中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (6): 904-917 DOI: 10.7536/PC221224 Previous Articles   Next Articles

• Review •

Condensed Matter Chemistry in Nitrogen Fixation

Xueli Wang1, Qianru Wang2, Di Li2, Junnian Wei1, Jianping Guo2, Liang Yu2, Dehui Deng2(), Ping Chen2(), Zhenfeng Xi1()   

  1. 1 College of Chemistry, Peking University,Beijing 100871, China
    2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: dhdeng@dicp.ac.cn(Dehui Deng); pchen@dicp.ac.cn(Ping Chen); zfxi@pku.edu.cn(Zhenfeng Xi)
  • About author:
    †These authors contributed equally to this work.
  • Supported by:
    The National Natural Science Foundation of China(21988101)
Richhtml ( 23 ) PDF ( 344 ) Cited
Export

EndNote

Ris

BibTeX

Nitrogen is an indispensable element for life and the material world. The development of efficient conversion strategies to transform dinitrogen gas into various valuable nitrogen-containing compounds is of great economic and scientific importance. The activation and transformation of dinitrogen molecule is an eternal topic in chemistry, and it is of profound significance to understand nitrogen fixation from the level of condensed matter chemistry. Several related examples have been illustrated here to discuss the effects of condensed matter phenomena in nitrogen fixation chemistry. Some critical scientific problems in the field are discussed from three aspects: nitrogen fixation in homogeneous solution, heterogeneous ammonia synthesis, and coupling multiple energy for N2/O2 conversion. We hope this review will inspire more chemists to think about the fundamental nature of nitrogen fixation chemistry from the perspective of condensed matter chemistry, offering more ideas to solve the related problems.

Contents

1 Introduction

2 Condensed matter chemistry in nitrogen fixation in homogeneous solution systems

3 Condensed matter chemistry in heterogeneous ammonia synthesis

4 Condensed matter chemistry in the coupling multiple energy for N2/O2 conversion

4.1 N2/O2 conversion by non-thermal plasmas

4.2 N2/O2 conversion by electrochemistry

4.3 N2/O2 conversion by ultra sound

4.4 N2/O2 conversion by photochemistry

5 Conclusion and outlook

Fig.1 Typical coordination modes of transition metal-nitrogen complexes
Fig.2 DCD model for transition metal-nitrogen complexes
Scheme 1 Pentamethyl-substituted metallocene titanium-nitrogen complexes[26?-28]
Scheme 2 Trimethyl- and dimethyl-substituted metallocene titanium-nitrogen complexes[29,30]
Fig.3 Crystal structure of the [Mg2Mo8O22(OMe)6(MeOH)4]2- anion[31]
Scheme 3 Cp-phosphine ligand-supported Cr(I)-N2 complexes[33]
Scheme 4 Cp-phosphine ligand-supported Cr(0)-N2 complexes[33]
Fig.4 (A) Schematic representation of ammonia synthesis on a solid surface via the dissociative mechanism; (B) potential energy diagram of ammonia synthesis on Fe surface. The energies are given in kJ·mol-1. Reprinted with permission[37]. Copyright John Wiley and Sons
Fig.5 Volcano plot of ammonia synthesis rates with the nitrogen adsorption energy at stepped metal surface[39]
Fig.6 Schematic representation of the C7 active site on Fe catalyst (A), and B5 active site on Ru catalyst (B)[50]
Fig.7 Reaction coordinate of activation energies for N2 dissociation starting from ground (blue) or vibrationally excited states. The dashed red and yellow curves correspond to different vibrational efficiency(α= E t E α ( v ) + E v )[76]
Fig.8 The scheme of NOR on Ru/TiO2 composite electrocatalysts[96]
Fig.9 The scheme of NOR on Ru/TiO2 composite electrocatalysts[103]
[1]
Xu R R. Natl. Sci. Rev., 2018, 5: 1.

doi: 10.1093/nsr/nwx155
[2]
Xu R R, Wang K, Chen G, Yan W F. Natl. Sci. Rev., 2019, 6(2): 191.

doi: 10.1093/nsr/nwy128
[3]
Xu R R, Yu J H, Yan W F. Prog. Chem., 2020, 32(8): 1017.
( 徐如人, 于吉红, 闫文付. 化学进展, 2020, 32(8): 1017.).

