中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (4): 512-523 DOI: 10.7536/PC200636 Previous Articles   Next Articles

• Review •

Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes

Wendi Guo1, Ye Liu1()   

  1. 1 Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
  • Received: Revised: Online: Published:
  • Contact: Ye Liu
  • Supported by:
    the National Natural Science Foundation of China(21972045)
Richhtml ( 67 ) PDF ( 817 ) Cited
Export

EndNote

Ris

BibTeX

Carbonylation(such as hydroformylation, alkoxycarbonylation, hydroxycarbonylation, aminocarbonylation) provides an effective way to synthesize the high value-added carbonyl compounds such as aldehydes(/alcohols), carboxylic acids, carboxylate esters, amides etc., which is advantageous with high atom-economy, excellent selectivities, and mild conditions in comparison to the oxidation. The raw materials involved in carbonylation are comprised of alkenes, alkynes, halohydrocarbons, alcohols etc. Thereinto, with CO or CO-surrogates as carbonyl source, carbonylation of alkyne with different nucleophiles(such as water, alcohols, amines) over transition-metal catalysts, is one of the most attractive processes to produce the corresponding carbonyl compounds like carboxylic acids, carboxylate esters and amines with 100% atom-economy. The obtained carbonyl compounds are widely applied in the production of pharmaceuticals, foods, and cosmetics as well as organic synthesis like polymerization, Aldol condensation and Micheal addition. In this review, the research status on carbonylation of alkynes in recent decade, in terms of reaction types and carbonyl sources, are summarized and prospected.

Contents

1 Introduction

2 Alkoxycarbonylation of alkynes

3 Aminocarbonylation of alkynes

4 Hydroxycarbonylation of alkynes

5 Double carbonylation of alkynes

6 CO surrogates in carbonylation of alkynes

6.1 Formates as CO source

6.2 Formic acid as CO source

6.3 Metal-carbonyl compounds as CO source

7 Conclusion and outlook

Scheme 1 Carbonylation of alkynes catalyzed by transition metal catalysts
Scheme 2 General reaction mechanism: transition metal-catalyzed carbonylation of alkynes
Scheme 3 The application of ligands 2-PyPPh2 in Pd-catalyzed alkoxycarbonylation of alkynes[10]
Scheme 4 The application of ligands contaning pyrimidine groups in Pd-catalyzed alkoxycarbonylation of alkynes[11]
Scheme 5 Pd-catalyzed alkoxycarbonylation of terminal alkynes with phosphine ligand L4[12]
Scheme 6 Pd-catalyzed alkoxycarbonylation of terminal alkynes with phosphine ligand L5[13]
Scheme 7 The application of phospha-adamantyl ligand L6 in Pd-catalyzed alkoxycarbonylation of alkynes[14]
Scheme 8 Bifunctional ligands L7 for Pd-catalyzed selective alkoxycarbonylation of alkynes[15]
Scheme 9 The application of L8 modified palladium catalyst in alkoxycarbonylation of alkynes[16]
Scheme 10 Alkoxycarbonylation of alkynes to the linear product catalyzed by Pd(dppf)(PhCN)2](BF4)2[17]
Scheme 11 Alkoxycarbonylation of alkynes to the linear product catalyzed by Pd2(dba)3/BDTPMB/MsOH[18]
Scheme 12 Pd-catalyzed regioselective aminocarbonylation of terminal alkynes[19,20]
Scheme 13 Pd-catalyzed regioselective aminocarbonylation of terminal alkynes[21]
Scheme 14 Pa-catalyzed aminocarbonylation of alkynes using ionic liquid [Bmim]NTf2 as solvent[22]
Scheme 15 Pd-catalyzed aminocarbonylation of alkynes with aliphatic amines[23]
Scheme 16 Palladium-catalyzed hydroaminocarbonylation of alkynes with tertiary amines via C—N bond cleavage[24]
Scheme 17 Fe-catalyzed bis-aminocarbonylation of alkynes[25]
Scheme 18 ZrF4 as co-catalyst promoted Fe-catalyzed aminocarbonylation[26]
Scheme 19 Pd-catalyzed bis-aminocarbonylation of alkynes using ammonium salt as amine source[27,28]
Scheme 20 Palladium catalyzed hydroxycarboxylation of acetylene[32]
Scheme 21 Hydroxycarboxylation of to the linear product catalyzed by Pd2(dba)3/BDTPMB/MsOH[18]
Scheme 22 Pd-catalyzed hydroxycarbonylation of alkynes in the presence of BINAPS[33]
Scheme 23 Tri-functional ligand L10 for Pd-catalyzed hydroxycarbonylation of alkynes[34]
Scheme 24 Bis-alkoxycarbonylation of alkynes over Pd-L11 catalyst[35]
Scheme 25 Bi-functional ligand L12 for Pd-catalyzed bis-alkoxycarbonylation of alkynes[36]
Scheme 26 Bis-alkoxycarbonylation of alkynes over Pd-Xantphos/Al(OTf)3 bifunctional catalytic system in the way of synergetic catalysis[37]
Scheme 27 Rh-catalyzed bis-alkoxycarbonylation of internal alkynes with pyridin-2-ylmethanol[38]
Scheme 28 Fe3(CO)12-catalyzed aminocarbonylation of alkynes to succinimides[41]
Scheme 29 Pd(xantphos)Cl2-catalyzed aminocarbonylation of alkynes to succinimides[42]
Scheme 30 Palladium catalyzed oxidative carbonylation of alkynes with air as oxidant[43]
Scheme 31 Alkoxycarbonylation of alkynes using 2-pyridylmethyl formate as the carbon monoxide source[48]
Scheme 32 Palladium-catalyzed alkoxycarbonylation of diphenylacetylene using phenyl formate as the carbon monoxide source[49]
Scheme 33 Palladium-catalyzed hydrocarboxylation of alkynes using formic acid as CO surrogate[50]
Scheme 34 Nickel-catalyzed hydrocarboxylation of alkynes using formic acid as CO surrogate[51,52]
Scheme 35 Pd-catalyzed oxidative aminocarbonylation of alkynes of alkynes using Mo(CO)6 as CO surrogate[53]
[1]
Kalck P, Urrutigoïty M. Inorganica Chimica Acta, 2015, 431: 110.
[2]
Mu Q C, Nie Y X, Bai X F, Chen J, Yang L, Xu Z, Li L, Xia C G, Xu L W. Chem. Sci., 2019, 10(40): 9292.

