L, Xu J Y, Dong Z Y, Liu J Q. Soft Matter, 2014, 10:9695.
[28] Omosun T O, Hsieh M C, Childers W S, Das D, Mehta A K, Anthony N R, Pan T, Grover M A, Berland K M, Lynn D G. Nat. Chem., 2017, 9:805.
[29] Rufo C M, Moroz Y S, Moroz O V, Stohr J, Smith T A, Hu X, DeGrado W F, Korendovych I V. Nat. Chem., 2014, 6:303.
[30] Lee M W, Wang T, Makhlynets O V, Wu Y B, Polizzi N F, Wu H F, Gosavi P M, Stohr J, Korendovych I V, DeGrado W F, Hong M. Proc. Natl. Acad. Sci.U.S.A., 2017, 114:6191.
[31] Singh N, Conte M P, Ulijn R V, Miravet J F, Escuder B. Chem. Commun., 2015, 51(67):13213.
[32] Guler M O, Stupp S I. J. Am. Chem. Soc., 2007, 129:12082.
[33] Zhang C Q, Xue X D, Luo Q, Li Y W, Yang K N, Zhuang X X, Jiang Y G, Zhang J C, Liu J Q, Zou G Z, Liang X J. ACS Nano, 2014, 8:11715.
[34] Landschulz W H, Johnson P F, McKnight S L. Science, 1988, 240:1759.
[35] Zastrow M L, Pecoraro V L. J. Am. Chem. Soc., 2013, 135:5895.
[36] Cangelosi V M, Deb A, Penner-Hahn J E, Pecoraro V L. Angew. Chem. Int. Ed., 2014, 53:7900.
[37] Burton A J, Thomson A R, Dawson W M, Brady R L, Woolfson D N. Nat. Chem., 2016, 8:837.
[38] Pochan D J, Schneider J P, Kretsinger J, Ozbas B, Rajagopal K, Haines L. J. Am. Chem. Soc., 2003, 125:11802.
[39] Micklitsch C M, Medina S H, Yucel T, Nagy-Smith K J, Pochan D J, Schneider J P. Macromolecules, 2015, 48:1281.
[40] Rughani R V, Schneider J P. MRS Bull., 2008, 33:530.
[41] Knerr P J, Branco M C, Nagarkar R, Pochan D J, Schneider J P. J. Mater. Chem., 2012, 22:1352.
[42] Micklitsch C M, Knerr P J, Branco M C, Nagarkar R, Pochan D J, Schneider J P. Angew. Chem. Int. Ed., 2011, 50:1577.
[43] Platt G, Chung C W, Searle M S. Chem. Commun., 2001,13(13):1162.
[44] Wang C, Sun Y, Wang J, Xu H, Lu J. R. Chem. Asian J., 2015, 10:1953.
[45] Rajagopal K, Lamm M S, Haines-Butterick L A, Pochan D J, Schneider J P. Biomacromolecules, 2009, 10:2619.
[46] Schneider J P, Pochan D J, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J. J. Am. Chem. Soc., 2002, 124:15030.
[47] Tanaka T, Mizuno T, Fukui S, Hiroaki H, Oku J, Kanaori K, Tajima K, Shirakawa M. J. Am. Chem. Soc.,2004, 126:14023.
[48] Kharenko O A, Ogawa M Y. J. Inorg. Biochem., 2004, 98:1971.
[49] Cerasoli E, Sharpe B K, Woolfson D N. J. Am. Chem. Soc., 2005, 127:15008.
[50] Banwell E F, Abelardo E S, Adams D J, Birchall M A, Corrigan A, Donald A M, Kirkland M, Serpell L C, Butler M F, Woolfson D N. Nat. Mater., 2009, 8:596.
[51] Gao Y, Zhao F, Wang Q G, Zhang Y, Xu B. Chem. Soc. Rev., 2010, 39:3425.