doi: 10.7536/PC200428
[4]
Transition Metal-Dinitrogen Complexes. Ed.: Nishibayashi Y. Wiley-VCH, 2018.
[5]
Lv Z J, Huang Z, Shen J H, Zhang W X, Xi Z F. J. Am. Chem. Soc., 2019, 141(51): 20547.

doi: 10.1021/jacs.9b11631
[6]
Chen X, Xu H H, Shi X H, Wei J N, Xi Z F. Acta Chim. Sinica, 2022, 80: 1299.

doi: 10.6023/A22060253
( 陈霄, 许汉华, 石向辉, 魏俊年, 席振峰. 化学学报, 2022, 80(9): 1299.).

doi: 10.6023/A22060253
[7]
Wang G X, Yan X C, Yin J H, Yin Z B, Wei J N, Xi Z F. Chem. A Eur. J., 2022, 28(67): e202202803.
[8]
Li H J, Feng R, Wang G X, Wei J N, Xi Z F. Dalton Trans., 2022, 51(44): 16811.

doi: 10.1039/D2DT03320H
[9]
Wang G X, Yin J H, Li J P, Yin Z B, Wu B T, Wei J N, Zhang W X, Xi Z F. CCS Chem., 2021, 3(12): 308.

doi: 10.31635/ccschem.021.202000712
[10]
Wang C H, Yin Z B, Wei J N, Zhang W X, Xi Z F. Tetrahedron, 2020, 76(50): 131703.

doi: 10.1016/j.tet.2020.131703
[11]
Li J P, Yin J H, Wang G X, Yin Z B, Zhang W X, Xi Z F. Chem. Commun., 2019, 55(65): 9641.

doi: 10.1039/C9CC02960E
[12]
Walter M D. Advances in Organometallic Chemistry. New York: Academic Press, 2016. 261.
[13]
Allen A D, Senoff C V. Chem. Commun. (London), 1965(24): 621.
[14]
Enemark J H, Davis B R, McGinnety J A, Ibers J A. Chem. Commun. (London), 1968,(2): 96.
[15]
Lv Z J, Wei J N, Zhang W X, Chen P, Deng D H, Shi Z J, Xi Z F. Natl. Sci. Rev., 2020, 7(10): 1564.

doi: 10.1093/nsr/nwaa142
[16]
Kim S, Loose F, Chirik P J. Chem. Rev., 2020, 120(12): 5637.

doi: 10.1021/acs.chemrev.9b00705
[17]
Li J P, Yin J H, Yu C, Zhang W X, Xi Z F. Acta Chim. Sinica, 2017, 75: 733.

doi: 10.6023/A17040170
( 李嘉鹏, 殷剑昊, 俞超, 张文雄, 席振峰. 化学学报, 2017, 75(8): 733.).

doi: 10.6023/A17040170
[18]
Zhai D D, Zhang S Q, Xie S J, Wu R K, Liu F, Xi Z F, Hong X, Shi Z J. J. Am. Chem. Soc., 2022, 144(31): 14071.

doi: 10.1021/jacs.2c01507
[19]
Zhong M D, Cui X L, Wu B T, Wang G X, Zhang W X, Wei J N, Zhao L L, Xi Z F. CCS Chem., 2022, 4(2): 532.

doi: 10.31635/ccschem.021.202100945
[20]
Shi X H, Wang Q R, Qin C, Wu L J, Chen Y J, Wang G X, Cai Y L, Gao W B, He T, Wei J N, Guo J P, Chen P, Xi Z F. Natl. Sci. Rev., 2022, 9(12): nwac168.

doi: 10.1093/nsr/nwac168
[21]
Chatt J, Pearman A J, Richards R L. Nature, 1975, 253(5486): 39.
[22]
Yandulov D V, Schrock R R. Science, 2003, 301(5629): 76.

doi: 10.1126/science.1085326 pmid: 12843387
[23]
Arashiba K, Miyake Y, Nishibayashi Y. Nat. Chem., 2011, 3(2): 120.

doi: 10.1038/nchem.906 pmid: 21258384
[24]
Anderson J S, Rittle J, Peters J C. Nature, 2013, 501(7465): 84.

doi: 10.1038/nature12435
[25]
Brintzinger H, Bercaw J E. J. Am. Chem. Soc., 1971, 93(8): 2045.