doi: 10.1039/c9sc03081f pmid: 32055315
[3]
Bai X F, Mu Q C, Xu Z, Yang K F, Li L, Zheng Z J, Xia C G, Xu L W. ACS Catal., 2019, 9(2): 1431.
[4]
Cao J, Zheng Z J, Xu Z, Xu L W. Coord. Chem. Rev., 2017, 336: 43.
[5]
Johnson J R, Cuny G D, Buchwald S L. Angew. Chem. Int. Ed., 1995, 34: 1760.
[6]
Ishii Y, Miyashita K, Kamita K, Hidai M. J. Am. Chem. Soc., 1997, 119: 6448.
[7]
Fang X J, Zhang M, Jackstell R, Beller M. Angew. Chem. Int. Ed., 2013, 52(17): 4645.
[8]
Kiss G. Chem. Rev., 2001, 101(11): 3435.

doi: 10.1021/cr010328q pmid: 11840990
[9]
Wu X F, Fang X J, Wu L P, Jackstell R, Neumann H, Beller M. Acc. Chem. Res., 2014, 47(4): 1041.

pmid: 24564478
[10]
Drent E, Arnoldy P, Budzelaar P H M. J. Organomet. Chem., 1993, 455(1/2): 247.
[11]
Reetz M T, Demuth R, Goddard R. Tetrahedron Lett., 1998, 39(39): 7089.
[12]
Scrivanti A, Beghetto V, Campagna E, Matteoli U. J. Mol. Catal. A: Chem., 2001, 168(1/2): 75.
[13]
Green M J, Cavell K J, Edwards P G, Tooze R P, Skelton B W, White A H. Dalton Trans., 2004,(20): 3251.
[14]
Shuttleworth T A, Miles-Hobbs A M, Pringle P G, Sparkes H A. Dalton Trans., 2017, 46(1): 125.

