中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (10): 2134-2145 DOI: 10.7536/PC220103 Previous Articles   Next Articles

• Review •

Strain-Promoted Azide-Alkyne Cycloaddition

Liao Yiming1, Wu Baoqi1, Tang Rongzhi2(), Lin Feng1, Tan Yu1()   

  1. 1 School of Chemical Engineering and Technology, Sun Yat-Sen University,Zhuhai 519082, China
    2 School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
  • Revised: Online: Published:
  • Contact: Tang Rongzhi, Tan Yu
  • Supported by:
    Start-up Fund(76110-18841290); Innovation and Entrepreneurship Training Program for College Students of Sun Yat-sen University(20211956)
Richhtml ( 125 ) PDF ( 1107 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, strain-promoted azide-alkyne cycloaddition (SPAAC) reaction has been widely used in many fields such as biomedicine and materials science due to its high efficiency, rapidity, high selectivity, and bioorthogonality. SPAAC reaction does not require additional stimuli such as light, heat, ultrasound or catalysts. The driving force of the reaction comes from the active cyclic alkynes with high strain. Therefore, the rational design of the cycloalkynes is the key to the SPAAC reaction. In this review, the stability and reactivity of cycloalkynes with different ring numbers are discussed, and the stable cycloalkynes participating in SPAAC smoothly as well as their second-order reaction rate constants in the SPAAC reaction are summarized. The research progress in the preparation methods of representative cyclic alkynes that are currently widely used is also introduced. Moreover, the application, challenge and future outlook of SPAAC without copper catalysis are discussed and prospected.

Scheme 1 CuAAC Reaction
Scheme 2 Strain-Promoted Azide-alkyne cycloaddition
Scheme 3 Cyclopentyne participates in the addition as an independent intermediate[18]
Scheme 4 Debromination/dehydrogenation synthesis of unstable cyclohexyne
Fig. 1 The 7-membered cycloalkynes that stably participate in the SPAAC reaction and the year of their use
Fig. 2 The 8-membered cycloalkynes that stably participate in the SPAAC reaction and the year of their use
Fig. 3 The 9-membered and 10-membered cycloalkynes that participate in the reaction stably and the year when they were used
Table 1 Second order reaction constants of different cycloalkyne substrates
Scheme 4 Van Derft method
Scheme 5 Popik method
Scheme 6 Bromination and elimination
Scheme 7 Modified Popik Method
Fig. 4 SPAAC reaction is used to prepare Pt anticancer complex[56]. Copyright 2020, Elsevier
Fig. 5 SPAAC reaction for the preparation of hydrogels[85]. Copyright 2015, American Chemical Society
Fig. 6 SPAAC reaction for interfacial modification of nanoplatforms[96]. Copyright 2019, American Chemical Society
[1]
Kolb H C, Finn M, Sharpless K B. Angew. Chem. Int. Ed., 2001, 40(11): 2004.

doi: 10.1002/1521-3773(20010601)40:11【-逻*辑*与-】lt;2004::AID-ANIE2004【-逻*辑*与-】gt;3.0.CO;2-5
[2]
Hawker C J, Fokin V V, Finn M, Sharpless K B. Aust. J. Chem., 2007, 60(6): 381.

doi: 10.1071/CH07107
[3]
Finn M G, Kolb H C, Fokin V V, Sharpless K B, Zhang X H, Wu Y D. Prog. Chem., 2008, 20(01): 1.
Finn M G, Kolb H C, Fokin V V, Sharpless K B, 张欣豪, 吴云东. 化学进展, 2008, 20(1): 1.).
[4]
Tornøe C W, Christensen C, Meldal M. J. Org. Chem., 2002, 67(9): 3057.

doi: 10.1021/jo011148j
[5]
Rostovtsev V V, Green L G, Fokin V V, Sharpless K B. Angew. Chem., 2002, 114(14): 2708.

doi: 10.1002/1521-3757(20020715)114:14【-逻*辑*与-】lt;2708::AID-ANGE2708【-逻*辑*与-】gt;3.0.CO;2-0
[6]
Li S, Tang W, Zhang W, Guo X, Zhang Q. Chem. Eur. J., 2015, 21(49): 17762.

doi: 10.1002/chem.201502825
[7]
Li H, Wang J, Sun J Z, Hu R, Qin A, Tang B Z. Polym. Chem., 2012, 3(4): 1075.

