中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (06): 893-899 DOI: 10.7536/PC120907 Previous Articles   Next Articles

• Review •

Stochastic and Hybrid Simulation Algorithms for Biochemical Reactions in Mesoscopic Systems

Ji Lin*, Yan Xinping   

  1. Department of Chemistry, Capital Normal University, Beijing 100048, China
  • Received: Revised: Online: Published:
PDF ( 895 ) Cited
Export

EndNote

Ris

BibTeX

With the development of investigations in mesoscopic systems such as the cellular systems, growing attention has been focused on the corresponding reaction dynamics simulation methods. For one thing, fluctuations are significant in these systems, chemical reactions are essentially discrete stochastic processes, classical deterministic algorithms are not feasible, stochastic simulation methods are required. For another, there are multiscale characters in these systems. The coexistence of fast and slow sub-reactions produce multi-time scales and the different molecular abundance of various reactants exhibit multi-population scales, These multiscale characters will considerably reduce the simulation efficiency of stochastic algorithms. Therefore, there are even higher requirements for accurate but efficient reaction dynamics simulation algorithms. In this paper, we first summarize the basic stochastic simulation algorithms developed by Gillespie, then review the recently proposed improved stochastic algorithms and hybrid methods which are developed to circumvent the multiscaled problems. The special characters, the technical problems involved in the implementation and the advantages and disadvantages of these algorithms are introduced. Contents
1 Stochastic algorithms for chemical reaction
2 Improved stochastic algorithms for stiff systems
2.1 Implicit numerical methods
2.2 Approximate algorithms based on quasi-steady-state assumption and partial equilibrium assumption
3 Hybrid algorithms
3.1 Partition criterion
3.2 Synchronous transformation

CLC Number: 