pmid: 27922644
[15]
Qi H M, Huang Z J, Wang M L, Yang P J, Du C X, Chen S W, Li Y H. J. Catal., 2018, 363: 63.
[16]
Yang D, Liu L, Wang D L, Lu Y, Zhao X L, Liu Y. J. Catal., 2019, 371: 236.
[17]
Akao M, Sugawara S, Amino K, Inoue Y. J. Mol. Catal. A: Chem., 2000, 157(1/2): 117.
[18]
Núñez Magro A A, Robb L M, Pogorzelec P J, Slawin A M Z, Eastham G R, Cole-Hamilton D J. Chem. Sci., 2010, 1(6): 723.
[19]
El Ali B, Tijani J, El-Ghanam A M. J. Mol. Catal. A: Chem., 2002, 187(1): 17.
[20]
El Ali B, Tijani J. Appl. Organometal. Chem., 2003, 17(12): 921.
[21]
Sha F, Alper H. ACS Catal., 2017, 7(3): 2220.
[22]
Li Y, Alper H, Yu Z K. Org. Lett., 2006, 8(23): 5199.

pmid: 17078677
[23]
Wang D L, Guo W D, Liu L, Zhou Q, Liang W Y, Lu Y, Liu Y. Catal. Sci. Technol., 2019, 9: 1334.
[24]
Gao B, Huang H M. Org. Lett., 2017, 19(22): 6260.

pmid: 29111748
[25]
Driller K M, Prateeptongkum S, Jackstell R, Beller M. Angew. Chem. Int. Ed., 2011, 50(2): 537.
[26]
Huang Z, Dong Y N, Li Y D, Makha M, Li Y H. ChemCatChem, 2019, 11: 5236.
[27]
Ji X L, Gao B, Zhou X B, Liu Z J, Huang H M. J. Org. Chem., 2018, 83(17): 10134.

pmid: 29952205
[28]
Wang D L, Guo W D, Zhou Q, Liu L, Lu Y, Liu Y. ChemCatChem, 2018, 10(19): 4264.
[29]
Jin X, Meng K, Zhang G, Liu M, Song Y, Song Z, Yang C. Green Chem., 2021, 23(1): 51.
[30]
Sarkar B R, Chaudhari R V. Catal. Surv. from Asia, 2005, 9(3): 193.
[31]
Tang C M, Zeng Y, Cao P, Yang X G, Wang G Y. Catal. Lett., 2009, 129(1/2): 189.
[32]
Tang C M, Zeng Y, Yang X G, Lei Y C, Wang G Y. J. Mol. Catal. A: Chem., 2009, 314(1/2): 15.
[33]
Williams D B G, Shaw M L, Hughes T. Organometallics, 2011, 30(18): 4968.
[34]
Yang D, Liu H, Liu L, Guo W D, Lu Y, Liu Y. Green Chem., 2019, 21(19): 5336.
[35]
Liu J W, Dong K W, Franke R, Neumann H, Jackstell R, Beller M. J. Am. Chem. Soc., 2018, 140(32): 10282.

pmid: 30032618
[36]
Yang D, Liu H, Wang D L, Luo Z J, Lu Y, Xia F, Liu Y. Green Chem., 2018, 20(11): 2588.
[37]
Guo W D, Liu L, Yang S Q, Chen X C, Lu Y, Vo-Thanh G, Liu Y. ChemCatChem, 2020, 12(5): 1376.
[38]
Inoue S, Yokota K, Tatamidani H, Fukumoto Y, Chatani N. Org. Lett., 2006, 8(12): 2519.

pmid: 16737303
[39]
Abell A D, Oldham M D. J. Org. Chem., 1997, 62(5): 1509.
[40]
Reddy P Y, Kondo S, Toru T, Ueno Y. J. Org. Chem., 1997, 62(8): 2652.

pmid: 11671615
[41]
Driller K M, Klein H, Jackstell R, Beller M. Angew. Chem. Int. Ed., 2009, 48(33): 6041.
[42]
Liu H Z, Lau G P S, Dyson P J. J. Org. Chem., 2015, 80(1): 386.

pmid: 25418524
[43]
Yang J, Liu J W, Jackstell R, Beller M. Chem. Commun., 2018, 54(76): 10710.
[44]
Sayago F J, Laborda P, Calaza M I, JimÉnez A I, Cativiela C. Eur. J. Org. Chem., 2011, 2011(11): 2011.
[45]
Wu X S, Zhao Y, Ge H B. J. Am. Chem. Soc., 2015, 137(15): 4924.

pmid: 25815529
[46]
Mondal K, Halder P, Gopalan G, Sasikumar P, Radhakrishnan K V, Das P. Org. Biomol. Chem., 2019, 17(21): 5212.

pmid: 31080990
[47]
Dai J, Ren W L, Wang H N., Shi Y N. Org. Biomol. Chem., 2015, 13: 8429.

