中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 110-120 DOI: 10.7536/PC180535 Previous Articles   Next Articles

• Review •

Novel Organosilicon Synthetic Methodologies

Dengxu Wang1,2,**(), Jinfeng Cao2, Dongdong Han2, Wensi Li2, Shengyu Feng1,2,**()   

  1. 1. National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100, China
    2. Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
  • Received: Revised: Online: Published:
  • Contact: Dengxu Wang, Shengyu Feng
  • About author:
    ** Corresponding author e-mail: (Dengxu Wang);
    (Shengyu Feng)
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(21502105); The work was supported by the National Natural Science Foundation of China(21774070); The Fund for Shandong Province Major Scientific and Technological Innovation Projects(2017CXGC1112)
Richhtml ( 49 ) PDF ( 3026 ) Cited
Export

EndNote

Ris

BibTeX

Organosilicon materials as a novel class of functional materials with unique properties have become one of the most important research fields in chemistry and material sciences. The present review summarizes novel synthetic methodologies, including alkynyl-azide cycloaddition reaction, thiol-ene reaction and amine-ene Michael addition reaction, for organosilicon synthesis. In particular, the advantages of these strategies and their applications in novel functional organosilicon compounds, organosilicon polymers and organosilicon elastomers are introduced. Finally, the trend and future prospects of novel synthetic strategies for organosilicon synthesis will be presented.