[1] Gillespie D T. J. Comput. Phys., 1976, 22: 403-434
[2] Gillespie D T. J. Phys. Chem., 1977, 81(25): 2340-2361
[3] Gillespie D T. J. Chem. Phys., 2001, 115(4): 1716-1733
[4] Gillespie D T. J. Chem. Phys., 2000, 113(1): 297-306
[5] Gillespie D T. Annu. Rev. Phys. Chem., 2007, 58: 35-55
[6] Gibson M A, Bruck J. J. Phys. Chem. A, 2000, 104(9): 1876-1889
[7] Cao Y, Li H, Petzold L R. J. Chem. Phys., 2004, 121(9): 4059-4067
[8] McCollum J M, Peterson G D, Cox C D, Simpson M L, Samatova N F. Comput. Bio. Chem., 2006, 30(1): 39-49
[9] Li H, Petzold L. Logarithmic direct method for discrete stochastic simulation of chemically reacting systems. Technical report, Department of Computer Science, University of California: Santa Barbara, 2006. http: //www. engr. ucsb. edu~cse[2012-06-30]
[10] Chatterjee A, Vlachos D G, Katsoulakis M A. J. Chem. Phys., 2005, 122(2): art. no. 024112
[11] Tian T H, Burrage K. J. Chem. Phys., 2004, 121(21): 10356-10364
[12] Pettigrew M F, Resat H. J. Chem. Phys., 2007, 126(8): art. no. 084101
[13] Cao Y, Gillespie D T, Petzold L R. J. Chem. Phys., 2005, 123(5): art. no. 054104
[14] 彭新俊(Peng X J), 王翼飞(Wang Y F). 计算数学(Mathematica Numerica Sinica), 2009, 31(3): 309-322
[15] Zhou W, Peng X J, Yan Z L, Wang Y F. Comput. Bio. Chem., 2008, 32(4): 240-242
[16] Turner J, Ji L, Cox D. Adaptive multi-scaled simulation algorithm for biochemical reaction in complex systems. 12-15 Nov. 2011, Atlanta: Bioinformatics and Biomedicine Workshops (BIBMW) 2011, 925-927
[17] Jiang H J, Xiao T J, Hou Z H. Phys. Rev. E, 2011, 83(6): art. no. 061144
[18] Shen C S, Chen H S, Hou Z H, Xin H W. Phys. Rev. E, 2011, 83(6): art. no. 066109
[19] 侯中怀(Hou Z H), 辛厚文(Xin H W). 化学进展(Progress in Chemistry), 2006, 13(2/3): 142-158
[20] Zhou T S, Chen L N, Aihara K. Phys. Rev. Lett., 2005, 95(17): art. no. 178103
[21] Yi M, Jia Y, Liu Q, Li J R, Zhu C L. Phys. Rev. E, 2006, 73(4): art. no. 041923
[22] Ji L, Lang X F, Li Y P, Li Q S. Biophys. Chem., 2009, 141(2/3): 231-235
[23] Bulychev Y G, Yeliseyev A V. J. Appl. Maths. Mes., 1998, 62(6): 877-882
[24] Cao Y, Gillespie D T, Petzold L R. J. Chem. Phys., 2005, 123(14): art. no. 144917
[25] Cao Y, Gillespie D T, Petzold L R. J. Comput. Phys., 2005, 206(2): 395-411
[26] Kreiss H O. SIAM J. Numer. Anal., 1978, 15(1): 21-58
[27] Tian T H, Burrage K. Appl. Numer. Math., 2001, 38: 167-185
[28] Burrage K, Tian T H. J. Comput. Appl. Maths., 2001, 131: 407-426
[29] Burrage K. BIT, 1978, 18: 22-41
[30] Burrage K, Petzold L. SIAM J. Numer. Anal., 1990, 27(2): 447-456
[31] Burrage K, Tian T H. Comput. Phys. Commun., 2001, 142: 186-190
[32] Rathinam M, Petzold L R, Cao Y, Gillespie D T. J. Chem. Phys., 2003, 119(24): 12784-12794
[33] Cao Y, Petzold L R. Proc. Found. Syst. Biol. Eng., 2005, 149-152
[34] Rue P, Villa-Freixa J, Burrage K. BMC Syst. Bio., 2010, 4: 110-123
[35] Abdulle A. Explicit Methods for Stiff Stochastic Differential Equations. In: Numerical Analysis of Multiscale Computations (Eds. Engquist B, Runborg O, Tsai Y-HR). Proceedings of a Winter Workshop at the Banff International Research Station 2009. Berlin: Springer Berlin Heidelberg, 2012. 1-22
[36] Stiefenhofer M. J. Math. Biol., 1998, 36: 593-609
[37] Goutsias J. J. Chem. Phys., 2005, 122(18): art. no. 184102
[38] Rao C V, Arkin A P. J. Chem. Phys., 2003, 118(11): 4999-5010
[39] Mastny E A, Haseltine E L, Rawlings J B. J. Chem. Phys., 2007, 127(9): art. no. 094106
[40] Srivastava R, Haseltine E L, Mastny E, Rawlings J B. J. Chem. Phys., 2011, 134(15): art. no. 154109
[41] Thomas P, Straube A V, Grima R. J. Chem. Phys., 2011, 135(18): art. no. 181103
[42] Agarwal A, Adams R, Castellani G C, Shouval H Z. J. Chem. Phys., 2012, 137(4): art. no. 044105
[43] Rein M. Phys. Fluids A, 1992, 4(5): 873-876
[44] Samant A, Vlachos D G. J. Chem. Phys., 2005, 123(14): art. no. 144114
[45] Cao Y, Gillespie D T, Petzold L R. J. Chem. Phys., 2005, 122(1): art. no. 014116
[46] Sinitsyna N A, Hengartnerb N, Nemenman I. Proc. Natl Acad. Sci. U. S. A., 2009, 106(26): 10546-10551
[47] Weinan E, Di L, Eric V E. J. Comput. Phys., 2005, 221(1): 1-26
[48] Weinan E, Di L, Eric V E. J. Comput. Phys., 2007, 221(1): 158-180
[49] Gillespie D T, Petzold L R, Cao Y. J. Chem. Phys., 2007, 126(13): art. no. 137101
[50] Cao Y, Petzold L. Comput. Methods Appl. Mech. Engrg., 2008, 197(43/44): 3472-3479
[51] Pahle J. Brief. Bioinform., 2009, 10(1): 53-64
[52] Puchalka J, Kierzek A M. J. Biophys. , 2004, 86: 1357-1372
[53] Haseltine E L, Rawlings J B. J. Chem. Phys., 2002, 117(15): 6959-6969
[54] Alfonsi A, Cances E, Turinici G, Ventura B D, Huisinga W. ESAIM: Proc., 2005, 14: 1-13
[55] Salis H, Kaznessis Y. J. Chem. Phys., 2005, 122(5): art. no. 054103
[56] Griffith M, Courtney T, Peccoud J, Sanders W H. Bioinform., 2006, 22(22): 2782-2789
[57] Samant A, Ogunnaike B A, Vlachos D G. BMC Bioinform., 2007, 23(175): 1-23
[58] Harris L A, Clancy P. J. Chem. Phys., 2006, 125(14): art. no. 144107
[59] Burrage K, Tian T H, Burrage P. Progress Biophysics & Molecular Biology, 2004, 85(2/3): 217-234
[60] Wagner H, Moller M, Prank K. J. Chem. Phys., 2006, 125(17): art. no. 174104
[61] Kiehl T R, Mattheyses R M, Simmons M K. Bioinform., 2004, 20(3): 316-322
[62] Yang Y S, Rathinam M, Shen J L. J. Chem. Phys., 2011, 134(4): art. no. 044129
[63] Cotter S L, Zygalakis K C, Kevrekidis L G, Erban R. J. Chem. Phys., 2011, 135(9): art. no. 094102
[64] Tomita M, Hashimoto K, Takahashi K, Shimizu T S, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter J C, Hutchison C A. Bioinform., 1999, 15(1): 72-84
[65] Kierzek A M. Bioinform., 2002, 18(3): 470-481
[66] Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U. Bioinform., 2006, 22(24): 3067-3074
[67] Kent E, Hoops S, Mendes P. BMC Syst. Bio., 2012, 6(91): 1-19
[68] Sanft K R, Wu S, Roh M, Fu J, Lim R K, Petzold L R. Bioinform., 2011, 27(17): 2457-2458
[69] Herajy M, Heiner M. Nonlinear Analysis: Hybrid Systems, 2012, 6(4): 942-959

[1] Chen Piheng, Lai Xinchun, Wang Xiaolin. Progress in Theoretical Research of Metallic Plutonium and its Compounds [J]. Progress in Chemistry, 2011, 23(7): 1316-1321.
[2] . Progress in Deactivation of Titanium Oxide Photocatalyst [J]. Progress in Chemistry, 2005, 17(02): 225-232.
[3] . Recent Progress of Multiscale Science [J]. Progress in Chemistry, 2005, 17(02): 186-191.
[4] Zhang Wen,Zhang Wenjuan,Sun Wenhua**. Recent Progress of Multiscale Science [J]. Progress in Chemistry, 2005, 17(02): 0-.
[5] Fang Nenghu**,Lin Li,Lin Jicun,Tun Dan. Recent Progress of Multiscale Science [J]. Progress in Chemistry, 2005, 17(02): 0-.
[6] Xiong Zhongqiang,Mi Zhentao,Zhang Xiangwen*,Xing Enhui. Recent Progress of Multiscale Science [J]. Progress in Chemistry, 2005, 17(02): 0-.