doi: 10.1021/ja00737a033
[26]
Sanner R D, Duggan D M, McKenzie T C, Marsh R E, Bercaw J E. J. Am. Chem. Soc., 1976, 98(26): 8358.

doi: 10.1021/ja00442a008
[27]
Manriquez J M, McAlister D R, Rosenberg E, Shiller A M, Williamson K L, Chan S I, Bercaw J E. J. Am. Chem. Soc., 1978, 100(10): 3078.

doi: 10.1021/ja00478a020
[28]
Hanna T E, Lobkovsky E, Chirik P J. Organometallics, 2009, 28(14): 4079.

doi: 10.1021/om900282u
[29]
Hanna T E, Bernskoetter W H, Bouwkamp M W, Lobkovsky E, Chirik P J. Organometallics, 2007, 26(9): 2431.

doi: 10.1021/om0611913
[30]
Semproni S P, Milsmann C, Chirik P J. Organometallics, 2012, 31(9): 3672.

doi: 10.1021/om300156z
[31]
Didenko L P, Gavrilov A B, Shilova A K, Strelets V V, Tsarev V N, Shilov A E, Makhaev V D, Banerjee A K, Pospisil L. Nouveau J. de Chim.-New J. Chem., 1987, 18(11): 583.
[32]
Kuznetsov D A, Fedyanin I V, Lyssenko K A, Bazhenova T A. Dalton Trans., 2014, 43(34): 12876.

doi: 10.1039/c4dt01035c pmid: 25019529
[33]
Yin J H, Li J P, Wang G X, Yin Z B, Zhang W X, Xi Z F. J. Am. Chem. Soc., 2019, 141(10): 4241.

doi: 10.1021/jacs.9b00822
[34]
Guo J P, Chen P. Chem. Bull., 2019, 64(11):1114.
( 郭建平, 陈萍. 科学通报, 2019, 64 (11): 1114.).
[35]
Wang Q R, Guo J P, Chen P. J. Energy Chem., 2019, 36: 25.

doi: 10.1016/j.jechem.2019.01.027
[36]
Liu H Z. Chin. J. Catal., 2014, 35(10): 1619.

doi: 10.1016/S1872-2067(14)60118-2
[37]
Ertl G. Angew. Chem. Int. Ed., 2008, 47(19): 3524.

doi: 10.1002/(ISSN)1521-3773
[38]
Ertl G. Catal. Rev., 1980, 21(2): 201.

doi: 10.1080/03602458008067533
[39]
Vojvodic1 A, Nørskov J K. Natl. Sci. Rev., 2015, 2: 140.

doi: 10.1093/nsr/nwv023
[40]
Nørskov J K, Bligaard T, Rossmeisl J, Christensen C H. Nat. Chem., 2009, 1(1): 37.

doi: 10.1038/nchem.121 pmid: 21378799
[41]
van der Ham C J M, Koper M T M, Hetterscheid D G H. Chem. Soc. Rev., 2014, 43(15): 5183.

doi: 10.1039/C4CS00085D
[42]
Dumesic J A, Topsøe H, Khammouma S, Boudart M. J. Catal., 1975, 37: 503.

doi: 10.1016/0021-9517(75)90185-2
[43]
Somorjai G A, Materer N. Top. Catal., 1994, 1(3/4): 215.

doi: 10.1007/BF01492277
[44]
Mortensen J J, Morikawa Y, Hammer B, Nørskov J K. J. Catal., 1997, 169(1): 85.

doi: 10.1006/jcat.1997.1661
[45]
Dahl S, Tornqvist E, Chorkendorff I. J. Catal., 2000, 192(2): 381.

doi: 10.1006/jcat.2000.2858
[46]
Li J P, Wang W Y, Chen W X, Gong Q M, Luo J, Lin R Q, Xin H L, Zhang H, Wang D S, Peng Q, Zhu W, Chen C, Li Y D. Nano Res., 2018, 11(9): 4774.

doi: 10.1007/s12274-018-2062-4
[47]
Li L L, Jiang Y F, Zhang T H, Cai H F, Zhou Y L, Lin B Y, Lin X Y, Zheng Y, Zheng L R, Wang X Y, Xu C Q, Au C T, Jiang L L, Li J. Chem, 2022, 8(3): 749.