Scheme 1 Synthetic routes of silane coupling agents by CuAAC reactions. L is the linker and Functions is functional unit[10,11,12]
Scheme 2 Synthetic routes of functional disiloxanes and polysiloxanes by CuAAC reactions[15]
Scheme 3 Synthesis of organosilicon elastomers by CuAAC click reaction[18]. (A) 2 mm thick ×9 cm silicone film; (B) 1 cm × 5 mm thick silicone elastomer. Reproduced from Ref. [18] with permission. Copyright 2009, American Chemical Society
Scheme 4 Synthesis of polysiloxane-poly(olefin sulfone) compositions by CuAAC reaction and their decomposition via unzipping of POS when exposed to base. Reproduced from Ref.[20] with permission. Copyright 2010, American Chemical Society.
Scheme 5 Synthesis of organosilicon σ-π conjugated polymers via CuAAC reactions[23, 24]
Scheme 6 Mechanism of thiol-ene reactions. (A) Mechanism of free radical reaction; (B) Mechanism of Michael addition reaction
Scheme 7 Synthesis of functional polysiloxanes via thiol-ene reaction[30]
Scheme 8 Synthesis of organosilicon hyperbranced polymers via thiol-ene reaction[34]
Scheme 9 Modifying the surface of silicone rubbers. Reproduced from Ref. [48] with permission. Copyright 2013, American Chemical Society
Scheme 10 Synthesis of functional silanes via amine-ene reaction derived from [3-(1-piperazinyl)propyl]methyl- dimethoxysilane (a) and 3-aminopropyltriethoxylsilane (b)[51]
Scheme 11 Synthesis of temperature responsive polysiloxane (a)[53] and temperature and light dual-responsive polysiloxane (b)[55]
Scheme 12 Synthesis of silicone rubber via amine-ene reaction[58]
Scheme 13 Synthesis of anthracene-modified polysiloxane by amine-ene reaction and the formation of elastomers[61]
[1]
冯圣玉 ( Feng S), 张洁 (Zhang J), 朱庆增 (Zhu Q), 李美江 (Li M) . 有机硅高分子及其应用 (Organosilicon Polymers and Their Applications). 北京: 化学工业出版社 (Beijing: Chemical Industry Press). 2004.
[2]
Jones RG, Ando W, Chojnowski J . Silicon-Containing Polymers: The Royal Society ofChemistry. 2000.
[3]
Eduok U, Faye O, Szpunar J . Prog. Org. Coat., 2017,111:124.
[4]
Yilgör E, Yilgör I . Prog. Polym. Sci., 2014,39:1165.
[5]
Putzien S, Nuyken O, Kühn F E . Prog. Polym. Sci., 2010,35:687.
[6]
Nakajima Y, Shimada S . RSC Adv, 2015,5:20603.
[7]
Troegel D, Stohrer J . Coord. Chem. Rev., 2011,255:1440.
[8]
Xia Y, Yao H, Miao Z, Wang F, Qi Z, Sun Y . Prog. Chem, 2015,27:532.
[9]
Wang D, Klein J, Mejía E . Chem. Asian J., 2017,12:1180.
[10]
Moitra N, Moreau J J E, Cattoen X, Wong Chi Man M . Chem. Commun., 2010,46:8416.
[11]
Bürglová K, Moitra N, Hodacová J, Cattoën , Wong Chi Man M . J. Org. Chem., 2011,76:7326.
[12]
Bürglová K, Noureddine A, Hodacová J, Toquer G, Cattoën X, Wang Chi Man M . Chem. Eur. J., 2014,20:10371.
[13]
Madsen F B, Dimitrov I, Daugaard A E, Hvilsted S, Skov A L . Polym. Chem., 2013,4:1700.
[14]
Singh G, Mangat S S, Sharma H, Singh J, Arora A, Singh Pannu A P, Singh N . RSC Adv., 2014,4:36834.
[15]
Gonzaga F, Yu G, Brook M A . Chem. Commun., 2009,45:1730.
[16]
Fawcett A S, Brook M A . Macromolecules, 2014,47:1656.
[17]
Rambarran T, Bertrand A, Gonzaga F, Boisson F, Bernard J, Fleury E, Ganachaud F, Brook M A . Chem. Commun., 2016,52:6681.
[18]
Gonzaga F, Yu G, Brook M A . Macromolecules, 2009,42:9220.
[19]
Rambarran T, Gonzaga F, Brook M A . Generic,Macromolecules, 2012,45:2276.
[20]
Lobez J M, Swager T M . Macromolecules, 2010,43:10422.
[21]
Bretzler V, Grübel M, Meister S, Rieger B . Macromol. Chem. Phy., 2014,215:1396.
