中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (8): 1017-1048 DOI: 10.7536/PC200428 Previous Articles   Next Articles

• Review •

Goals and Major Scientific Issues in Condensed Matter Chemistry

Ruren Xu1,**(), Jihong Yu1, Wenfu Yan1   

  1. 1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
  • Received: Revised: Online: Published:
  • Contact: Ruren Xu
  • About author:
    ** e-mail:
  • Supported by:
    the National Natural Science Foundation of China(U1967215); the National Natural Science Foundation of China(21835002); the National Natural Science Foundation of China(21621001)
Richhtml ( 124 ) PDF ( 1235 ) Cited
Export

EndNote

Ris

BibTeX

The concept of condensed matter chemistry is proposed as a new scientific discipline. It studies the composition, the multi-level structure, properties and chemical reactions of matters in condensed states formed via stable adhesions. This compares to the classical chemistry, which studies more localized issues, namely the properties of basic particles like atoms, ions and molecules and their electron-moving reactions. In this article, we use examples from solid state matters to illustrate cutting-edge research issues related to(1) the multi-level structures,(2) chemical properties and reactions,(3) constructive chemistry, and(4) novel characterization techniques of condensed matters. In-depth discussions regarding key scientific questions of the new discipline are presented, to set a stage enabling us to reexamine the core scientific issues in the classical chemistry, namely chemical reactions, in the new and larger context and to study the relationships among multi-level structures of condensed matters, chemical properties and reactions, and construction rational synthesis and precision preparation for materials in condensed matter states. The goals are to develop theories of “condensed matter organization” and “chemical reactions”, leading to the full development of the science of condensed matter chemistry as well as condensed matter engineering.

Contents

1 Goals of condensed matter chemistry

2 Major scientific issues in condensed matter chemistry

2.1 Multi-level structures of condensed matter

2.2 Chemical properties and chemical reactions of condensed matter

2.2.1 Chemical reactions in multilevel structured atomic(ionic) crystalline matter

2.2.2 Chemical reactions in molecular crystalline coordination compounds

2.2.3 Chemical reactions in isomeric atomic crystal solid matter

2.2.4 Properties and chemical reactions in allotropes of(molecular and atomic crystals) solid matter

2.2.5 “State” - “state” reactions in atomic(ionic) and molecular crystals in solid matter

