中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (6): 808-820 DOI: 10.7536/PC221236   Next Articles

• Review •

Condensed Matter Chemistry in Gaseous Molecules Reactions

Ruren Xu(), Wenfu Yan   

  1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University,Changchun 130012, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: rrxu@jlu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(22288101); The National Natural Science Foundation of China(U1967215); The National Natural Science Foundation of China(21835002)
Richhtml ( 32 ) PDF ( 248 ) Cited
Export

EndNote

Ris

BibTeX

Studying the reactions between gaseous molecules are not only of great significance to promote the development of industry, agriculture and economy, but also play a special role in the construction of condensed chemistry. Under normal conditions, gaseous molecules exist in a dispersed state. Because the stability of the structure of gaseous molecules, in most cases, the reactions between them can only occur under the “activation” of the catalyst with a specific composition and structure. In this paper, we list five simple examples to illustrate that the occurrence, progress and results of gaseous intermolecular reactions are subject to or even completely determined by the characteristics, composition and multi-level structure of the catalysts with specific condensed matter state under reaction conditions. In addition, we also list another reaction route in this paper, that is, under extreme reaction conditions such as high pressure, ultra-low temperature, laser, plasma and supercritical, the electronic and geometric structures and “states” of a few gaseous molecules will change, resulting in the specific condensed matter chemical reactions.

Contents

1 Introduction

2 Catalytic reaetion between gas molecules

Example 1 Homogeneous hydrogenation reaction of olefins

Example 2 Hydrogenation of crotonaldehyde over Co/SiO2 with different surface structures

Example 3 Catalytic dehydrogenation of propane

Example 4 Synthesis reactions of CO/H2 over Ru-containing molten salt catalysts

Example 5 The synthesis of ammonia via reaction of N2 + H2 catalyzed by nitrogenase