doi: 10.1016/j.chempr.2021.11.008
[48]
Liu J C, Ma X L, Li Y, Wang Y G, Xiao H, Li J. Nat. Commun., 2018, 9: 1610.

doi: 10.1038/s41467-018-03795-8
[49]
Ma X L, Liu J C, Xiao H, Li J. J. Am. Chem. Soc., 2018, 140(1): 46.

doi: 10.1021/jacs.7b10354
[50]
Guo J P, Chen P. Acc. Chem. Res., 2021, 54(10): 2434.

doi: 10.1021/acs.accounts.1c00076
[51]
Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S W, Hara M, Hosono H. Nat. Chem., 2012, 4(11): 934.

doi: 10.1038/nchem.1476
[52]
Lu Y F, Li J, Tada T, Toda Y, Ueda S, Yokoyama T, Kitano M, Hosono H. J. Am. Chem. Soc., 2016, 138(12): 3970.

doi: 10.1021/jacs.6b00124
[53]
Hosono H, Kitano M. Chem. Rev., 2021, 121(5): 3121.

doi: 10.1021/acs.chemrev.0c01071 pmid: 33606511
[54]
Ogura Y, Sato K, Miyahara S I, Kawano Y, Toriyama T, Yamamoto T, Matsumura S, Hosokawa S, Nagaoka K. Chem. Sci., 2018, 9(8): 2230.

doi: 10.1039/c7sc05343f pmid: 29719696
[55]
Ogura Y, Tsujimaru K, Sato K, Miyahara S I, Toriyama T, Yamamoto T, Matsumura S, Nagaoka K. ACS Sustainable Chem. Eng., 2018, 6(12): 17258.

doi: 10.1021/acssuschemeng.8b04683
[56]
Zhang X L, Liu L, Wu A N, Zhu J F, Si R, Guo J P, Chen R T, Jiang Q K, Ju X H, Feng J, Xiong Z T, He T, Chen P. ACS Catal., 2022, 12(4): 2178.

doi: 10.1021/acscatal.1c05985
[57]
Aika K I, Ozaki A. J. Catal., 1970, 19: 350.

doi: 10.1016/0021-9517(70)90257-5
[58]
Ertl G, Weiss M, Lee S B. Chem. Phys. Lett., 1979, 60(3): 391.

doi: 10.1016/0009-2614(79)80595-3
[59]
Aika K I, Hori H, Ozaki A. J. Catal., 1972, 27: 424.

doi: 10.1016/0021-9517(72)90179-0
[60]
Strongin D R, Somorjai G A. J. Catal. 1988, 109: 51.

doi: 10.1016/0021-9517(88)90184-4
[61]
Mortensen J J, Hammer B, Nørskov J K. Phys. Rev. Lett., 1998, 80(19): 4333.

doi: 10.1103/PhysRevLett.80.4333
[62]
Cao A, Bukas V J, Shadravan V, Wang Z B, Li H, Kibsgaard J, Chorkendorff I, Nørskov J K. Nat. Commun., 2022, 13: 2382.

doi: 10.1038/s41467-022-30034-y
[63]
Wang P K, Chang F, Gao W B, Guo J P, Wu G T, He T, Chen P. Nat. Chem., 2017, 9(1): 64.

doi: 10.1038/nchem.2595
[64]
Wang P K, Xie H, Guo J P, Zhao Z, Kong X T, Gao W B, Chang F, He T, Wu G T, Chen M S, Jiang L, Chen P. Angew. Chem. Int. Ed., 2017, 56(30): 8716.

doi: 10.1002/anie.v56.30
[65]
Wang Q R, Pan J, Guo J P, Hansen H A, Xie H, Jiang L, Hua L, Li H Y, Guan Y Q, Wang P K, Gao W B, Liu L, Cao H J, Xiong Z T, Vegge T, Chen P. Nat. Catal., 2021, 4(11): 959.

doi: 10.1038/s41929-021-00698-8
[66]
Bielawa H, Hinrichsen O, Birkner A, Muhler M. Angew. Chem. Int. Ed., 2001, 40(6): 1061.

pmid: 11268073
[67]
Jennings J R. Catalytic Ammonia Synthesis: Fundamentals and Practice. New York: Plenum Press, 1991.
[68]
Gao W B, Guo J P, Wang P K, Wang Q R, Chang F, Pei Q J, Zhang W J, Liu L, Chen P. Nat. Energy, 2018, 3(12): 1067.