2.2.6 Chemical reactions between organic solid matter

2.2.7 Chemical reactions of crystalline polymorphs and amorphous forms in solid matter

2.2.8 Influence of multi-level structure on catalysis in solid matter

2.2.9 Influence of crystal intergrowth on catalysis in crystalline solid matter

2.2.10 Influence of polymorphs on catalysis in crystalline solid matter

2.3 Emerging scientific issues in the constructive chemistry of condensed matter

2.4 State-of-the-art characterization techniques for condensed matter

3 Conclusion and outlook

Fig.1 Part of phase diagram of Fe-O(Dashed line indicates the stoichiometric composition of FeO)[5]
Table 1 Composition of Pr n O2 n -2 at varied temperatures[8]
Table 2 Loading and surface area of As-synthesized catalysts[33]
Fig.2 Chain-like structure of M7O12 containing vacancy pair(octahedrally coordinated metal atom is presented as MO6(Vo)2)[8]
Fig.3 Alternative stacking of metal chain along all(111) axes in c-type cubic-centered oxides[8]
Fig.4 The dependence of the ΔG on the temperature of the reactions (1) and (2)[9]
Fig.5 Mechanochemical decomposition of MBrO3, 1-NaBrO3, 2-KBrO3, 3-CBrO3, 4-RbBrO3 [9]
Fig.6 Lattice constant for the mono-chalcogenides of the rare earth elements[10]
Fig.7 The formation of 3D framework of [Fe(μ-atrz)3(BF4)2] by the linear 1D chain coordination polymer of [Fe(μ-atrz)(atrz)2(H2O)2]·4H2O(BF4)2 along the b-axis(counter anions, water molecules in the lattice and hydrogen atoms are omitted) via dehydration[14, 15]
Fig.8 CO oxidation activity over Au-TiO2 catalysts with different supports:(a) from the as-synthesized sample;(b) following treatment in 8% O2-He pretreated at 573 K for 30 min[33]
Fig.9 Phase transition of SiO2 at ambient pressure[37]
Fig.10 Phase diagram of BaO and SiO2 [38]
Fig.11 Structure of black phosphorus:(a) orthorhombic,(b) rhombohedral, and(c) cubic black phosphorus[39]
Fig.12 Phase relations in the BaO-TiO2 system for compositions with > 60 % mole fraction TiO2. Abbreviations and symbols used include: BT(BaTiO3); B6T17(Ba6Ti17O40); B4T13(Ba4Ti13O30); BT4(BaTi4O9); B2T9(Ba2Ti9O20); L(liquid);(·) solid phases, quenched;(o) melted, quenched[40, 41]
Fig.13 Diagonal cross section of triternary mutual system Ag,Pb‖Cl,Br-liquidus[42]
Fig.14 Diagonal cross section of triternary mutual system K,Na‖Cl,SO4-liquids[43]
Table 3 Diagonal cross section of triternary mutual system K,Na‖Cl,SO4 liquidus[43]
Table 4 Nonvarint point and solid phase in(KCl)2-Na2SO4 [43]
Table 5 Eutectic temperature and composition, solid phase in(KCl)2-Na2SO4 [43]
Table 6 Stabilization of unusual oxidation states of transition metals of the first raw under high oxygen pressures[47]
Fig.15 Phase relations involving BaFeO3- x . Stippled areas are single-phase regions for high- and low-temperature forms of BaFeO3- x . Oxygen isobars are shown as light lines with experimental points as open circles. Dashed lines indicate inferred relations[46]
Fig.16 Preparation of supramolecular materials via grinding the mixture of cis-[Pt(NO3)2(en)2](1b) and 4,4'-bpy(2) and cis-[Pd(NO3)2(en)2](1a) and triazine based ligand(4) at ambient temperature[56, 57]
Table 7 Solid-state reaction types[59]
Table 8 Quantitatively formed azomethines by solid-solid reaction[66]
Fig.17 Mechanochemistry: reactions of fullerene[67]
Fig.18 Difference in the oxidation of 45 by mechanochemical activation and in solution phase[68]
Fig.19 (a) First synthesis of adamantoid cyclophosphazanes 59 facilitated by mechanochemical activation.(b) Initial unsuccessful attempts to prepare 59[68]
Fig.20 (a)One-dimensional linear tape and(b)crinkled(or zigzag) tape,(c) two dimensional sheet(or layer) and(d) three dimensional network(or framework) held together by the carboxylic acid dimer synthon[69]
Fig.21 Aqueous silicate structures identified in concentrated alkaline solution. Each line in the stick figures represents a Si-O-Si(siloxane) linkage. Of these 48 structures, 41 contain multiple chemically distinct Si sites, making them amenable to characterization by29Si-29Si COSY NMR spectroscopy. All the structural assignments are definitive except for species 6B, 6C, and 7A, for which they were unable to resolve the various isomeric forms[72]
Table 9 Effect of silicate ratio on the percentage of SiO2 in a given silicate ion[71]
Scheme 1 Pt/SiO2 catalyst prepared by direct reduction[78]
Scheme 2 The effect of SMSI on the catalytic behaviors of Pt/SiO2 catalysts in propane dehydrogenation[78]
Fig.22 The effect of reduction temperature in a H2 atmosphere on the activity of Pt/SiO2 catalysts[78]
Table 10 Physical properties and CO adsorption values of Pt/SiO2 catalysts[78]
Fig.23 Cluster models of(a) a E’s center, ≡Si·, at the silica surface and(b) a metal atom(Cu, Pd, Cs) adsorbed on the E’s center, ≡Si-M[79]
Scheme 3 Proposed reaction pathway for photocatalytic N2 fixation to NH3·H2O using MWO-1 UTNWs as a catalyst[92]
Fig.24 Topology of channels in(a) ZSM-5(MFI);(b) ZSM-11(MEL);(c) intergrowth of MFI and MEL with varied ratios[106]
Fig.25 Simulated XRPD patterns for the evaluation of MFI/MEL contribution of ZSM-5, composite-a, -b and -c, from 6° to 55° 2 h(quartz phase was not included in the simulation)[107]
Fig.26 Product selectivity of ZSM-5, composite-a, -b and -c. at 450 ℃ at a representative time on stream of 4 h. Propene is the dominant product. The product grouping was carried out in order to highlight the most relevant products in the MTA reaction. C4-C5 isomers: C4 are the 2-butene(cis and trans) and C5 are pentenes derivatives(1-, 2- and the corresponding cis and trans forms). C6-C8 isomers: comprises: hexene isomers, epatanes/eptenes, octanes/octanes with all their possible combinations of double bond in different position, cis and trans form and branched alkanes. C9+ isomers: include branched and unsaturated aromatics products either with alkyl chain or unsaturated branched substituents[107]
Fig.27 Catalytic behaviour of: ZSM-5(squares), composite-a(circles), composite-b(triangles), and composite-c(diamonds) versus time on stream at 450 ℃. Filled and open symbols correspond to conversion and selectivity to propene respectively[107]
Table 11 MFI and MEL contributions, relative crystallinity, micropore volume, surface area and crystallite size for ZSM-5, composite-a, -b and -c[107]
Fig.28 The RON values and the sulfur contents of the hydrogenated gasoline products over different catalysts[108]
Fig.29 The isomerization(ISO) selectivity over different catalysts[108]
Fig.30 The relationship of RON and the retentions of olefin over different catalysts[108]
Table 12 The hydro-upgrading results of FCC gasoline over different catalysts[108]
Fig.31 The projections and channel stacking sequences of polymorphs A, B, and C along the a or b direction: the 12-ring channel stacking sequences are ABAB...(a), ABCABC...(b) and AA...(c) types, respectively[109]
Fig.32 Intrinsic activity of Ti-β and Ti-ITQ-17, expressed as turnover frequency number(mmol alkene converted/mmol Ti.h), on the epoxidation of different substrates with H2O2 [110]
Table 13 Cyclohexene and 1-hexene epoxidation over Ti-β and Ti-ITQ-17(Ti-PolC)[110]
Table 14 Channel sizes and diffusion coefficients obtained from the molecular dynamics[111]
Table 15 Physicochemical characteristics of zeolites tested in the present work[111]
Table 16 Acylation of 2-methoxynaphthalene with acetic anhydride over ITQ-17 in a batch reactor and comparison with Beta zeolitea[111]
Fig.33 Reaction scheme of the acylation of 2-MN with acetic anhydride over zeolites and possible alternative processes:(1) direct acylation;(2) intermolecular transacylation of 1-AMN with 2-MN;(3) protodeacylation of 1-AMN;(4) intramolecular transacylation of 1-AMN;(5) consecutive acylation of monoacylated products;(6) hydrolysis of the terminal O—C bond of 2-MN;(7) transalkylation of 2-MN[111]
[1]
Xu R R . Natl. Sci. Rev., 2018,5:1.
[2]
Xu R R , Wang K , Chen G , Yan W . Natl. Sci. Rev., 2019,6:191.
[3]
莫志深(Mo Z S), 张宏放(Zhang H F), 张吉东 (Zhang J D). 晶态聚合物结构和X射线衍射(Structure of Crystalline Polymers by X-Ray diffraction). 北京: 科学出版社(Beijing:Science Press), 2010
[4]
Gawande M B , Bonifácio V D B , Luque R , Branco P S , Varma R S . ChemSusChem, 2014,7:24. https://www.ncbi.nlm.nih.gov/pubmed/24357535