3 Condensed matter state reactions between gas molecules under extreme conditions (high pressure)

4 Outlook

Fig.1 The catalytic cycle for the hydrogenation of terminal alkenes by Wilkinson’s catalyst[5]
Fig.2 Cluster models of (a) a two-coordinated bridging oxygen, ≡Si—O—Si≡, at the non-defective silica surface; (a’) a metal atom (Cu, Pd, Cs) adsorbed on-top of the bridging oxygen; (b) a E’S center, ≡Si·, at the silica surface and (b’) a metal atom (Cu, Pd, Cs) adsorbed on the E’S center, ≡Si—M; (c) One-tetrahedron, 1-T, cluster models of a nonbridging oxygen (NBO) center, ≡Si—O·, at the silica surface and (c’) a metal atom (Cu, Pd, Cs) adsorbed on the NBO center; (d) two-tetrahedra, 2-T, cluster models of a nonbridging oxygen (NBO) defect center,≡Si—O·, at the silica surface, (d’) a Cu or Pd atom adsorbed on the NBO center and (d”) a Cs atom adsorbed on a NBO center; (e) a neutral oxygen vacancy center, ≡Si—Si≡, at the silica surface, and (e’) a Cu or Pd atom adsorbed on the neutral oxygen vacancy, ≡Si—M—Si≡[6]
Fig.3 The effect of reduction temperature in a H2 atmosphere on the activity of Pt/SiO2 catalysts[8]
Table 1 Physical properties and CO adsorption values of Pt/SiO2 catalysts[8]
Fig.4 Phase transition of SiO2 at ambient pressure[9]
Fig.5 Crystal structure of β-quartz[13]
Fig.6 The effect of SMSI on the catalytic behaviors of Pt/SiO2 catalysts in propane dehydrogenation[8]
Fig.7 Crystal structure of tridymite[17]
Scheme 1 In free-living N2-fixing bacteria, the ammonium transporter (Amt) ensures recycling of ammonia lost from the cell and scavenging of exogenous ammonium[25]
Fig.8 X-ray crystal structure of half of the ADP·AlF4-stabilized Fe protein/MoFe protein complex (left) and the relative positions of components that are involved in the electron flow during catalysis (right). The positions of [4Fe4S] cluster, P-cluster, and FeMo-co are indicated. The atoms colored as follows: Fe, green; S, yellow; Mo, purple; O, red; N, dark blue; (PDB entries 1M1N and 1N2C)
Fig.9 Crystal structures of the M-cluster. Atoms are colored as follows: Fe, orange; S, yellow; Mo, cyan; O, red; C, gray; N, dark blue; Mg, green; Al, beige; F, light blue[26]
Fig.10 Experimental/theoretical P-T phase diagram of hydrogen. Shown are two pathways to MH: I is the low-temperature pathway, and II is the high-temperature pathway. In pathway I, phases for pure para hydrogen have lettered names: LP, low pressure; BSP, broken symmetry phase; and H-A, hydrogen-A. The plasma phase transition is the transition to liquid metallic atomic hydrogen[27]
Fig.11 Structures of the stable xenon oxides at 83 GPa. Xe2O5 (a) and Xe3O2 (b)[33]. Xenon atoms are shown in blue shades and oxygen atoms in red shades. The oxygen atoms have an oxidation state of -2, and the darker shade of red indicates an oxygen atom that bonds only to one xenon atom. The oxidation states of the xenon atoms are indicated by different shades of blue. The lightest blue indicates an oxidation state of 0, the medium shade one of +4 and the darkest blue one of +6. The xenon atoms in Xe2O5 and Xe3O2 exist in two different oxidation states within each structure, +4 and +6 in Xe2O5 and 0 and +4 in Xe3O2
Fig.12 Convex-hull diagram for xenon oxides that shows the calculated enthalpies of formation per atom from the elements for the predicted stable phases[33]. For a structure of stoichiometry XemOn, the enthalpy of formation per atom is given by ΔHf(XemOn) = (H(XemOn) - (mH(Xe) + nH(O)))/(m+n), where H is the enthalpy of each formula unit under the relevant pressure. The three convex hulls shown are for 83 GPa (green), 150 GPa (red) and 200 GPa (blue). Each coloured circle denotes a structure that is stable against decomposition. The coloured lines that join the enthalpies of the stable structures denote the convex hull
Fig.13 A schematic picture of the generation of the HXY (X=Kr, Xe; Y 5 Cl, Br, I, CN, …) molecules in solid rare gases; the lower curve describes the potential energy[40]
[1]
Xu R R. Natl. Sci. Rev., 2018, 5(1): 1.

doi: 10.1093/nsr/nwx155
[2]
Xu R R, Wang K, Chen G, Yan W F. Natl. Sci. Rev., 2019, 6(2): 191.

doi: 10.1093/nsr/nwy128
[3]
Oro L A, Carmona D. The Handbook of Homogeneous Hydrogenation. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2006. 2.
[4]
O'Connor C, Yagupsky G, Evans D, Wilkinson G. Chem. Commun. (London), 1968, (7): 420.
[5]
Shriver D, Weller M, Overton T, Rourke J, Armstrong F. Inorganic Chemistry, 6th Ed. Great Britain: Oxford University Press, 2014.735.
[6]
Lopez N, Illas F, Pacchioni G. J. Am. Chem. Soc., 1999, 121(4): 813.

doi: 10.1021/ja981753c
[7]
Rodrigues E L, Bueno J M C. Appl. Catal. A Gen., 2002, 232(1-2): 147.

doi: 10.1016/S0926-860X(02)00090-X
[8]
Deng L D, Miura H, Shishido T, Hosokawa S, Teramura K, Tanaka T. Chem. Commun., 2017, 53(51): 6937.

doi: 10.1039/C7CC03859C
[9]
Hong G Y. Inorganic Solid Chemistry. Beijing: Science Press, 2002. 189.
( 洪广言. 无机固体化学. 北京: 科学出版社, 2002. 189.).
[10]
Tauster S J, Fung S C, Baker R T K, Horsley J A. Science, 1981, 211(4487): 1121.

doi: 10.1126/science.211.4487.1121 pmid: 17755135
[11]
Tang H L, Su Y, Zhang B S, Lee A F, Isaacs M A, Wilson K, Li L, Ren Y G, Huang J H, Haruta M, Qiao B T, Liu X, Jin C Z, Su D S, Wang J H, Zhang T. Sci. Adv., 2017, 3(10): e1700231.