doi: 10.1038/s41560-018-0268-z
[69]
Guan Y Q, Liu C W, Wang Q R, Gao W B, Hansen H A, Guo J P, Vegge T, Chen P. Angew. Chem. Int. Ed., 2022, 61(39): e202205805.

doi: 10.1002/anie.v61.39
[70]
Canfield D E, Glazer A N, Falkowski P G. Science, 2010, 330(6001): 192.

doi: 10.1126/science.1186120 pmid: 20929768
[71]
Li D, Zan L X, Chen S M, Shi Z J, Chen P, Xi Z F, Deng D H. Natl Sci Rev, 2022, 9(12): nwac042.

doi: 10.1093/nsr/nwac042
[72]
Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W. Nat. Geosci., 2008, 1(10): 636.

doi: 10.1038/ngeo325
[73]
Rafiqul I, Weber C, Lehmann B, Voss A. Energy, 2005, 30(13): 2487.

doi: 10.1016/j.energy.2004.12.004
[74]
Patil B S, Wang Q, Hessel V, Lang J. Catal. Today, 2015, 256: 49.

doi: 10.1016/j.cattod.2015.05.005
[75]
Fridman A. Plasma Chemistry, London: Cambridge University Press, 2008.
[76]
Mehta P, Barboun P, Herrera F A, Kim J, Rumbach P, Go D B, Hicks J C, Schneider W F. Nat. Catal., 2018, 1(4): 269.

doi: 10.1038/s41929-018-0045-1
[77]
Pei X K, Gidon D, Graves D B. J. Phys. D: Appl. Phys., 2020, 53(4): 044002.

doi: 10.1088/1361-6463/ab5095
[78]
Wang W Z, Patil B, Heijkers S, Hessel V, Bogaerts A. ChemSusChem, 2017, 10(10): 21450.
[79]
Jardali F, Van Alphen S, Creel J, Ahmadi Eshtehardi H, Axelsson M, Ingels R, Snyders R, Bogaerts A. Green Chem., 2021, 23(4): 1748.

doi: 10.1039/D0GC03521A
[80]
Patil B S, Cherkasov N, Lang J, Ibhadon A O, Hessel V, Wang Q. Appl. Catal. B Environ., 2016, 194: 123.

doi: 10.1016/j.apcatb.2016.04.055
[81]
Abdelaziz A A, Kim H H. J. Phys. D: Appl. Phys., 2020, 53(11): 114001.

doi: 10.1088/1361-6463/ab5c78
[82]
Tang X L, Wang J G, Yi H H, Zhao S Z, Gao F Y, Chu C. Plasma Chem. Plasma Process, 2018, 38(3): 485.

doi: 10.1007/s11090-018-9876-4
[83]
Jõgi I, Levoll E, Raud J. Chem. Eng. J., 2016, 301: 149.

doi: 10.1016/j.cej.2016.04.057
[84]
Toth J R, Abuyazid N H, Lacks D J, Renner J N, Sankaran R M. ACS Sustainable Chem. Eng., 2020, 8(39): 14845.

doi: 10.1021/acssuschemeng.0c04432
[85]
Zhao G B, Hu X D, Argyle M D, Radosz M. Ind. Eng. Chem. Res., 2004, 43(17): 5077.

doi: 10.1021/ie049795z
[86]
Rapakoulias D, Cavadias S, Amouroux J. Rev. Phys. Appl. (Paris), 1980, 15(7): 1261.

doi: 10.1051/rphysap:019800015070126100
[87]
Mehta P, Barboun P M, Engelmann Y, Go D B, Bogaerts A, Schneider W F, Hicks J C. ACS Catal., 2020, 10(12): 6726.

doi: 10.1021/acscatal.0c00684
[88]
Rosca V, Duca M, de Groot M T, Koper M T M. Chem. Rev., 2009, 109(6): 2209.

doi: 10.1021/cr8003696
[89]
Wagman D D, Evans W H, Parker V B, Schumm R H, Halow I, Bailey S M, Churney K L, Nuttall R L. The NBS tables of Chemical Thermodynamic Properties, 1982.
[90]
David A A, Robert E H, Willem H K, Sergei V L, Gábor M, Pedatsur N, Branko R, David M S, Steen S, Peter W. Pure Appl. Chem., 2015, 87: 1139.