doi: 10.1002/cssc.201300485 pmid: 24357535
[5]
Shriver D F, Atkins P W, Langford C H, 高忆慈(Gao Y C), 史启祯(Shi Q Z), 曾克慰(Zeng K W), 李丙瑞(Li B R) , 等译. 无机化学(第二版)(Inorganic Chemistry, 2nd Ed). 北京: 高等教育出版社(Beijing: Higher Education Press), 1997. 693.
[6]
日本化学会编, 曹惠民(Cao H M), 包文滁(Bao W C), 安家驹(An J J) 译. 无机化合物合成手册(第一卷)(Handbook of Synthesis for Inorganic Compounds, Volume 1). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 1983: 693.
[7]
麦松威(Mak T C W), 周公度(Zhou G D), 李伟基(Li W K) . 高等无机结构化学(第二版)(Advanced Structural Inorganic Chemistry, 2nd Ed.). 北京: 北京大学出版社(Beijing: Peking University Press), 2006
[8]
洪广言(Hong G Y) . 稀土化学导论(Introduction to Rare Earth Chemistry). 北京: 科学出版社(Beijng: Science Press), 2014: 403.
[9]
Boldyrew W W , Awwakumow E G , Strugowa L I , Harenz H , Heinicke G. Z . Anorg. Allg. Chem., 1972,393:152.
[10]
Rooymans C J M . Ber. Bunsenges. Phys. Chern., 1966,70:1036.
[11]
Rooymans C J M . The Behavior of Some Groups of Chalcogenides under Very-High-Pressure Conditions, In Advances in High Pressure Research, Bradley R S(Ed). New York: Academic Press, 1969, Vol. 2, 1.
[12]
日本材料科学会高压部门委员会(High Voltage Department Committee of Japan Society for Materials Science). 《高压实验技术そその应》(High Pressure Technology). 东京: 丸善出版社(Tokyo: Marushan Press), 1969.
[13]
杨玉良(Yang Y L), 胡汉杰(Hu H J) 主编. 跨世纪的髙分子科学——髙分子物理(Polymer Physics). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2001.
[14]
Chuang Y C , Liu C T , Sheu C F , Ho W L , Lee GH , Wang C C , Wang Y . Inorg. Chem., 2012,51:4663. https://www.ncbi.nlm.nih.gov/pubmed/22458342

doi: 10.1021/ic202626c pmid: 22458342
[15]
Chuang Y C , Ho W L , Sheu C F , Lee G H , Wang Y . Chem. Commun., 2012,48:10769. http://xlink.rsc.org/?DOI=c2cc35879d