pmid: 26186060
[48]
Na Y, Ko S, Hwang L K, Chang S. Tetrahedron Lett., 2003, 44(24): 4475.
[49]
Katafuchi Y, Fujihara T, Iwai T, Jun T R, Tsuji Y. Adv. Synth. Catal., 2011, 353(2/3): 475.
[50]
Hou J, Xie J H, Zhou Q L. Angew. Chem. Int. Ed., 2015, 54: 6302.
[51]
Hou J, Yuan M L, Xie J H, Zhou Q L. Green Chem., 2016, 18(10): 2981.
[52]
Fu M C, Shang R, Cheng W M, Fu Y. ACS Catal., 2016, 6(4): 2501.
[53]
Nagarsenkar A, Prajapti S K, Guggilapu S D, Nagendra Babu B. Org. Lett., 2015, 17(18): 4592.

pmid: 26332943
[1] Liao Yiming, Wu Baoqi, Tang Rongzhi, Lin Feng, Tan Yu. Strain-Promoted Azide-Alkyne Cycloaddition [J]. Progress in Chemistry, 2022, 34(10): 2134-2145.
[2] Xuemei Wei, Zhanwei Ma, Xinyuan Mu, Jinzhi Lu, Bin Hu. Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous [J]. Progress in Chemistry, 2021, 33(2): 243-253.
[3] Chenghao Zhu, Junliang Zhang. Palladium Catalyzed Heck-Type Reaction of Organic Halides and Alkyl-Alkynes [J]. Progress in Chemistry, 2020, 32(11): 1745-1752.
[4] Mengya Yuan, Xiaoyun Chen*, Shengling Lin*. Synthesis of the Functionalized Enamine [J]. Progress in Chemistry, 2018, 30(8): 1082-1096.
[5] Song Heyuan, Kang Meirong, Jin Ronghua, Jin Fuxiang, Chen Jing. Application of Ionic Liquids to the Carbonylation Reactions [J]. Progress in Chemistry, 2016, 28(9): 1313-1327.
[6] Zhu Zhuangli, Zhang Weiqiang, Gao Ziwei. Suzuki-Miyaura Carbonylative Reaction in the Synthesis of Biaryl Ketones [J]. Progress in Chemistry, 2016, 28(11): 1626-1633.
[7] Chen Feng, Bai Ying, Li Jiayun*, Xiao Wenjun, Peng Jiajian*. The Application on Nitrogen-Coordinating Transition Metal Complexes on Hydrosilylation [J]. Progress in Chemistry, 2015, 27(7): 806-817.
[8] Wang Xue, Tan Chen, Li Yongqi, Zhang Heng, Liu Ye. Synthesis of Ionic Phosphines and Corresponding Ionic Transition Metal Complexes and Their Applications in Homogeneous Catalysis [J]. Progress in Chemistry, 2015, 27(1): 27-37.
[9] You Hongxing, Wang Yongyong, Wang Xuezhu, Liu Ye. Syntheses and Catalytic Applications of the Transition Metal Complex-Functionalized Ionic Liquids [J]. Progress in Chemistry, 2013, 25(10): 1656-1666.
[10] Liu Lei, Liu Jingang*. Bioinspired Catalysis for New Energy Exploration and CO2 Photoreduction [J]. Progress in Chemistry, 2013, 25(04): 563-576.
[11] Yuan Sichun Chen Haibo Wang Huichuan. Assembly and Metal Complex Properties of Terpyridine Ligands [J]. Progress in Chemistry, 2009, 21(10): 2132-2152.
[12] Zhang Xiaopeng1,2 Jing Huanzhi1 Miao Jianghuan1 Lu Shiwei2**. Advances in the Synthesis of Thiocarbamates [J]. Progress in Chemistry, 2008, 20(0708): 1102-1107.
[13] Chai Fenglan|Wang Xiangyu**|Tao Jingchao. Chiral Schiff Base Complexes for the Asymmetric Epoxidation [J]. Progress in Chemistry, 2008, 20(0203): 300-311.
[14]

Song Yibing|Luo Aiguo|Du Yuhai|Fang Yiwen

. Synthesis of Dimethyl Carbonate by Direct Vapor-phase Oxycarbonylation of Methanol [J]. Progress in Chemistry, 2008, 20(0203): 221-226.
[15] Qun Gao,Ajun Wan**. NO Releasing Diazeniumdiolates and Targeting NO Releasing Materials [J]. Progress in Chemistry, 2006, 18(09): 1101-1109.