doi: 10.1039/c2py00586g
[8]
Spruell J M, Wolffs M, Leibfarth F A, Stahl B C, Heo J, Connal L A, Hu J, Hawker C J. J. Am. Chem. Soc., 2011, 133(41): 16698.

doi: 10.1021/ja207635f pmid: 21919513
[9]
Nolan K R. J. Orthomol. Psychiatry., 1983, 12(4): 270.
[10]
Lallana E, Riguera R, Fernandez-Megia E. Angew. Chem. Int. Ed., 2011, 50(38): 8794.

doi: 10.1002/anie.201101019
[11]
Agard N J, Prescher J A, Bertozzi C R. J. Am. Chem. Soc., 2004, 126(46): 15046.

doi: 10.1021/ja044996f
[12]
Hamlin T A, Levandowski B J, Narsaria A K, Houk K N, Bickelhaupt F M. Chem.-Eur. J., 2019, 25(25): 6342.
[13]
Krebs A, Wilke J. Wittig Chemistry, 1983: 189.
[14]
Sherrill C D, Brandow C G, Allen W D, Schaefer H F. J. Am. Chem. Soc., 1996, 118(30): 7158.

doi: 10.1021/ja960762n
[15]
Zanda M, Bucci R, Sloan N L, Topping L. Eur. J. Org. Chem., 2020, 2020(33): 5278.

doi: 10.1002/ejoc.202000512
[16]
Rappoport Z, Liebman J F. The chemistry of cyclobutanes: John Wiley & Sons, 2005.
[17]
Domingo L R, Pérez López P, Contreras Ramos R. Eur. J. Org. Chem., 2006: 498.
[18]
Medina J M, McMahon T C, Jiménez-Osés G, Houk K, Garg N K. J. Am. Chem. Soc., 2014, 136(42): 14706.

doi: 10.1021/ja508635v pmid: 25283710
[19]
Wentrup C. Reactive molecules: the neutral reactive intermediates in organic chemistry: Wiley-Interscience, 1984.
[20]
Wittig G, Mayer U. Chem. Ber., 1963, 96(1): 342.

doi: 10.1002/cber.19630960142
[21]
Wittig G, Fritze P. Angev. Chem. Int. Ed., 1966, 5(9): 846.
[22]
Atanes N, Escudero S, Pérez D, Guitián E, Castedo L. Tetrahedron Lett., 1998, 39(19): 3039.
[23]
Schaub T A, Margraf J T, Zakharov L, Reuter K, Jasti R. Angew. Chem. Int. Ed., 2018, 57(50): 16348.

doi: 10.1002/anie.201808611
[24]
Svatunek D, Eilenberger G, Denk C, Lumpi D, Hametner C, Allmaier G, Mikula H. Chem.-Eur. J., 2020, 26(44): 9851.

doi: 10.1002/chem.201905478
[25]
de Almeida G, Sletten E M, Nakamura H, Palaniappan K K, Bertozzi C R. Angew. Chem., 2012, 124(10): 2493.

doi: 10.1002/ange.201106325
[26]
King M, Baati R, Wagner A. Chem. Commun., 2012, 48(74): 9308.

doi: 10.1039/c2cc35034c
[27]
Weterings J, Rijcken C J, Veldhuis H, Meulemans T, Hadavi D, Timmers M, Honing M, Ippel H, Liskamp R M. Chem. Sci., 2020, 11(33): 9011.

doi: 10.1039/d0sc03477k pmid: 34123155
[28]
Harris T, Alabugin I V. Mendeleev Commun., 2019, 29(3): 237.

doi: 10.1016/j.mencom.2019.05.001
[29]
Jedináková M P. Doctoral Dissertation of Palacký University Olomouc, 2017.
[30]
Sletten E M, Bertozzi C R. Org. Lett., 2008, 10(14): 3097.

doi: 10.1021/ol801141k pmid: 18549231
[31]
Codelli J A, Baskin J M, Agard N J, Bertozzi C R. J. Am. Chem. Soc., 2008, 130(34): 11486.

doi: 10.1021/ja803086r pmid: 18680289
[32]
Stöckmann H, Neves A A, Stairs S, Ireland-Zecchini H, Brindle K M, Leeper F J. Chem. Sci., 2011, 2(5): 932.

pmid: 22724056
[33]
Dommerholt J, Schmidt S, Temming R, Hendriks L, Rutjes F. Angew. Chem. Int. Ed., 2010, 49: 9422.