doi: 10.1515/pac-2014-0502
[91]
Chen J G, Crooks R M, Seefeldt L C, Bren K L, Bullock R M, Darensbourg M Y, Holland P L, Hoffman B, Janik M J, Jones A K, Kanatzidis M G, King P, Lancaster K M, Lymar S V, Pfromm P, Schneider W F, Schrock R R. Science, 2018, 360(6391): eaar6611.

doi: 10.1126/science.aar6611
[92]
Schlögl R. Angew. Chem. Int. Edit., 2003, 42: 2004.

doi: 10.1002/anie.200301553
[93]
Ertl G. Catal. Rev., 1980, 21(2): 201.

doi: 10.1080/03602458008067533
[94]
Logadottir A, Rod T H, Nørskov J K, Hammer B, Dahl S, Jacobsen C J H. J. Catal., 2001, 197(2): 229.

doi: 10.1006/jcat.2000.3087
[95]
Wang Y, Yu Y, Jia R, Zhang C, Zhang B. Natl. Sci. Rev., 2019, 6: 730.

doi: 10.1093/nsr/nwz019
[96]
Kuang M, Wang Y, Fang W, Tan H T, Chen M X, Yao J D, Liu C T, Xu J W, Zhou K, Yan Q Y. Adv. Mater., 2020, 32(26): 2002189.

doi: 10.1002/adma.v32.26
[97]
Zhang L L, Cong M Y, Ding X, Jin Y, Xu F F, Wang Y, Chen L, Zhang L X. Angew. Chem. Int. Ed., 2020, 59(27): 10888.

doi: 10.1002/anie.v59.27
[98]
Dai C C, Sun Y M, Chen G, Fisher A C, Xu Z J. Angew. Chem. Int. Ed., 2020, 59(24): 9418.

doi: 10.1002/anie.v59.24
[99]
Fang W, Du C F, Kuang M, Chen M X, Huang W J, Ren H, Xu J W, Feldhoff A, Yan Q Y. Chem. Commun., 2020, 56(43): 5779.

doi: 10.1039/D0CC01759K
[100]
Makino K, Mossoba M M, Riesz P. J. Am. Chem. Soc., 1982, 104(12): 3537.

doi: 10.1021/ja00376a064
[101]
Kamath V, Prosperetti A, Egolfopoulos F N. J. Acoust. Soc. Am., 1993, 94(1): 248.

doi: 10.1121/1.407083
[102]
Suslick K S, Doktycz S J, Flint E B. Ultrasonics, 1990, 28(5): 280.

pmid: 2203195
[103]
Luche J L. Ultrasonics, 1992, 30(3): 156.

doi: 10.1016/0041-624X(92)90066-U
[104]
Crum L A. J. Acoust. Soc. Am., 1994, 95(1): 559.

doi: 10.1121/1.408351
[105]
Lepoint T, Mullie F. Ultrason. Sonochemistry, 1994, 1(1): 13.
[106]
Schultes H, Gohr H. Angew. Chem., 1936, 49(27): 420.

doi: 10.1002/(ISSN)1521-3757
[107]
Virtanen A I, Ellfolk N. J. Am. Chem. Soc., 1950, 72(2): 1046.
[108]
Virtanen A I, Ellfolk N, SillÉn L G, Rottenberg M. Acta Chem. Scand., 1950, 4: 93.

doi: 10.3891/acta.chem.scand.04-0093
[109]
Mead E L, Sutherland R G, Verrall R E. Can. J. Chem., 1976, 54(7): 1114.

doi: 10.1139/v76-159
[110]
Petrier C, Lamy M F, Francony A, Benahcene A, David B, Renaudin V, Gondrexon N. J. Phys. Chem., 1994, 98(41): 10514.

doi: 10.1021/j100092a021
[111]
Tiehm A. Ultrasound in Environmental Engineering, Technical University of Hamburg-Harburg Reports on Sanitary Engineering, 1999, 25: 167.
[112]
Petrier C, Jiang Y, Francony A, Lemay M F. Ultrasound in Environmental Engineering, Technical University of Hamburg-Harburg Reports on Sanitary Engineering, 1999, 25: 23.
[113]
Supeno, Kruus P. Ultrason. Sonochemistry, 2000, 7(3): 109.