doi: 10.1039/c2cc35879d
[16]
忻新泉(Xin X Q), 周益明(Zhou Y M), 牛云垠(Niu Y Y) 编著. 低热固相化学反应(Solid State Reactions at Low-Heating Temperature). 北京: 高等教育出版社(Beijing:Higher Education Press), 2010
[17]
Xin X Q , Zheng L M . Solid State Chem., 1993,106:451.
[18]
忻新泉(Xin X Q), 郑丽敏(Zheng L M) . 化学通报(Chemistry), 1992,(02):23.
[19]
Chomic J , Skoršepa J , Cernák J , Šafarik’s P J . Thermochim. Acta, 1985,93:113.
[20]
Wendlandt W W , D’Ascenzo G , Gore R H . J. Inorg. Nucl. Chem., 1970,32:3404. https://linkinghub.elsevier.com/retrieve/pii/0022190270802330

doi: 10.1016/0022-1902(70)80233-0
[21]
汪信(Wang X), 忻新泉(Xin X Q), 陈汉文(Chen H W), 戴安邦(Dai A B), 张毓昌(Zhang Y C) . 科学通报(Chinese Science Bulletin), 1985,(11):834.
[22]
Yuan J , Xin X , Dai A . Thermochim. Acta, 1988,130:77.
[23]
袁进华(Yuan J H), 王晓平(Wang X P), 忻新泉(Xin X Q), 戴安邦(Dai A B), 张凯华(Zhang K H), 任家英(Ren J Y) . 无机化学学报(Chinese Journal of Inorganic Chemistry), 1991,7(3):281.
[24]
谢玉明(Xie Y M), 黄生荣(Huang S R), 忻新泉(Xin X Q), 戴安邦(Dai A B) . 南京大学学报(自然科学)(Journal of Nanjing University Natural Science), 1989,25(03):68.
[25]
Reiff W M , Long G J . Mössbauer Spectroscopy and the Coordination Chemistry of Iron, In Mössbauer Spectroscopy Applied to Inorganic Chemistry. Long G J(Ed.). Boston: Springer, 1984,245.
[26]
Tadatsugu Y , Ryokichi T , Akira U , Eishin K . Bull. Chem. Soc. Jpn., 1977,50:883.
[27]
Fujiwara T , Yamamoto Y . Inorg. Chem., 1980,19(7):1903.
[28]
Wendlandt W W , Woodlock J H . Inorg. Nucl. Chem., 1965,27(1):259.
[29]
Chowdhury D M , Harris G M . Phys. Chem., 1969,73(10):3366.
[30]
Kukushkin Y N , Kalyukova E N , Yustratora V F . Koord. Khim., 1983,9:1107.
[31]
Ryokichi T , Katsuhide M , Shigeru S , Akira U , Eishin K . Bull. Chem. Soc. Jpn., 1975,48(10):2805. http://www.journal.csj.jp/doi/10.1246/bcsj.48.2805

doi: 10.1246/bcsj.48.2805
[32]
Simmons E L , Wendlandt W W . Coordin. Chem. Rev., 1971,7(1):11.
[33]
Yan W , Chen B , Mahurin S M , Schwartz V , Mullins D R , Lupini A R , Pennycook S J , Dai S , Overbury S H . J. Phys. Chem. B, 2005,109(21):10676. https://www.ncbi.nlm.nih.gov/pubmed/16852296

pmid: 16852296
[34]
Bond G C , Sermon P A , Webb G , Buchanan D A , Wells P B . Chem. Soc. Chem. Commun., 1973,(13):444b.
[35]
Guo Q , Zhou C , Ma Z , Ren Z , Fan H , Yang X . Chem. Soc. Rev., 2016,45:3701. https://www.ncbi.nlm.nih.gov/pubmed/26335268

doi: 10.1039/c5cs00448a pmid: 26335268
[36]
Xu C B , Yang W S , Guo Q , Dai D X , Chen M D , Yang X M . Am. Chem. Soc., 2014,136(2):602.
[37]
洪广言(Hong G Y)编著. 《无机固体化学》(Inorganic Solid Chemistry). 北京: 科学出版社(Science Press), 2002. 189.
[38]
[2020-04]. Nuclear-Thermodynamic-Database. http://www.crct.polymtl.ca/fact/documentation/TDNucl/TDnucl_Figs.htm http://www.crct.polymtl.ca/fact/documentation/TDNucl/TDnucl_Figs.htm
[39]
Li W K , Zhou G D , Mak T C W . Advanced Structural Inorganic Chemistry. New York: Oxford University Press, 2008. 580.
[40]
Negas T , Roth R S , Parker H S , Minor D . Solid State Chem., 1974,9(3):297.
[41]
Wong Ng W , Roth R S , Vanderah T A , McMurdie H F . Res. Natl. Inst. Stand. Technol., 2001,106(6):1097.
[42]
BocкpeceнкaяH K , Ebceeвa H H , Бepyлb C И , Bepeщmинa ИП . Handbook—Inorganic Molten Salt System. Vol II Ternary System, Ternary Reciprocal and Multiple System, Moscow, Leningrad: ИЭЛATEЛbCTBO AKAДEMИИ HAyK CCCP, 1961. 175.
[43]
BocкpeceнкaяH K , Ebceeвa H H , Бepyлb C И , Bepeщmинa ИП . Handbook—Lnorganic Molten Salt System. Vol II Ternary System, Ternary Reciprocal and Multiple System, Moscow, Leningrad: ИЭЛATEЛbCTBO AKAДEMИИ HAyK CCCP, 1961. 361.
[44]
Pei Z W , Su Q , Zhang J Y . Alloys Compd., 1993,198(1/2):51. https://linkinghub.elsevier.com/retrieve/pii/092583889390143B