doi: 10.1002/anie.201003761 pmid: 20857472
[34]
Grost C, Berg T. Org. Biomol. Chem., 2015, 13(13): 3866.

doi: 10.1039/C5OB00212E
[35]
Lis C, Berg T. Synlett, 2019, 30(08): 939.

doi: 10.1055/s-0037-1611481
[36]
Varga B R, Kállay M, Hegyi K, Béni S, Kele P. Chem. Eur. J., 2012, 18(3): 822.

doi: 10.1002/chem.201102329
[37]
Sletten E M, Nakamura H, Jewett J C, Bertozzi C R. J. Am. Chem. Soc., 2010, 132(33): 11799.

doi: 10.1021/ja105005t pmid: 20666466
[38]
Jewett J C, Sletten E M, Bertozzi C R. J. Am. Chem. Soc., 2010, 132(11): 3688.

doi: 10.1021/ja100014q pmid: 20187640
[39]
Sutton D A, Yu S-H, Steet R, Popik V V. Chem. Commun., 2016, 52(3): 553.

doi: 10.1039/C5CC08106H
[40]
Dommerholt J, Rutjes F, van Delft F L. Top. Curr. Chem., 2016, 374(2): 16.
[41]
Terzic V, Pousse G, Méallet-Renault R, Grellier P, Dubois J l. J. Org. Chem., 2019, 84(13): 8542.

doi: 10.1021/acs.joc.9b00895 pmid: 31199143
[42]
Tummatorn J, Batsomboon P, Clark R J, Alabugin I V, Dudley G B. J. Org. Chem., 2012, 77(5): 2093.

doi: 10.1021/jo300188y pmid: 22316100
[43]
Kaneda K. Yakugaku Zasshi., 2020, 140(9): 1087.

doi: 10.1248/yakushi.20-00139
[44]
Poloukhtine A A, Mbua N E, Wolfert M A, Boons G-J, Popik V V. J. Am. Chem. Soc., 2009, 131(43): 15769.

doi: 10.1021/ja9054096 pmid: 19860481
[45]
Debets M F, van Berkel S S, Schoffelen S, Rutjes F P, van Hest J C, van Delft F L. Chem. Commun., 2010, 46(1): 97.

doi: 10.1039/B917797C
[46]
McNelles S A, Pantaleo J L, Adronov A. Org. Process Res. Dev., 2019, 23(12): 2740.

doi: 10.1021/acs.oprd.9b00406
[47]
Dommerholt J, Schmidt S, Temming R, Hendriks L J, Rutjes F P, van Hest J C, Lefeber D J, Friedl P, van Delft F L. Angew. Chem. Int Ed., 2010, 49(49): 9422.

doi: 10.1002/anie.201003761 pmid: 20857472
[48]
Jacobs M J, Schneider G, Blank K G. Angew. Chem. Int. Ed., 2016, 55(8): 2899.

doi: 10.1002/anie.201510299
[49]
Kuzmin A, Poloukhtine A, Wolfert M A, Popik V V. Bioconjug. Chem., 2010, 21(11): 2076.

doi: 10.1021/bc100306u
[50]
Adronov A, Chadwick R, Van Gyzen S, Liogier S. Synthesis, 2014, 46(05): 669.

doi: 10.1055/s-0033-1340509
[51]
Anseth K S, Klok H A. Biomacromolecules, 2016, 17(1): 1.

doi: 10.1021/acs.biomac.5b01660
[52]
Kim E, Koo H. Chem. Sci., 2019, 10(34): 7835.

doi: 10.1039/C9SC03368H
[53]
Derks Y H W, Rijpkema M, Amatdjais-Groenen H I V, Loeff C, de Roode K E, Kip A, Laverman P, Lütje S, Heskamp S, Löwik D W P M. Bioconjugate Chem. (2021), DOI:10.1021/acs.bioconjchem.1c00537.

doi: 10.1021/acs.bioconjchem.1c00537
[54]
Liu G, Wold E A, Zhou J. Curr. Top. Med. Chem., 2019, 19(11): 892.

doi: 10.2174/1568026619666190510091921
[55]
Lamoot A, Uvyn A, Kasmi S, De Geest B G. Angew. Chem. Int. Ed., 2021, 133(12): 6390.

doi: 10.1002/ange.202015625
[56]
Farrer N J, Griffith D M. Curr. Opin. Chem. Biol., 2020, 55: 59.

