中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (8): 1128-1139 DOI: 10.7536/PC200432 Previous Articles   Next Articles

• Review •

Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials

Qiao Jiang1, Xuehui Xu1, Baoquan Ding1,**()   

  1. 1. CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Contact: Baoquan Ding
  • About author:
  • Supported by:
    the National Natural Science Foundation of China(31700871)
Richhtml ( 18 ) PDF ( 838 ) Cited
Export

EndNote

Ris

BibTeX

The condensed states of biological macromolecules and their dynamic changes are related to many important physiological and pathological processes, such as coagulation and Alzheimer’s disease. Study of these processes is essential for patients with coagulation-associated diseases or Alzheimer’s disease. The development of effective regulating agents capable of interacting with such biomolecules has been suggested as a solution for diagnosis and therapy. The application of nanotechnology to medicine enable the design and fabrication of novel functional nanomaterials for disease treatment. In this review, we summarize the recent successful efforts to employ functional nanomaterials for regulating coagulation(triggering tumor vessel occlusion or fabricating nanoanticoagulants) and altering the aggregation and clearance of amyloid-β(Aβ). The remaining challenges and open opportunities are also discussed.

Contents

1 Physiological and pathological phenomenon of biomacromolecule aggregation

1.1 Blood coagulation

1.2 Alzheimer’s disease(AD)

2 Nanomaterials

2.1 Gold nanoparticles

2.2 Polymeric nanoparticles

2.3 DNA/RNA nanostructures

2.4 Peptide-based nanomaterials

3 Regulation of condensed states of biological macromolecules by nanomaterials

3.1 Nanomaterials for tumor infarction and therapy

3.2 Nano-anticoagulants

3.3 Nanomaterials for AD diagnosis and therapy

4 Conclusion and outlook

Fig.1 Coagulation process
Fig.2 The amyloid hypothesis
Fig.3 Design of thrombin-functionalized DNA nanorobot[29]. Copyright 2018, Nature Publishing Group
Fig.4 Nano-anticoagulants.(A) Thrombin Inhibition by the MB/AuNRs-Closed-Loop Structure [34]. Copyright 2015, American Chemical Society.(B) Self-assembled DAPA-NPs and the thrombin inhibition[37]. Copyright 2017, American Chemical Society
Fig.5 Nanomaterials for Aβ regulation and clearance.(A) Enhanced binding of Aβ with βCas promoted by the AuNP substrate[41]. Copyright 2019, Nature Publishing Group.(B) Peptide nanoparticle captures Aβ by hydrogen-bonded co-assembly and internalizes a substantial amount into cells carrying Aβ[42]. Copyright 2018, Nature Publishing Group
[1]
Jackson C M, Nemerson Y. Annu. Rev. Biochem., 1980,49:765. https://www.ncbi.nlm.nih.gov/pubmed/6996572

doi: 10.1146/annurev.bi.49.070180.004001 pmid: 6996572
[2]
Davie E W, Fujikawa K. Annu. Rev. Biochem., 1975,44:799. https://www.ncbi.nlm.nih.gov/pubmed/237463

pmid: 237463
[3]
Coughlin S R. Nature, 2000,407:258. https://www.ncbi.nlm.nih.gov/pubmed/11001069

doi: 10.1038/35025229 pmid: 11001069
[4]
Nierodzik M L, Karpatkin S. Cancer Cell, 2006,10:355. https://www.ncbi.nlm.nih.gov/pubmed/17097558

pmid: 17097558
[5]
Querfurth H W, LaFerla F M. Med., 2010,362:329.
[6]
Sala Frigerio C, De Strooper B. Annu. Rev. Neurosci., 2016,39:57. https://www.ncbi.nlm.nih.gov/pubmed/27050320

doi: 10.1146/annurev-neuro-070815-014015 pmid: 27050320
[7]
Panza F, Lozupone M, Logroscino G, Imbimbo B P. Nat. Rev. Neurol., 2019,15:73. https://www.ncbi.nlm.nih.gov/pubmed/30610216

doi: 10.1038/s41582-018-0116-6 pmid: 30610216
[8]
Savelieff M G, Nam G, Kang J, Lee H J, Lee M, Lim M H. Chem. Rev., 2019,119:1221. https://www.ncbi.nlm.nih.gov/pubmed/31594311

doi: 10.1021/acs.chemrev.9b00005 pmid: 31594311
[9]
Mehta D, Jackson R, Paul G, Shi J, Sabbagh M. Expert Opin. Investig. Drugs, 2017,26:735. https://www.ncbi.nlm.nih.gov/pubmed/28460541