doi: 10.1016/0925-8388(93)90143-B
[45]
Peng M Y , Pei Z W , Hong G Y , Su Q . Mater. Chem., 2003,13(5):1202. http://xlink.rsc.org/?DOI=b211624c

doi: 10.1039/b211624c
[46]
Van Hook H J . Phys. Chem., 1964,68(12):3786.
[47]
Demazeau G . Eur. J. Solid State Chem., 1997,34:759.
[48]
王晓平(Wang X P), 朱慧珍(Zhu H Z), 忻新泉(Xin X Q), 戴安邦(Dai A B), 张汉辉(Zhang H H) . 化学学报(Acta Chimica Sinica), 1991,49(4):371.
[49]
郑丽敏(Zheng L M), 忻新泉(Xin X Q), 梅毓华(Mei Y H) . 化学学报(Acta Chimica Sinica), 1991,49(12):1473.
[50]
郑丽敏(Zheng L M) . 南京大学博士论文(Doctorial Disseration of Nanjing University), 1992.
[51]
庄稼(Zhuang J), 成全(Cheng Q), 郑丽敏(Zheng L M) . 应用化学(Applied Chemistry), 1992,9(2):33.
[52]
贾殿赠(Jia D Z), 忻新泉(Xin X Q) . 化学学报(Acta Chimica Sinica), 1993,51(4):358.
[53]
Zheng L M , Dai L D , Xin X Q . Thermochim. Acta, 1992,196(2):437.
[54]
王晓平(Wang X P), 郑丽敏(Zheng L M), 忻新泉(Xin X Q) . 无机化学学报(Chinese Journal of Inorganic Chemistry), 1992,8(3):288.
[55]
Li J G , Xin X Q , Zhou Z Y , Yu K B . Chem. Soc. Chem. Commun., 1991,(4):249.
[56]
Orita A , Jiang L S , Nakano T , Ma N C , Otera J . Chem. Commun., 2002,(13):1362.
[57]
Kole G K , Vittal J J . Chem. Soc. Rev., 2013,42(4):1755. https://www.ncbi.nlm.nih.gov/pubmed/23034597

doi: 10.1039/c2cs35234f pmid: 23034597
[58]
Kaupp G , Schmeyers J , Boy J . Tetrahedron, 2000,56(36):6899.
[59]
Kaupp G , Schmeyers J , Boy J . Chemosphere, 2001,43(1):55.
[60]
Kaupp G , Schmeyers J , Naimi-Jamal M R , Zoz H , Ren H . Chem. Eng. Sci., 2002,57(5):763. https://linkinghub.elsevier.com/retrieve/pii/S0009250901004304

doi: 10.1016/S0009-2509(01)00430-4
[61]
Kaupp G . Curr. Opin. Solid State Mater. Sci., 2002,6(2):131.
[62]
Kaupp G . CrystEngComm, 2009,11(3):388.
[63]
Kaupp G . Phys. Org. Chem., 2008,21(7/8):630.
[64]
Kaupp G . CrystEngComm, 2006,8:794.
[65]
Abdel Latif E , Kaupp G , Metwally M A . Chem. Res., 2005,2005(3):187.
[66]
Schmeyers J , Toda F , Boy J , Kaupp G . J. Chem. Soc. Perkin Trans. 2, 1998(4):989.
[67]
Zhu S E , Li F , Wang G W . Chem. Soc. Rev., 2013,42(18):7535. https://www.ncbi.nlm.nih.gov/pubmed/23677148