doi: 10.1016/j.cbpa.2019.12.001
[57]
Lutz J F, Zarafshani Z. Adv. Drug Deliv. Rev., 2008, 60(9): 958.

doi: 10.1016/j.addr.2008.02.004
[58]
Takayama Y, Kusamori K, Nishikawa M. Molecules, 2019, 24(1):.
[59]
Liu X, Gong P, Song P, Xie F, Miller Ii A L, Chen S, Lu L. Polym. Chem., 2019, 10(6): 705.

doi: 10.1039/C8PY01721B
[60]
Wang C F, Makila E M, Kaasalainen M H, Liu D, Sarparanta M P, Airaksinen A J, Salonen J J, Hirvonen J T, Santos H A. Biomaterials, 2014, 35(4): 1257.

doi: 10.1016/j.biomaterials.2013.10.065
[61]
Zeng D, Zeglis B M, Lewis J S, Anderson C J. J. Nucl. Med., 2013, 54(6): 829.

doi: 10.2967/jnumed.112.115550
[62]
Karver M R, Weissleder R, Hilderbrand S A. Angew. Chem. Int. Ed., 2012, 51(4): 920.

doi: 10.1002/anie.201104389 pmid: 22162316
[63]
Ramil C P, Lin Q. Chem. Commun., 2013, 49(94): 11007.

doi: 10.1039/c3cc44272a
[64]
Plougastel L, Pattanayak M R, Riomet M, Bregant S, Sallustrau A, Nothisen M, Wagner A, Audisio D, Taran F. Chem. Commun., 2019, 55(31): 4582.

doi: 10.1039/C9CC01458F
[65]
Depienne S, Alvarez-Dorta D, Croyal M, Temgoua R C, Charlier C, Deniaud D, Mével M, Boujtita M, Gouin S G. Chem. Sci., 2021, 12(46): 15374.

doi: 10.1039/D1SC04809K
[66]
Kielkowski P, Buchsbaum I Y, Becker T, Bach K, Cappello S, Sieber S A. ChemBioChem, 2020, 21(9): 1285.

doi: 10.1002/cbic.201900716 pmid: 32027064
[67]
Zhang G, Zheng S, Liu H, Chen P R. Chem. Soc. Rev., 2015, 44(11): 3405.

doi: 10.1039/c4cs00393d pmid: 25857695
[68]
Bruins J J, Blanco-Ania D, van der Doef V, van Delft F L, Albada B. Chem. Commun., 2018, 54(53): 7338.

doi: 10.1039/C8CC02638F
[69]
Kim S, Ko W, Park H, Lee H S. J. Vis. Exp., 2016, (118):.
[70]
Gong Y, Pan L. Tetrahedron Lett., 2015, 56(17): 2123.

doi: 10.1016/j.tetlet.2015.03.065
[71]
Boudjemeline M, McNitt C D, Singleton T A, Popik V V, Kostikov A P. Org. Biomol. Chem., 2018, 16(3): 363.

doi: 10.1039/c7ob02532g pmid: 29170778
[72]
Mushtaq S, Yun S J, Jeon J. Molecules, 2019, 24(19): 3567.

doi: 10.3390/molecules24193567
[73]
Mushtaq S, Park S H. Chem. Commun., 2020, 56(3): 415.

doi: 10.1039/C9CC08982A
[74]
Suazo K F, Park K Y, Distefano M D. Chem. Rev., 2021, 121(12): 7178.

doi: 10.1021/acs.chemrev.0c01108
[75]
Ning X, Temming R P, Dommerholt J, Guo J, Ania D B, Debets M F, Wolfert M A, Boons G J, van Delft F L. Angew. Chem. Int. Ed., 2010, 49(17): 3065.

doi: 10.1002/anie.201000408
[76]
Berti F, Adamo R. Chem. Soc. Rev., 2018, 47(24): 9015.

doi: 10.1039/C8CS00495A
[77]
van Hest J C, van Delft F L. ChemBioChem, 2011, 12(9): 1309.

doi: 10.1002/cbic.201100206 pmid: 21557431
[78]
Neef A B, Luedtke N W. ChemBioChem, 2014, 15(6): 789.

doi: 10.1002/cbic.201400037
[79]
Merkel M, Peewasan K, Arndt S, Ploschik D, Wagenknecht H A. ChemBioChem, 2015, 16(11): 1541.