[22]
Rambarran T, Gonzaga F, Brook M A . J. Polym. Sci. Polym. Chem., 2013,51:855.
[23]
Wang Y, Wang D, Han J, Feng S Y . J. Organomet. Chem., 2011,696:1874.
[24]
Wang Y, Wang D, Xu C, Wang R, Han J, Feng S Y . J. Organomet. Chem., 2011,696:3000.
[25]
Chandran M S, Sunitha K, Gayathri D S, Soumyamol P B, Mathew D . J. Mater. Sci., 2018,53:2497.
[26]
Theodor P . Ber. Deut. Chem. Gesellschaft., 1905,38:646.
[27]
Franc G, Kakkar A K . Chem. Soc. Rev., 2010,39:1536.
[28]
Tucker-Schwartz A K, Farrell R A, Garrell R L . J. Am. Chem. Soc., 2011,133:11026.
[29]
Cao J F, Zuo Y J, Wang D, Zhang J, Feng S Y . New J.Chem., 2017,41:8546.
[30]
Xue L, Wang D, Yang Z, Liang Y, Zhang J, Feng S Y . Eur. Polym. J., 2013,49:1050.
[31]
Cao J F, Zuo Y J, Lu H, Yang Y, Feng S Y . J. Photochem. Photobio. Chem., 2018,350:152.
[32]
Li L, Xue L, Feng S Y, Liu H . Inorg.Chim Acta, 2013,407:269.
[33]
Xue L, Li L, Feng S Y, Liu H . J. Organomet. Chem., 2015,783:49.
[34]
Xue L, Yang Z, Wang D, Wang Y, Zhang J, Feng S Y . J. Organomet. Chem., 2013,732:1.
[35]
Zhang Z, Feng S Y, Zhang J . Macromol. Rapid Commun., 2016,37:318.
[36]
Zuo Y J, Gou Z M, Cao J F, Li X, Feng S Y . RSC Adv., 2016,6:45193.
[37]
Yang H, Liu M X, Yao Y W, Tao P Y, Lin B P, Keller P, Zhang X Q, Sun Y, Guo L X . Macromolecules, 2013,46:3406.
[38]
Xue L, Zhang Y, Zuo Y J, Diao S, Zhang J, Feng S Y . Mater. Lett., 2013,106:425.
[39]
van den Berg O, Nguyen L T T, Teixeira R F A, Goethals F, Özdilek C, Berghmans S, Du Prez F . Macromolecules, 2014,47:1292.
[40]
Nguyen K D Q, Megone W V, Kong D, Gautrot J E . Polym. Chem., 2016,7:5281.
[41]
Zuo Y J, Lu H, Xue L, Wang X, Ning L, Feng S Y . J. Mater. Chem. C., 2014,2:2724.
[42]
Zuo Y J, Lu H F, Xue L, Wang X M, Wu LF, Feng S Y . Chem. Eur. J., 2014,20:12924.
[43]
Zuo Y J, Cao J F, Feng S Y . Adv. Funct. Mater., 2015,25:2754.
[44]
Zuo Y J, Gou Z M, Zhang C, Feng S Y . Macromol. Rapid Commun., 2016,37:1052.
[45]
Zuo Y J, Gou Z M, Zhang J, Feng S Y . Macromol. Rapid Commun., 2016,37:597.
[46]
Ozmen M M, Fu Q, Kim J, Qiao G G . Chem. Commun., 2015,51:17479.
[47]
Gan Y, Jiang X, Yin J . J. Mater. Chem. C, 2014,2:5533.
[48]
Zhang J, Chen Y, Brook M A . Langmuir, 2013,29:12432.
[49]
Magennis E P, Hook AL, Williams P, Alexander M R . ACS Appl. Mater. Inter., 2016,8:30780.
[50]
Michael A . Am. Chem. J., 1887,9:115.
[51]
Feng L, Zhu S, Zhang W, Mei K, Wang H, Feng S Y . ChemistrySelect, 2017,2:3721.
[52]
Genest A, Binauld S, Pouget E, Ganachaud F, Fleury E, Portinha D . Polym.Chem, 2017,8:624.
[53]
Li S, Feng S . RSC Adv, 2016,6:99414.
[54]
Li S, Feng L, Lu H, Feng S . New J Chem., 2017,41:1997.
[55]
Feng K, Li S, Feng L, Feng S . New J Chem., 2017,41:14498.
[56]
Dvornic P R, Hu J, Reeves S D, Owen M J . Silicon Chem., 2002,1:177.
[57]
Lu H, Feng L, Li S, Zhang J, Lu H, Feng S Y . Macromolecules, 2015,48:476.
[58]
Feng L, Zhou L, Feng S . RSC Adv, 2016,6:111648.
[59]
Feng L, Li S, Feng S Y . RSC Adv., 2017,7:13130.
[60]
Cao J F, Feng L, Feng S Y . New J.Chem., 2018,42:1973.
[61]
Han D D Lu H, Li W S, Li Y, Feng S Y . RSC Adv., 2017,7:56489.
[62]
Loayza A, Cabanelas JC, González M, Baselga J . Polymer, 2015,69:178.
[63]
Jothibasu S, Ashok Kumar A, Alagar M . J. Sol-Gel Sci. Tech., 2007,43:337.
[64]
Van Damme J, van den Berg O, Brancart J, Vlaminck L, Huyck C, Van Assche G, van Mele B, Du Prez F . Macromolecules, 2017,50:1930.
[65]
Fawcett A S, Hughes T C, Zepeda-Velazquez L, Brook M A . Macromolecules, 2015,48:6499.