doi: 10.1039/c3cs35494f pmid: 23677148
[68]
Hernández J G , Bolm C . Org. Chem., 2017,82(8):4007.
[69]
Li WK , Zhou G D , Mak T C W . Advanced Structural Inorganic Chemistry. New York: Oxford University Press, 2008. 742.
[70]
(苏)捷里马尔斯基(Делнмарский, ЮК)著, 沈时英(Shen S Y)译. 离子熔体化学(Ionic Melt Chemistry). 北京: 冶金工业出版社(Beijing: Metallurgical Industry Press), 1986: 112.
[71]
McCormick A V , Bell A T , Radke C J . Application of 29Si and 27Al NMR to Determine the Distribution of Anions in Sodium Silicate and Sodium Alumino-Silicate Solutions, In Studies in Surface Science and Catalysis. Murakami Y, Iijima A, Ward J W(Eds.). Elsevier, 1986,28:247.
[72]
Knight C T G , Balec R J , Kinrade S D . Angew. Chem. Int. Ed., 2007,46(43):8148.
[73]
Ling T C , Balachandran C , Munoz J F , Youtcheff J . Mater. Struct., 2018,51(1):23.
[74]
Pfeiffer T , Sander S A H , Enke D , Roggendorf H . Chemie Ingenieur Technik, 2019,91(1/2):92.
[75]
Pfeiffer T , Enke D , Roth R , Roggendorf H . Adv. Chem. Eng. Sci., 2017,7:76.
[76]
Tsujiguchi M , Kobashi T , Utsumi Y , Kakimori N , Nakahira A . Ceram. Soc. Jpn., 2014,122(1421):104.
[77]
颜肖慈(Yan X C), 罗明道(Luo M D) 编著. 界面化学(Interface Chemistry). 北京: 化学工业出版社(Beijing:Chemical Industry Press), 2005.
[78]
Deng L D , Miura H , Shishido T , Hosokawa S , Teramura K , Tanaka T . Chem. Commun., 2017,53(51):6937.
[79]
Lopez N , Illas F , Pacchioni G J . Am. Chem. Soc., 1999,121(4):813. https://pubs.acs.org/doi/10.1021/ja981753c

doi: 10.1021/ja981753c
[80]
Potoczna Petru D , Kępiński L , Krajczyk L React. Kinet. Catal. Lett., 2009,97:321.
[81]
Rodrigues E L , Bueno J M C . Appl. Catal. A-Gen., 2002,232(1/2):147.
[82]
Potoczna Petru D , Krajczyk L . Catal. Lett., 2003,87:51.
[83]
Backhaus Ricoult M , Samet L , Thomas M , Trichet M F , Imhoff D . Acta Mater., 2002,50(16):4191.
[84]
Gong J , Yue H , Zhao Y , Zhao S , Zhao L , Lv J , Wang S , Ma X . Am. Chem. Soc., 2012,134(34):13922.
[85]
Van den Oetelaar L C A , Partridge A , Toussaint S L G , Flipse C F J , Brongersma H H . J. Phys. Chem. B, 1998,102(47):9541.
[86]
Lin J H , Zeng Z Y , Lai Y T , Chen C S . RSC Adv., 2013,3:1808.
[87]
Zhao Y , Zhao J , Su Z , Hao X , Li Y , Li N , Li Y . J. Mater. Chem. A, 2013,1(27):8029. http://xlink.rsc.org/?DOI=c3ta11281k

doi: 10.1039/c3ta11281k
[88]
Zhang C H , Wan H J , Yang Y , Xiang H W , Li Y W . Catal. Commun., 2006,7(9):733. https://linkinghub.elsevier.com/retrieve/pii/S156673670600094X

doi: 10.1016/j.catcom.2006.03.018
[89]
Zhang C X , Yue H R , Huang Z Q , Li S R , Wu G W , Ma X B , Gong J L . ACS Sustain. Chem. Eng., 2013,1:161. https://pubs.acs.org/doi/10.1021/sc300081q

doi: 10.1021/sc300081q
[90]
Ueckert T , Lamber R , Jaeger N I , Schubert U . Appl. Catal. A-Gen., 1997,155(1):75.
[91]
Zhang Y , Zhang J , Zhang B , Si R , Han B , Hong F , Niu Y , Sun L , Li L , Qiao B , Sun K , Huang J , Haruta M . Nat. Commun., 2020,11:558. https://www.ncbi.nlm.nih.gov/pubmed/31992700

doi: 10.1038/s41467-019-14241-8 pmid: 31992700
[92]
Zhang N , Jalil A , Wu D , Chen S , Liu Y , Gao C , Ye W , Qi Z , Ju H , Wang C , Wu X , Song L , Zhu J , Xiong Y . Am. Chem. Soc., 2018,140:9434.
[93]
Bai S , Jiang J , Zhang Q , Xiong Y . Chem. Soc. Rev., 2015,44(10):2893. https://www.ncbi.nlm.nih.gov/pubmed/25904385