doi: 10.1080/13543784.2017.1323868 pmid: 28460541
[10]
Brigger I, Dubernet C, Couvreur P. Adv. Drug Del. Rev., 2002,54:631. https://linkinghub.elsevier.com/retrieve/pii/S0169409X02000443

doi: 10.1016/S0169-409X(02)00044-3
[11]
Davis M E, Chen Z, Shin D M. Nat. Rev. Drug Discov., 2008,7:771. https://www.ncbi.nlm.nih.gov/pubmed/18758474

doi: 10.1038/nrd2614 pmid: 18758474
[12]
Wang A Z, Langer R, Farokhzad O C. Annu. Rev. Med., 2012,63:185. https://www.ncbi.nlm.nih.gov/pubmed/21888516

pmid: 21888516
[13]
Thakor A S, Gambhir S S. CA: Cancer J. Clin., 2013,63:395.
[14]
Bao G, Mitragotri S, Tong S, Annu. Rev. Biomed. Eng., 2013,15:253. https://www.ncbi.nlm.nih.gov/pubmed/23642243

doi: 10.1146/annurev-bioeng-071812-152409 pmid: 23642243
[15]
Liechty W B, Kryscio D R, Slaughter B V, Peppas N A. Annu. Rev. Chem. Biomo. Eng., 2010,1:149.
[16]
Seeman N C, Sleiman H F. Nat. Rev. Mater., 2018,3:17068.
[17]
Rothemund P W K. Nature, 2006,440:297. https://www.ncbi.nlm.nih.gov/pubmed/16541064

doi: 10.1038/nature04586 pmid: 16541064
[18]
Han D R, Qi X D, Myhrvold C, Wang B, Dai M J, Jiang S X, Bates M, Liu Y, An B, Zhang F, Yan H, Yin P. Science, 2017, 358: eaao4648. https://www.ncbi.nlm.nih.gov/pubmed/32883851

doi: 10.1126/science.abe0010 pmid: 32883851
[19]
Li J, Fan C H, Pei H, Shi J Y, Huang Q. Adv. Mater., 2013,25:4386. https://www.ncbi.nlm.nih.gov/pubmed/24123605

doi: 10.1002/adma.201302538 pmid: 24123605
[20]
Okholm A H, Kjems J. Expert Opin. Drug Del., 2017,14:137.
[21]
Tsoras A N, Champion J A. Annu. Rev. Chem. Biomo. Eng., 2019,10:337.
[22]
Rudra J S, Sun T, Bird K C, Daniels M D, Gasiorowski J Z, Chong A S, Collier J H. ACS Nano, 2012,6:1557. https://www.ncbi.nlm.nih.gov/pubmed/23181687

doi: 10.1021/nn304793z pmid: 23181687
[23]
Doll T A P F, Dey R, Burkhard P. Nanobiotechnol., 2015,13:73.
[24]
Jain R K. Science, 2005,307:58. https://www.ncbi.nlm.nih.gov/pubmed/15637262

doi: 10.1126/science.1104819 pmid: 15637262
[25]
Huang X, Molema G, King S, Watkins L, Edgington T S, Thorpe P E. Science, 1997,275:547. https://www.ncbi.nlm.nih.gov/pubmed/8999802

doi: 10.1126/science.275.5299.547 pmid: 8999802
[26]
Brown D B, Nikolic B, Covey A M, Nutting C W, Saad W E, Salem R, Sofocleous C T, Sze D Y. Vasc. Interv. Radiol. 2012,23:287.
[27]
Guan Y S, He Q, Wang M Q. ISRN Gastroenterology, 2012,2012:480650. https://www.ncbi.nlm.nih.gov/pubmed/22966466

doi: 10.5402/2012/480650 pmid: 22966466
[28]
Li S, Tian Y, Zhao Y, Zhang Y, Su S, Wang J, Wu M, Shi Q, Anderson G J, Thomsen J, Zhao R, Ji T, Wang J, Nie G. Oncotarget, 2015,6:23523. https://www.ncbi.nlm.nih.gov/pubmed/26143637

doi: 10.18632/oncotarget.4395 pmid: 26143637
[29]
Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y, Anderson G J, Han J Y, Chang Y, Liu Y, Zhang C, Chen L, Zhou G, Nie G, Yan H, Ding B, Zhao Y. Nat. Biotechnol., 2018,36:258. https://www.ncbi.nlm.nih.gov/pubmed/29431737

doi: 10.1038/nbt.4071 pmid: 29431737
[30]
Ebbesen J, Buajordet I, Erikssen J, Brørs O, Hilberg T, Svaar H, Sandvik L. Arch. Intern. Med., 2001,161:2317. https://www.ncbi.nlm.nih.gov/pubmed/11718622