doi: 10.1002/cbic.201500199
[80]
Gutsmiedl K, Fazio D, Carell T. Chem. -Eur. J., 2010, 16(23): 6877.

doi: 10.1002/chem.201000363
[81]
Singh S, Dubinsky-Davidchik I S, Kluger R. Org. Biomol. Chem., 2016, 14(42): 10011.

doi: 10.1039/C6OB01817C
[82]
Ning X, Guo J, Wolfert M A, Boons G J. Angew. Chem. Int. Ed., 2008, 47(12): 2253.

doi: 10.1002/anie.200705456
[83]
Hu H, Flynn N, Zhang H, You C, Hang R, Wang X, Zhong H, Chan Z, Xia Y, Chen X. Proc. Natl. Acad. Sci. U. S. A., 2021, 118(13): 8424.
[84]
Morey T M, Esmaeili M A, Duennwald M L, Rylett R J. Front. Cell Dev. Biol., 2021, 9,DOI:10.3389/fcell.2021.722560.

doi: 10.3389/fcell.2021.722560
[85]
Tan Y, Huang H, Ayers D C, Song J. ACS Cent. Sci., 2018, 4(8): 971.

doi: 10.1021/acscentsci.8b00170
[86]
Tan Y, Song J. Biomacromolecules, 2021, 22(8): 3408.

doi: 10.1021/acs.biomac.1c00477 pmid: 34292720
[87]
Fong D, Andrews G M, McNelles S A, Adronov A. Polym. Chem., 2018, 9(35): 4460.

doi: 10.1039/C8PY01003J
[88]
Whitehead S A, McNitt C D, Mattern-Schain S I, Carr A J, Alam S, Popik V V, Best M D. Bioconjug. Chem., 2017, 28(4): 923.

doi: 10.1021/acs.bioconjchem.6b00578
[89]
Canalle L A, van Berkel S S, de Haan L T, van Hest J C M. Adv. Funct. Mater., 2009, 19(21): 3464.

doi: 10.1002/adfm.200900743
[90]
Pramudya I, Kim C, Chung H. Polym. Chem., 2018, 9(26): 3638.

doi: 10.1039/C8PY00339D
[91]
Ornelas C, Broichhagen J, Weck M. J. Am. Chem. Soc., 2010, 132(11): 3923.

doi: 10.1021/ja910581d pmid: 20184364
[92]
Li H, Yin Y, Wang A, Li N, Wang R, Zhang J, Chen X, Pei X, Xie T. RSC Advances, 2020, 10(5): 2624.

doi: 10.1039/C9RA09067C
[93]
Ledin P A, Kolishetti N, Hudlikar M S, Boons G J. Chem. - Eur. J., 2014, 20(28): 8753.
[94]
McNelles S A, Adronov A. Macromolecules, 2017, 50(20): 7993.

doi: 10.1021/acs.macromol.7b01765
[95]
Ledin P A, Friscourt F, Guo J, Boons G J. Chem. - Eur. J., 2011, 17(3): 839.
[96]
Gunawardene P N, Corrigan J F, Workentin M S. J. Am. Chem. Soc., 2019, 141(30): 11781.

doi: 10.1021/jacs.9b05182 pmid: 31280560
[97]
Manova R K, Pujari S P, Weijers C A, Zuilhof H, van Beek T A. Langmuir, 2012, 28(23): 8651.

doi: 10.1021/la300921e
[98]
Zhang T, Zheng Z H, Cheng X, Ding X B, Peng Y X. Prog. Chem., 2008, 20(0708): 1090.
张涛, 郑朝晖, 成煦, 丁小斌, 彭宇行. 化学进展, 2008, 20(0708): 1090.).
[99]
Guo J, Chen G, Ning X, Wolfert M A, Li X, Xu B, Boons G J. Chem. - Eur. J., 2010, 16(45): 13360.
[100]
Fornasier M, Porcheddu A, Casu A, Raghavan S R, Jonsson P, Schillen K, Murgia S. J. Colloid Interface Sci., 2021, 582(Pt A): 246.
[101]
Wang C F, Sarparanta M P, Makila E M, Hyvonen M L, Laakkonen P M, Salonen J J, Hirvonen J T, Airaksinen A J, Santos H A. Biomaterials, 2015, 48: 108.

doi: 10.1016/j.biomaterials.2015.01.008
[102]
Gobbo P, Novoa S, Biesinger M C, Workentin M S. Chem. Commun., 2013, 49(38): 3982.

