中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (2/3): 184-192 DOI: 10.7536/PC150625 Previous Articles   Next Articles

• Review and comments •

The Use of Metal Coordination in Peptide and Protein Research

Ma Xiaochuan, Fei Hao*   

  1. Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.81573339, 31170777).
PDF ( 3429 ) Cited
Export

EndNote

Ris

BibTeX

Metal ions are commonly seen in naturally occurring protein molecules, and often play pivotal roles in protein function. Deepening understanding of basic coordination models between amino acids and various metals facilitates artificial designs of novel peptide-metal coordination modalities that can be broadly applied in research fields such as peptide structure-function optimization, molecular assembly, labeling and imaging, and peptide therapeutics development. This minireview introduces the basic coordination chemistry between electron-donating groups on peptides (namely carboxylate, amine, imidazole, sulfhydryl groups) and their respective favorable metal ions with illustrated examples. We next discuss in detail the use of metal or metalloid coordination in fundamental research of peptides and proteins, including secondary structure constraining, supermolecular assembly, fluorescence or phosphorescence labeling, and protein folding analysis. In particular, we highlight two examples of luminogenic peptide/protein labeling techniques, the first being the broadly applied biarsenical ligand and tetracysteine motif based protein probing method, and the second being the recently reported iridium(Ⅲ) complex and histidine motif based peptide labeling technique. Finally we discuss the principles in the development of metallo-peptide molecular probes and the potential brought by this research for optimization in drug designs.

Contents
1 Introduction
2 Common binding groups in peptides for metal coordination
2.1 Carboxyl group
2.2 Amine group and imidazole group
2.3 Sulfhydryl group
3 The effects of metal coordination on peptide/protein structure
3.1 Folding and stabilization
3.2 Supermolecular assembly
4 Coordination-based peptide luminescent labeling and biological applications
5 Outlook

CLC Number: 