doi: 10.1016/S1350-4177(99)00043-7
[114]
You H L, Wu Z, Zhang L H, Ying Y R, Liu Y, Fei L F, Chen X X, Jia Y M, Wang Y J, Wang F F, Ju S, Qiao J L, Lam C H, Huang H T. Angew. Chem. Int. Ed., 2019, 58(34): 11779.

doi: 10.1002/anie.v58.34
[115]
Huang H W, Tu S C, Zeng C, Zhang T R, Reshak A H, Zhang Y H. Angew. Chem. Int. Ed., 2017, 56(39): 11860.

doi: 10.1002/anie.201706549
[116]
Yuan S J, Chen J J, Lin Z Q, Li W W, Sheng G P, Yu H Q. Nat. Commun., 2013, 4: 2249.

doi: 10.1038/ncomms3249
[117]
Chen S T, Liu D, Peng T Y. Sol. RRL, 2021, 5(2): 2000487.

doi: 10.1002/solr.v5.2
[118]
Yu Y, Wang C H, Yu Y F, Huang Y M, Liu C B, Lu S Y, Zhang B. J. Mater. Chem. A, 2020, 8(37): 19623.

doi: 10.1039/D0TA06747D
[119]
Liu Y W, Cheng M, He Z H, Gu B C, Xiao C, Zhou T F, Guo Z P, Liu J D, He H Y, Ye B J, Pan B C, Xie Y. Angew. Chem. Int. Ed., 2019, 58(3): 731.

doi: 10.1002/anie.v58.3
[120]
Li D, Zhao Y, Miao Y, Zhou C, Zhang L P, Tang J, Zhang T. Adv.Mater., 2022, 12: 2207.
[121]
Mateo D, Cerrillo J L, Durini S, Gascon J. Chem. Soc. Rev., 2021, 50(3): 2173.

doi: 10.1039/D0CS00357C
[1] Ruren Xu, Wenfu Yan. Condensed Matter Chemistry in Gaseous Molecules Reactions [J]. Progress in Chemistry, 2023, 35(6): 808-820.
[2] Wenfu Yan, Ruren Xu. Chemical Reactions in Aqueous Solutions with Condensed Liquid State* [J]. Progress in Chemistry, 2022, 34(7): 1454-1491.
[3] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[4] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[5] Xiaolu Liu, Yuxiao Geng, Ran Hao, Yuping Liu, Zhongyong Yuan, Wei Li. Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives [J]. Progress in Chemistry, 2021, 33(7): 1074-1091.
[6] Ruren Xu, Jihong Yu, Wenfu Yan. Goals and Major Scientific Issues in Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1017-1048.
[7] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[8] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[9] Lixu Lei, Yiming Zhou. Solvent-Free or Less-Solvent Solid State Reactions [J]. Progress in Chemistry, 2020, 32(8): 1158-1171.
[10] Chao Xie, Bo Zhou, Ling Zhou, Yujie Wu, Shuangyin Wang. Defect with Catalysis [J]. Progress in Chemistry, 2020, 32(8): 1172-1183.
[11] Zheng Chen, Yingshuang Shang, Haibo Zhang, Zhenhua Jiang. Structure and Chemistry of Polymer Condensed State [J]. Progress in Chemistry, 2020, 32(8): 1115-1127.
[12] Fenya Guo, Hongwei Li, Mengzhe Zhou, Zhengqi Xu, Yueqing Zheng, Tingting Li. Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions [J]. Progress in Chemistry, 2020, 32(1): 33-45.
[13] Yao Xiao, Wenjuan Hu, Yanbiao Ren, Xu Kang, Jian Liu. Bioinspired Photo/Electrocatalytic N2 Fixation [J]. Progress in Chemistry, 2018, 30(4): 325-337.
[14] Ma Xuelu, Lei Ming. Dinitrogen Fixation Activated by Binuclear Transition-Metal Complexes [J]. Progress in Chemistry, 2013, 25(08): 1325-1333.
[15] Zhang Liuming, Lin Jianxin, Ni Jun, Lin Bingyu, Wang Rong, Wei Kemei. Preparation Methods of Ruthenium Catalysts for Ammonia Synthesis [J]. Progress in Chemistry, 2011, 23(11): 2225-2232.