doi: 10.1001/archinte.161.21.2632 pmid: 11718622
[31]
Linkins L A, Weitz J I. Annu. Rev. Med., 2004,56:63. https://www.ncbi.nlm.nih.gov/pubmed/15660502

doi: 10.1146/annurev.med.56.082103.104708 pmid: 15660502
[32]
Rusconi C P, Roberts J D, Pitoc G A, Nimjee S M, White R R, Quick G, Scardino E, Fay W P, Sullenger B A. Nat. Biotechnol., 2004,22:1423. https://www.ncbi.nlm.nih.gov/pubmed/15502817

doi: 10.1038/nbt1023 pmid: 15502817
[33]
Hirsh J, Anand S S, Halperin J L, Fuster V. Circulation, 2001,103:2994.
[34]
Wang J, Wei Y, Hu X, Fang Y Y, Li X, Liu J, Wang S, Yuan Q. Am. Chem. Soc., 2015,137:10576.
[35]
Huang S S, Wei S C, Chang H T, Lin H J, Huang C C. J. Control. Release, 2016,221:9. https://www.ncbi.nlm.nih.gov/pubmed/26643617

doi: 10.1016/j.jconrel.2015.11.028 pmid: 26643617
[36]
Krissanaprasit A, Key C, Fergione M, Froehlich K, Pontula S, Hart M, Carriel P, Kjems J, Andersen E S, LaBean T H. Adv. Mater., 2019,31:1808262.
[37]
Roloff A, Carlini A S, Callmann C E, Gianneschi N C. Am. Chem. Soc., 2017,139:16442.
[38]
Li S, Zhang Y, Wang J, Zhao Y, Ji T, Zhao X, Ding Y, Zhao X, Zhao R, Li F, Yang X, Liu S, Liu Z, Lai J, Whittaker A K, Anderson G J, Wei J, Nie G. Nat. Biomed.Eng., 2017,1:667.
[39]
Lim C Z J, Zhang Y, Chen Y, Zhao H, Stephenson M C, Ho N R Y, Chen Y, Chung J, Reilhac A, Loh T P, Chen C L H, Shao H. Nat. Commun., 2019,10:1144. https://www.ncbi.nlm.nih.gov/pubmed/31862888

doi: 10.1038/s41467-019-13786-y pmid: 31862888
[40]
Sevigny J, Chiao P, Bussière T, Weinreb P H, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O’Gorman J, Qian F, Arastu M, Li Y, Chollate S, Brennan M S, Quintero-Monzon O, Scannevin R H, Arnold H M, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch R M, Sandrock A. Nature, 2016,537:50. https://www.ncbi.nlm.nih.gov/pubmed/27582220

doi: 10.1038/nature19323 pmid: 27582220
[41]
Javed I, Peng G, Xing Y, Yu T, Zhao M, Kakinen A, Faridi A, Parish C L, Ding F, Davis T P, Ke P C, Lin S. Nat. Commun., 2019,10:3780. https://www.ncbi.nlm.nih.gov/pubmed/31862888

doi: 10.1038/s41467-019-13786-y pmid: 31862888
[42]
Luo Q, Lin Y X, Yang P P, Wang Y, Qi G B, Qiao Z Y, Li B N, Zhang K, Zhang J P, Wang L, Wang H. Nat. Commun., 2018,9:1802. https://www.ncbi.nlm.nih.gov/pubmed/30575741

doi: 10.1038/s41467-018-07868-6 pmid: 30575741
[1] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[2] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[3] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[4] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[5] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[6] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[7] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[8] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
[9] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[10] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[11] Wei Li, Ziyu Yang, Yanglong Hou, Song Gao. Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials [J]. Progress in Chemistry, 2020, 32(10): 1437-1451.
[12] Gao Li, Yan-Mei Li. Truncated and Modified Aβ Species in Alzheimer’s Disease [J]. Progress in Chemistry, 2020, 32(1): 14-22.
[13] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.
[14] He Chen, Shuaiqi Zhang, Zhixue Zhao, Meng Liu, Qingrui Zhang. Application of Dopamine Functional Materials in Water Pollution Control [J]. Progress in Chemistry, 2019, 31(4): 571-579.
[15] Yang Shen, Jiwen Hu, Tingting Liu, Hongwen Gao, Zhangjun Hu. Colorimetric and Fluorogenic Chemosensors for Mercury Ion Based on Nanomaterials [J]. Progress in Chemistry, 2019, 31(4): 536-549.