[1] Dokmanic I, Sikic M, Tomic S. Acta Crystallogr., 2008, 64:257.
[2] Gamble A J, Peacock A F A. Methods in Molecular Biology, 2014, 1216:211.
[3] Carafoli E, Klee C B. Calcium As A Cellular Regulator, Oxford University Press, 1999.
[4] Yumoto F, Nara M, Kagi H, Iwasaki, W, Ojima T, Nishita K, Nagata K, Tanokura M. Eur. J. Biochem., 2001, 268:6284.
[5] Babu A, Su H, Ryu Y, Gulati J. J. Biol. Chem., 1992, 267:15469.
[6] Medici S. Dalton Trans., 2012, 41:4378.
[7] Schmidbaur H, Classen H G, Helbig J. Angew. Chem. Int. Ed., 1990, 29:1090.
[8] Chang X, Jorgensen A M M, Bardrum P, Led J J. Biochemistry (Mosc), 1997, 36:9409.
[9] Paule S G, Nikolovski B, Ludeman J, Gray R E, Spiccia L, Zimmet P Z, Myers M A. Peptides, 2009, 30:1088.
[10] Paule S G, Nikolovski B, Gray R E, Ludeman J P, Freemantle A, Spark R A, Kerr J B, Ng F M, Zimmet P Z, Myers M A. Peptides, 2009, 30:955.
[11] Miura T, Suzuki K, Kohata N, Takeuchi H. Biochemistry (Mosc), 2000, 39:7024.
[12] Curtain C C, Ali F, Volitakis I, Cherny R A, Norton R S, Beyreuther K, Barrow C J, Masters C L, Bush A I, Barnham K J. J. Biol. Chem., 2001, 276:20466.
[13] Syme C D, Nadal R C, Rigby S E J, Viles J H. J. Biol. Chem., 2004, 279:18169.
[14] Ma M T, Hoang H N, Scully C C G, Appleton T G, Fairlie D P. J. Am. Chem. Soc., 2009, 131:4505.
[15] Ghadiri M R, Fernholz A K. J. Am. Chem. Soc., 1990, 112:9633.
[16] Laity J H, Lee B M, Wright P E. Curr. Opin. Struct. Biol., 2001, 11:39.
[17] Andreini C, Banci L, Bertini I, Rosato A J. Proteome Res., 2005, 5:196.
[18] Stillman M J. Coord. Chem. Rev., 1995, 144:461.
[19] Neupane K P, Pecoraro V L. Angew. Chem. Int. Ed., 2010, 122:8353.
[20] Peacock A F A, Pecoraro V L. Metal Ions in Life Sciences, 2013, 11(11):303.
[21] Peacock A F, Iranzo O, Pecoraro V L. Dalton Trans., 2009, 13:2271.
[22] Pecoraro V L, Peacock A F A, Iranzo O, ?uczkowski M. Bioinorganic Chemistry:Cellular Systems and Synthetic Models, 2009, 1012:183.
[23] Kulon K, Wo Dz' niak D, Wegner K, Grzonka Z, Koz?owski H J. Inorg. Biochem., 2007, 101:1699.
[24] Fosgerau K, Hoffmann T. Drug Discovery Today, 2015, 20(1):122.
[25] Dharanipragada R. Future Med. Chem., 2013, 5:831.
[26] Gavenonis J, Sheneman B A, Siegert T R, Eshelman M R, Kritzer J. A. Nat. Chem. Biol., 2014, 10:716.
[27] Ruoslahti E. Annu. Rev. Cell Dev. Biol., 1996, 12:697.
[28] Williams E. J. Biol. Chem., 2000, 275:4007.
[29] Giblin M F, Wang N, Hoffman T J, Jurisson S S, Quinn T P. Proc. Natl. Acad. Sci. U. S. A., 1998, 95:12814.
[30] Chen J, Cheng Z, Owen N K, Hoffman T J, Miao Y, Jurisson S S, Quinn T P. J. Nucl. Med., 2001, 42:1847.
[31] Hsiung H M. Endocrinology, 2005, 146:5257.
[32] Xu S, Li H, Shao X, Fan C, Ericksen B, Liu J, Chi C, Wang C. J. Med. Chem., 2012, 55:6881.
[33] Ma X C, Jia J J, Cao R, Wang X B, Fei H. J. Am. Chem. Soc., 2014, 136:17734.
[34] Ghadiri M R, Fernholz A K. J. Am. Chem. Soc., 1990, 112:9633.
[35] Cline D J, Thorpe C, Schneider J P. J. Am. Chem. Soc., 2003, 125:2923.
[36] Ramadan D, Cline D J, Bai S, Thorpe C, Schneider J P. J. Am. Chem. Soc., 2007, 129:2981.
[37] Tian Z Q, Bartlett P A. J. Am. Chem. Soc., 1996, 118:943.
[38] Sontz P A, Song W J, Tezcan F A. Curr. Opin. Chem. Biol., 2014, 19:42.
[39] Dong J, Shokes J E, Scott R A, Lynn D G. J. Am. Chem. Soc., 2006, 128:3540.
[40] Knerr P J, Branco M C, Nagarkar R, Pochan D J, Schneider J P. J. Mater. Chem., 2011, 22:1352.
[41] Dai Q, Dong M, Liu Z, Prorok M, Castellino F J. J. Inorg. Biochem., 2011, 105:52.
[42] Kohn W D, Kay C M, Sykes B D, Hodges R S. J. Am. Chem. Soc., 1998, 120:1124.
[43] Adams S R, Griffin B A, Tsien RY. Science, 1998, 281:269.
[44] Gaietta G, Deerinck T J, Adams S R, Bouwer J, Tour O, Laird D W, Sosinsky G E, Tsien R Y, Ellisman M H. Science, 2002, 296:503.
[45] Luedtke N W, Dexter R J, Fried D B, Schepartz A. Nat. Chem. Biol., 2007, 3:779.
[46] Griffin B A, Adams S R, Tsien R Y. Methods Mol. Biol., 2015, 1266.
[47] Rutkowska A, Haering C H, Schultz C. Angew. Chem. Int. Ed., 2011, 50:12655.
[48] Irtegun S, Wood R, Lackovic K, Schweiggert J, Ramdzan Y M, Huang D C, Mulhern T D, Hatters D M. ACS Chem. Biol., 2014, 9(7):1426.
[49] Yang Y, Zhang C Y. Anal. Chem., 2014, 86:967.
[50] Fessenden J D, Mahalingam M. PLoS One, 2013, 8(5):e64686.
[51] Varlamov O. Methods Mol. Biol., 2014, 1174:49.
[52] Lelek M 1, Di Nunzio F, Zimmer C. Methods Mol. Biol., 2014, 1174:183.
[53] Zhao Q, Huang C, Li F. Chem. Soc. Rev., 2011, 40(5):2508.
[54] Lo K K. Luminescent and Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular Reagents. Berlin:Springer, 2015.
[55] Zhou M, Fei H, Liu Y, Li W F. Prog. Chem., 2010, 22(01):201.
[56] Wang X B, Jia J J, Huang Z Z, Zhou M, Fei H. Chem. Eur. J., 2011, 17:8028.
[1] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[2] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[3] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[4] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[7] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[8] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[9] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.
[10] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[11] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.
[12] Yang Wang, Po Hu, Shuai Zhou, Jiajun Fu. Anticounterfeiting and Security Applications of Rare-Earth Upconversion Nanophosphors [J]. Progress in Chemistry, 2021, 33(7): 1221-1237.
[13] Xuebing Tao, Jipan Yu, Lei Mei, Changming Nie, Zhifang Chai, Weiqun Shi. Dinitrogen Activation by Uranium Complex [J]. Progress in Chemistry, 2021, 33(6): 907-913.
[14] Jianyun Lin, Shihe Luo, Chongling Yang, Ying Xiao, Liting Yang, Zhaoyang Wang. Bio-Based Polymeric Hemostatic Material and Wound Dressing [J]. Progress in Chemistry, 2021, 33(4): 581-595.
[15] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.