doi: 10.1039/c5cs00064e pmid: 25904385
[94]
Zhang N , Li X , Ye H , Chen S , Ju H , Liu D , Lin Y , Ye W , Wang C , Xu Q , Zhu J , Song L , Jiang J , Xiong Y . Am. Chem. Soc., 2016,138(28):8928.
[95]
Sun Y , Liu Q , Gao S , Cheng H , Lei F , Sun Z , Jiang Y , Su H , Wei S , Xie Y . Nat. Commun., 2013,4:2899. https://www.ncbi.nlm.nih.gov/pubmed/24280902

doi: 10.1038/ncomms3899 pmid: 24280902
[96]
Nowotny J , Alim M A , Bak T , Idris M A , Ionescu M , Prince K , Sahdan M Z , Sopian K , Mat Teridi M . A, Sigmund W. Chem. Soc. Rev., 2015,44:8424. https://www.ncbi.nlm.nih.gov/pubmed/26446476

doi: 10.1039/c4cs00469h pmid: 26446476
[97]
Zhang Y , Zhao R , Sanchez Sanchez M , Haller G L , Hu J , Bermejo Deval R , Liu Y , Lercher J A . Catal., 2019,370:424. https://linkinghub.elsevier.com/retrieve/pii/S0021951719300089

doi: 10.1016/j.jcat.2019.01.006
[98]
Wang S , Zhang L , Li S , Qin Z , Shi D , He S , Yuan K , Wang P , Zhao T S , Fan S , Dong M , Li J , Fan W , Wang J . Catal., 2019,377:81.
[99]
Chen L , Falsig H , Janssens T V W , Jansson J , Skoglundh M , Grönbeck H . Catal. Sci. Technol., 2018,8:2131. http://xlink.rsc.org/?DOI=C8CY00083B

doi: 10.1039/C8CY00083B
[100]
Dědecek J , Tabor E , Sklenak S . ChemSusChem, 2019,12:556. https://www.ncbi.nlm.nih.gov/pubmed/30575302

doi: 10.1002/cssc.201801959 pmid: 30575302
[101]
Bailleul S , Yarulina I , Hoffman A E J , Dokania A , Abou-Hamad E , Chowdhury A D , Pieters G , Hajek J , De Wispelaere K , Waroquier M , Gascon J , Van Speybroeck V. J . Am. Chem. Soc., 2019,141(37):14823. https://pubs.acs.org/doi/10.1021/jacs.9b07484

doi: 10.1021/jacs.9b07484
[102]
Zhao Z , Shi H , Wan C , Hu M Y , Liu Y , Mei D , Camaioni D M , Hu J Z , Lercher J A . Am. Chem. Soc., 2017,139(27):9178.
[103]
Liu H , Wang H , Xing A H , Cheng J H . J. Phys. Chem. C, 2019,123(25):15637.
[104]
Ravi M , Sushkevich V L, van Bokhoven J A. J. Phys. Chem. C, 2019,123(24):15139.
[105]
Sazama P , Dědeeck J , Gábová V , Wichterlová B , Spoto G , Bordiga S . Catal., 2008,254(2):180.
[106]
Barrer R M . Hydrothermal Chemistry of Zeolites. London and New York: Academic Press, 1982: 260.
[107]
Conte M , Xu B , Davies T E , Bartley J K , Carley A F , Taylor S H , Khalid K , Hutchings G J . Micropor. Mesopor. Mater., 2012,164:207.
[108]
Gao D W , Duan A J , Zhang X , Zhao Z E H , Qin Y C , Xu C M . Chem. Eng. J., 2015,270:176.
[109]
Tong M Q , Zhang D L , Zhu L K , Xu J , Deng F , Xu R L , Yan W F . CrystEngComm, 2016,18(10):1782.
[110]
Moliner M , Serna P , Cantín Á ., Sastre G , Díaz-Cabañas M J , Corma A. J . Phys. Chem. C, 2008,112(49):19547.
[111]
Botella P , Corma A , Navarro M T , Rey F , Sastre G . Catal., 2003,217(2):406.
[112]
Bharathi P , Waghmode S B , Sivasanker S , Vetrivel R . Bull. Chem. Soc. Jpn., 1999,72:2161.
[113]
Botella P , Corma A , Sastre G . Catal., 2001,197(1):81.
[114]
Murahashi S I , Imada Y . Chem. Rev., 2019,119(7):4684. https://www.ncbi.nlm.nih.gov/pubmed/30875202

doi: 10.1021/acs.chemrev.8b00476 pmid: 30875202
[115]
Penteado F , Lopes E F , Alves D , Perin G , Jacob R G , Lenardão E J . Chem. Rev., 2019,119(12):7113. https://www.ncbi.nlm.nih.gov/pubmed/30990680

doi: 10.1021/acs.chemrev.8b00782 pmid: 30990680
[116]
Nivina A , Yuet K P , Hsu J , Khosla C . Chem. Rev., 2019,119:12524. https://www.ncbi.nlm.nih.gov/pubmed/31838842