[66]
Jo Y Y, Lee A, Baek K Y, Lee H, Hwang S S . Polymer, 2017,108:58.
[67]
Gou Z M, Zuo Y J, Feng S Y . RSC Adv., 2016,6:73140.
[68]
Zhang J, Chen Y, Sewell P, Brook M A . Green Chem., 2015,17:1811.
[69]
Fawcett A S, Grande J B, Brook M A . J. Polym. Sc. Polym. Chem., 2013,51:644.
[70]
Brook M A, Grande J B, Ganachaud F. Silicon Polymers , Springer-Verlag-Berlin, 2011. 161.
[71]
Grande J B, Fawcett A S, McLaughlin A J, Gonzaga F, Bender T P, Brook M A . Polymer, 2012,53:3135.
[72]
Brook M A . Chem. Eur. J., 2018,24:8458.
[73]
Lai J C, Mei J F, Jia X Y, Li C H, You X Z, Bao Z N . Adv. Mater., 2016,28:8277.
[74]
Li C H, Wang C, Keplinger C, Zuo J L, Jin L, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You X Z, Bao Z N . Nat. Chem., 2016,8:618.
[75]
Zhao J, Xu R, Luo G, Wu J, Xia H . J. Materi. Chem. B, 2016,4:982.
[1] Liao Yiming, Wu Baoqi, Tang Rongzhi, Lin Feng, Tan Yu. Strain-Promoted Azide-Alkyne Cycloaddition [J]. Progress in Chemistry, 2022, 34(10): 2134-2145.
[2] Qiang Zhang, Wenjun Huang, Yanbin Wang, Xingjian Li, Yiheng Zhang. Functionalization of Polyurethane Based on Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction [J]. Progress in Chemistry, 2020, 32(2/3): 147-161.
[3] Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji. Photochemical Surface Modification of Biomedical Materials [J]. Progress in Chemistry, 2019, 31(10): 1425-1439.
[4] Yao Zhen, Dai Boen, Yu Yunfei, Cao Kun. Thiol-Epoxy Click Chemistry and Its Applications in Macromolecular Materials [J]. Progress in Chemistry, 2016, 28(7): 1062-1069.
[5] Xia Yong, Yao Hongtao, Miao Zhihui, Wang Fang, Qi Zhengjian, Sun Yu. Preparation and Application of Silicone Materials Based on Click Chemistry [J]. Progress in Chemistry, 2015, 27(5): 532-538.
[6] Yang Zhenglong, Xu Xiaoli, Zhao Yuxin. Synthesis of Organic/Inorganic Hybrid Materials via Thiol-Ene/Yne Click Chemistry [J]. Progress in Chemistry, 2014, 26(06): 996-1004.
[7] Xiong Xingquan, Tang Zhongke, Cai Lei. Synthesis of Functional Polymers via Combination of Thiol-Based Click Reactions with RAFT Polymerization [J]. Progress in Chemistry, 2012, (9): 1751-1764.
[8] Wang Zhipeng, Yuan Jinying* . Applications of Diels-Alder Reaction in Synthesis of Polymers with Well-Defined Architectures [J]. Progress in Chemistry, 2012, 24(12): 2342-2351.
[9] Xu Yuanhong, Xiong Xingquan, Cai Lei, Tang Zhongke, Ye Zhangji. Thiol-Ene Click Chemistry [J]. Progress in Chemistry, 2012, 24(0203): 385-394.
[10] Yang Zhenglong, Chen Qiuyun, Zhou Dan, Bu Yilong. Synthesis of Functional Polymer Materials via Thiol-Ene/Yne Click Chemistry [J]. Progress in Chemistry, 2012, 24(0203): 395-404.
[11] Qiu Suyan, Gao Sen, Lin Zhenyu, Chen Guonan. Advances in Click Chemistry [J]. Progress in Chemistry, 2011, 23(4): 637-648.
[12] Yuan Weizhong, Zhang Jinchun, Wei Jingren. Synthesis of Well-Defined Polymer via a Combination of Click Chemistry and Living Radical Polymerization [J]. Progress in Chemistry, 2011, 23(4): 760-771.
[13] Yang Qizhi, Liu Jia, Jiang Xulin. Application of Click Chemistry in Biomedical Polymers [J]. Progress in Chemistry, 2010, 22(12): 2377-2387.
[14] He Naipu, He Yufeng, Wang Rongmin, Song Pengfei, Zhou Yun. Protein Polymer Conjugates [J]. Progress in Chemistry, 2010, 22(12): 2388-2396.
[15] . Application of “Click Chemistry” in Synthesis of Radiopharmaceuticals [J]. Progress in Chemistry, 2010, 22(08): 1591-1602.