doi: 10.1126/sciadv.1700231
[12]
Pan C J, Tsai M C, Su W N, Rick J, Akalework N G, Agegnehu A K, Cheng S Y, Hwang B J. J. Taiwan Inst. Chem. Eng., 2017, 74: 154.

doi: 10.1016/j.jtice.2017.02.012
[13]
Jolyon Ralph, Mindat.org, [2022-12-10]https://www.mindat.org/min-3337.html#autoanchor21.
[14]
Fung S. J. Catal., 1982, 76(1): 225.

doi: 10.1016/0021-9517(82)90251-2
[15]
Ma D. Acta Phys. Chimica Sin., 2022, 38(12): 2101039.
( 马丁. 物理化学学报, 2022, 38: 2101039.).
[16]
Du X R, Huang Y K, Pan X L, Han B, Su Y, Jiang Q K, Li M R, Tang H L, Li G, Qiao B T. Nat. Commun., 2020, 11: 5811.

doi: 10.1038/s41467-020-19484-4
[17]
Jolyon Ralph, Mindat.org, [2022-12-10] https://www.mindat.org/min-4015.html#autoanchor9.
[18]
Xie G. Theory and application of molten salt. Beijing: Metallurgical Industry Press, 1998.
( 谢刚. 熔融盐理论与应用. 北京: 冶金工业出版社, 1998. ).
[19]
Parshall G W. J. Am. Chem. Soc., 1972, 94(25): 8716.

doi: 10.1021/ja00780a013
[20]
Tang Y L, Peng P, Wang S Y, Liu Z H, Zu X T, Yu Q K. Chem. Mater., 2017, 29(19): 8404.

doi: 10.1021/acs.chemmater.7b02958
[21]
Xu Y, Wang R. Petrochemical Technology, 1993, 22:419.
( 许勇, 汪仁. 石油化工, 1993, 22: 419.).
[22]
Pruett R L. Ann. N Y Acad. Sci., 1977, 295(1 The Place of): 239.

doi: 10.1111/nyas.1977.295.issue-1
[23]
Knifton J F. US 4 265 828, 1981.
[24]
Shriver D, Weller M, Overton T, Rourke J, Armstrong F. Inorganic Chemistry, 6th Ed. Great Britain: Oxford University Press, 2014. 763.
[25]
Day| D A, Poole P S, Tyerman S D, Rosendahl L. Cell. Mol. Life Sci. CMLS, 2001, 58(1): 61.

doi: 10.1007/PL00000778
[26]
Hu Y L, Ribbe M W. Biochim. Biophys. Acta BBA Bioenerg., 2013, 1827(8/9): 1112.
[27]
Dias R P, Silvera I F. Science, 2017, 355(6326): 715.

doi: 10.1126/science.aal1579
[28]
Grochala W. Chem. Soc. Rev., 2007, 36(10): 1632.

doi: 10.1039/b702109g
[29]
Goettel K A, Eggert J H, Silvera I F, Moss W C. Phys. Rev. Lett., 1989, 62(6): 665.

pmid: 10040297
[30]
Sanloup C, Mao H K, Hemley R J. Proc. Natl. Acad. Sci. U. S. A., 2002, 99(1): 25.

doi: 10.1073/pnas.221602698
[31]
Weck G, Dewaele A, Loubeyre P. Phys. Rev. B, 2010, 82: 014112.

doi: 10.1103/PhysRevB.82.014112
[32]
Jephcoat A P, Mao H K, Finger L W, Cox D E, Hemley R J, Zha C S. Phys. Rev. Lett., 1987, 59(23): 2670.

pmid: 10035618
[33]
Dewaele A, Worth N, Pickard C J, Needs R J, Pascarelli S, Mathon O, Mezouar M, Irifune T. Nat. Chem., 2016, 8(8): 784.

doi: 10.1038/nchem.2528 pmid: 27442284
[34]
Loubeyre P, Jean-Louis M, LeToullec R, Charon-GÉrard L. Phys. Rev. Lett., 1993, 70(2): 178.