doi: 10.1039/c3cc41634h
[103]
Rojas-Sánchez L, Sokolova V, Riebe S, Voskuhl J, Epple M. ChemNanoMat, 2018, 5(4): 436.

doi: 10.1002/cnma.201800509
[104]
Fan G M, Han Q, Xiong X Q. Prog. Chem., 2014, 26(07): 1223.
范观铭, 韩骞, 熊兴泉. 化学进展, 2014, 26(07): 1223.).

doi: 10.7536/PC140108
[105]
Hodgson S M, Bakaic E, Stewart S A, Hoare T, Adronov A. Biomacromolecules, 2016, 17(3): 1093.

doi: 10.1021/acs.biomac.5b01711
[106]
Ono R J, Lee A L Z, Voo Z X, Venkataraman S, Koh B W, Yang Y Y, Hedrick J L. Biomacromolecules, 2017, 18(8): 2277.

doi: 10.1021/acs.biomac.7b00377
[1] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[2] Lujie Fan, Li Chen, Yin He, Hao Liu. Flexible Pressure/Strain Sensors Based on 3D Conductive Materials [J]. Progress in Chemistry, 2021, 33(5): 767-778.
[3] Qiang Zhang, Wenjun Huang, Yanbin Wang, Xingjian Li, Yiheng Zhang. Functionalization of Polyurethane Based on Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction [J]. Progress in Chemistry, 2020, 32(2/3): 147-161.
[4] Zhaoying Pan, Jianzhong Ma, Wenbo Zhang, Linfeng Wei. Flexible Conductive Polymer Composites in Strain Sensors* [J]. Progress in Chemistry, 2020, 32(10): 1592-1607.
[5] Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji. Photochemical Surface Modification of Biomedical Materials [J]. Progress in Chemistry, 2019, 31(10): 1425-1439.
[6] Dengxu Wang, Jinfeng Cao, Dongdong Han, Wensi Li, Shengyu Feng. Novel Organosilicon Synthetic Methodologies [J]. Progress in Chemistry, 2019, 31(1): 110-120.
[7] Wenjie Zhu, Guoan Tai, Xufeng Wang, Qilin Gu, Zenghui Wu, Kongjun Zhu. Fabrication and Strain Sensing Properties of Two-Dimensional Atomic Crystal Materials [J]. Progress in Chemistry, 2017, 29(11): 1285-1296.
[8] Yao Zhen, Dai Boen, Yu Yunfei, Cao Kun. Thiol-Epoxy Click Chemistry and Its Applications in Macromolecular Materials [J]. Progress in Chemistry, 2016, 28(7): 1062-1069.
[9] Ma Xiaochuan, Fei Hao. The Use of Metal Coordination in Peptide and Protein Research [J]. Progress in Chemistry, 2016, 28(2/3): 184-192.
[10] Xia Yong, Yao Hongtao, Miao Zhihui, Wang Fang, Qi Zhengjian, Sun Yu. Preparation and Application of Silicone Materials Based on Click Chemistry [J]. Progress in Chemistry, 2015, 27(5): 532-538.
[11] Yang Zhenglong, Xu Xiaoli, Zhao Yuxin. Synthesis of Organic/Inorganic Hybrid Materials via Thiol-Ene/Yne Click Chemistry [J]. Progress in Chemistry, 2014, 26(06): 996-1004.
[12] Xiong Xingquan, Tang Zhongke, Cai Lei. Synthesis of Functional Polymers via Combination of Thiol-Based Click Reactions with RAFT Polymerization [J]. Progress in Chemistry, 2012, (9): 1751-1764.
[13] Wang Zhipeng, Yuan Jinying* . Applications of Diels-Alder Reaction in Synthesis of Polymers with Well-Defined Architectures [J]. Progress in Chemistry, 2012, 24(12): 2342-2351.
[14] Xu Yuanhong, Xiong Xingquan, Cai Lei, Tang Zhongke, Ye Zhangji. Thiol-Ene Click Chemistry [J]. Progress in Chemistry, 2012, 24(0203): 385-394.
[15] Yang Zhenglong, Chen Qiuyun, Zhou Dan, Bu Yilong. Synthesis of Functional Polymer Materials via Thiol-Ene/Yne Click Chemistry [J]. Progress in Chemistry, 2012, 24(0203): 395-404.
Viewed
Full text


Abstract

Strain-Promoted Azide-Alkyne Cycloaddition