[52] Valéry C, Deville-Foillard S, Lefebvre C, Taberner N, Legrand P, Meneau F, Meriadec C, Delvaux C, Bizien T, Kasotakis E, Lopez-Iglesias C, Gall A, Bressanelli S, Du M L, Paternostre M, Artzner F. Nat. Commun., 2015, 6:7771.
[53] Castelletto V, Hamley I W, Segarra-Maset M D, Gumbau C B, Miravet J F, Escuder B, Seitsonen J, Ruokolainen J. Biomacromolecules, 2014, 15:591.
[54] Wang J, Shao F, Li W, Yan J, Liu K, Tao P, Masuda O, Zhang A. Chem. Asian J., 2017, 12:497.
[55] Zastrow M L, Peacock A F, Stuckey J A, Pecoraro V L. Nat. Chem., 2011, 4:118.
[56] Der B S, Edwards D R, Kuhlman B. Biochemistry, 2012, 51:3933.
[57] Song W J, Tezcan F A. Science, 2014, 346:1525.
[58] Broo K S, Brive L, Ahlberg P, Baltzer A L. J. Am. Chem. Soc., 1997, 119:11362.
[59] Hiebler K, Lengyel Z, Castaneda C A, Makhlynets O V. Proteins, 2017, 85:1656.
[60] Sun Y, Zhao C, Gao N, Ren J, Qu X. Chem. Eur. J., 2017, 23(71):18146.
[61] Garcia A M, Kurbasic M, Kralj S, Melchionna M, Marchesan S. Chem. Commun., 2017, 53(58):8110.
[62] Huang Z P, Guan S W, Wang Y G, Shi G N, Cao L N, Gao Y Z, Dong Z Y, Xu J Y, Luo Q, Liu J Q. J. Mater. Chem. B, 2013, 1:2297.
[63] Zhang C Q, Shafi R, Lampel A, MacPherson D, Pappas C G, Narang V, Wang T, Maldarelli C, Ulijn R V. Angew. Chem. Int. Ed., 2017, 56:14511.
[1] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[2] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[3] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[4] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[5] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[6] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[7] 刘炜珍, 郑嘉毅, 吴智诚, 刘章斌, 林璋. 表界面调控晶体变化微观机制探索与铬渣治理研究的结合[J]. 化学进展, 2017, 29(9): 1053-1061.
[8] 白东亚, 何军邀, 欧阳斌, 黄金, 王普. 手性芳基醇的生物催化不对称合成[J]. 化学进展, 2017, 29(5): 491-501.
[9] 翟文中, 何玉凤, 王斌, 熊玉兵, 宋鹏飞, 王荣民. 聚合物Janus微粒材料的制备与应用[J]. 化学进展, 2017, 29(1): 127-136.
[10] 孙佳, 王普, 章鹏鹏, 黄金. 甘油在微生物代谢合成及生物催化中的应用[J]. 化学进展, 2016, 28(9): 1426-1434.
[11] 赵亚男, 王梦凡, 齐崴, 苏荣欣, 何志敏. 基于肽组装凝胶的超分子模拟酶[J]. 化学进展, 2016, 28(11): 1664-1671.
[12] 赵媛, 曾金, 林英武. 基于蛋白质骨架的人工水解酶的理性设计[J]. 化学进展, 2015, 27(8): 1102-1109.
[13] 刘旭, 吴俊涛, 霍江贝, 孟晓宇, 崔立山, 周琼. 质子交换膜的传输通道微观结构对燃料电池性能的影响[J]. 化学进展, 2015, 27(4): 395-403.
[14] 龚劲松, 李恒, 陆震鸣, 史劲松, 许正宏. 腈水解酶在医药中间体生物催化研究中的最新进展[J]. 化学进展, 2015, 27(4): 448-458.
[15] 冯旭东, 李春. 酶的改造及其催化工程应用[J]. 化学进展, 2015, 27(11): 1649-1657.
阅读次数
全文


摘要

基于多肽自组装的人工金属酶