pmid: 10053722
[35]
Katz A I, Schiferl D, Mills R L. J. Phys. Chem., 1984, 88(15): 3176.

doi: 10.1021/j150659a007
[36]
Sun J, Klug D D, Pickard C J, Needs R J. Phys. Rev. Lett., 2011, 106(14): 145502.

doi: 10.1103/PhysRevLett.106.145502
[37]
Evans W J, Lipp M J, Yoo C S, Cynn H, Herberg J L, Maxwell R S, Nicol M F. Chem. Mater., 2006, 18(10): 2520.

doi: 10.1021/cm0524446
[38]
Liu X Y. Prog. Chem., 2020, 32: 1184.
( 刘晓旸. 化学进展, 2020, 32:1184.).

doi: 10.7536/PC200435
[39]
Khriachtchev L, Pettersson M, Runeberg N, Lundell J, Räsänen M. Nature, 2000, 406(6798): 874.

doi: 10.1038/35022551
[40]
Pettersson M, Lundell J, Räsänen M. Eur. J. Inorg. Chem., 1999, 1999(5): 729.

doi: 10.1002/(ISSN)1099-0682
[41]
Evans C J, Gerry M C L. J. Chem. Phys., 2000, 112(21): 9363.

doi: 10.1063/1.481557
[42]
Moskovits M, Ozin G A.Eds. Cryochemistry, New York: John Wiley & Sons, 1976.
[1] Xueli Wang, Qianru Wang, Di Li, Junnian Wei, Jianping Guo, Liang Yu, Dehui Deng, Ping Chen, Zhenfeng Xi. Condensed Matter Chemistry in Nitrogen Fixation [J]. Progress in Chemistry, 2023, 35(6): 904-917.
[2] Wenfu Yan, Ruren Xu. Chemical Reactions in Aqueous Solutions with Condensed Liquid State* [J]. Progress in Chemistry, 2022, 34(7): 1454-1491.
[3] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[4] Ruren Xu, Jihong Yu, Wenfu Yan. Goals and Major Scientific Issues in Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1017-1048.
[5] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[6] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[7] Lixu Lei, Yiming Zhou. Solvent-Free or Less-Solvent Solid State Reactions [J]. Progress in Chemistry, 2020, 32(8): 1158-1171.
[8] Chao Xie, Bo Zhou, Ling Zhou, Yujie Wu, Shuangyin Wang. Defect with Catalysis [J]. Progress in Chemistry, 2020, 32(8): 1172-1183.
[9] Xiaoyang Liu. Condensed Matter Chemistry under High Pressure [J]. Progress in Chemistry, 2020, 32(8): 1184-1202.
[10] Zheng Chen, Yingshuang Shang, Haibo Zhang, Zhenhua Jiang. Structure and Chemistry of Polymer Condensed State [J]. Progress in Chemistry, 2020, 32(8): 1115-1127.
[11] Jiang Ge, Luo Feng, Xu Yaozhong, Zhang Xiaohui. UVA Assisted 4-Thiothymidine for Cancer Treatment [J]. Progress in Chemistry, 2016, 28(8): 1224-1237.
[12] Qi Qian, Zhou Xuehua, Wang Wenxing. Studies on Formation of Aqueous Secondary Organic Aerosols [J]. Progress in Chemistry, 2014, 26(0203): 458-466.
[13] Ji Lin*, Yan Xinping. Stochastic and Hybrid Simulation Algorithms for Biochemical Reactions in Mesoscopic Systems [J]. Progress in Chemistry, 2013, 25(06): 893-899.
[14] Chu Daobao, Zhou Ying, Zhang Xuejiao, Li Yan, Song Qi. Organic Electrochemical Reactions Based on Ionic Liquid Electrolytes [J]. Progress in Chemistry, 2010, 22(12): 2316-2327.
[15] Shuai Zhigang. Progresses in Theoretical Chemistry and the Application to Sustainable Development [J]. Progress in Chemistry, 2009, 21(11): 2259-2270.