doi: 10.1021/acs.chemrev.9b00525 pmid: 31838842
[117]
Zeng M Q , Xiao Y , Liu J X , Yang K , Fu L . Chem. Rev., 2018,118(13):6236. https://www.ncbi.nlm.nih.gov/pubmed/29381058

doi: 10.1021/acs.chemrev.7b00633 pmid: 29381058
[118]
Rosen B M , Wilson C J , Wilson D A , Peterca M , Imam M R , Percec V . Chem. Rev., 2009,109(11):6275. https://www.ncbi.nlm.nih.gov/pubmed/19877614

doi: 10.1021/cr900157q pmid: 19877614
[119]
Saper G , Hess H . Chem. Rev., 2020,120(1):288. https://www.ncbi.nlm.nih.gov/pubmed/31509383

doi: 10.1021/acs.chemrev.9b00249 pmid: 31509383
[120]
Wang S Y S , Ellington A D . Chem. Rev., 2019(10), 119(10):6370. https://www.ncbi.nlm.nih.gov/pubmed/30865429

doi: 10.1021/acs.chemrev.8b00625 pmid: 30865429
[121]
Yu J , Xu R . Acc. Chem. Res., 2010,43(9):1195. https://www.ncbi.nlm.nih.gov/pubmed/20575533

doi: 10.1021/ar900293m pmid: 20575533
[122]
Wang Z , Yu J , Xu R . Chem. Soc. Rev., 2012(5), 41:1729. https://www.ncbi.nlm.nih.gov/pubmed/22108910

doi: 10.1039/c1cs15150a pmid: 22108910
[123]
Li Y , Cao H , Yu J . ACS Nano, 2018,12(5):4096. https://www.ncbi.nlm.nih.gov/pubmed/29714474

doi: 10.1021/acsnano.8b02625 pmid: 29714474
[124]
Shi J M , Anderson M W , Carr S W . Chem. Mater., 1996,8(2):369.
[125]
Taulelle F , Haouas M , Gerardin C , Estournes C , Loiseau T , Ferey G . Colloid Surf. A-Physicochem. Eng. Asp., 1999,158(1/2):299.
[126]
O’Brien M G , Beale A M , Catlow C R A , Weckhuysen B M . Am. Chem. Soc., 2006,128(36):11744.
[127]
Fan F , Feng Z , Li G , Sun K , Ying P , Li C . Chemistry. -Eur. J., 2008,14(17):5125.
[128]
Fan F T , Feng Z C , Sun K J , Guo M L , Guo Q , Song Y , Li W X , LLii C . Angew. Chem. Int. Ed., 2009,48(46):8743.
[129]
Fan F , Feng Z , Li C . Chem. Soc. Rev., 2010,39:4794. https://www.ncbi.nlm.nih.gov/pubmed/21038050

doi: 10.1039/c0cs00012d pmid: 21038050
[130]
Grandjean D , Beale A M , Petukhov A V , Weckhuysen B M . Am. Chem. Soc., 2005,127(41):14454.
[131]
Beale A M , van der Eerden A M J , Grandjean D , Petukhov A V , Smith A D , Weckhuysen B M . Chem. Commun., 2006,(42):4410.
[132]
Jia C L , Lentzen M , Urban K . Science, 2003,299:870. https://www.ncbi.nlm.nih.gov/pubmed/12574624

doi: 10.1126/science.1079121 pmid: 12574624
[133]
Jia C L , Urban K . Science, 2004,303:2001. https://www.ncbi.nlm.nih.gov/pubmed/15044799

doi: 10.1126/science.1093617 pmid: 15044799
[134]
Girit Ç Ö , Meyer J C , Erni R , Rossell M D , Kisielowski C , Yang L , Park C H , Crommie M F , Cohen M L , Louie S G , Zettl A . Science, 2009,323:1705. https://www.ncbi.nlm.nih.gov/pubmed/19325110

doi: 10.1126/science.1166999 pmid: 19325110
[135]
Shechtman D , Blech I , Gratias D , Cahn J W , Gratias D . Phys. Rev. Lett., 1984,53:1951.
[136]
Iijima S . Nature, 1991,354:56.
[137]
Yan C , Wan R , Bai R , Huang G , Shi Y . Science, 2016,355:149. https://www.ncbi.nlm.nih.gov/pubmed/27980089

doi: 10.1126/science.aak9979 pmid: 27980089
[138]
Wan R , Yan C , Bai R , Huang G , Shi Y . Science, 2016,353:895. https://www.ncbi.nlm.nih.gov/pubmed/27445308

doi: 10.1126/science.aag2235 pmid: 27445308
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Wenfu Yan, Ruren Xu. Chemical Reactions in Aqueous Solutions with Condensed Liquid State* [J]. Progress in Chemistry, 2022, 34(7): 1454-1491.
[9] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[10] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[11] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[12] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[13] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[14] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[15] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.