中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (9): 1313-1327 DOI: 10.7536/PC160213 Previous Articles   Next Articles

• Review and comments •

Application of Ionic Liquids to the Carbonylation Reactions

Song Heyuan1,2, Kang Meirong1, Jin Ronghua1, Jin Fuxiang1, Chen Jing1*   

  1. 1. State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21473225).
PDF ( 1391 ) Cited
Export

EndNote

Ris

BibTeX

Ionic liquids have been widely applied as an alternative reaction medium as well as environmentally benign catalysts of chemical transformations due to their favorable properties of excellent solubility, strong complexing activity, good thermal and chemical stability over a wide temperature range, modifiable, low corrosion and environment-friendly. Ionic liquids also possess the advantageous characteristics of both homogenous and heterogeneous catalyst system, such as uniform catalytic active centers, easy separation and recyclability. In this review, the latest achievements in the carbonylation reactions and catalytic reaction mechanism in ionic liquids are summarized,mainly including the carbonylation of alkene, alcohol, arene, amines/amino alcohols, halogeno-arenes, and formaldehyde with CO, CO2, and dimethyl carbonate as carbonyl source. As for the type of task-specific ionic liquids, the review focuses on acidic ionic liquids, basic ionic liquids, organometallic ionic liquids, supported ionic liquids and so on. The previous progress show that there are several merits for the application of ionic liquids in the carbonylation reactions, which not only improved the catalytic activity and selectivity of reaction, but also simplified the work-up, and facilitated the separation and reuse of traditional catalyst. Furthermore, the prospective to the development and application of ionic liquids in the carbonylation reactions is also discussed.

Contents
1 Introduction
2 Application of ionic liquids in the carbonylation reactions
2.1 Carbonylation of alkenes
2.2 Carbonylation of alcohol compounds
2.3 Carbonylation of arenes
2.4 Carbonylation of N-containing compounds
2.5 Carbonylation of halogeno-arenes
2.6 Carbonylation of formaldehyde
3 Conclusion

CLC Number: 

[1] Sneeden R P A, Tkatchenko I, Villeurbanne C N R S. In:Wilkinson G, Stone F G A, Abel E W, ed. Comprehensive Organometallic Chemistry, vo1. 8. New York:Pergamon, 1982. 1.
[2] Roelen O. DE 849548, 1938.
[3] 刘建华(Liu J H),陈静(Chen J),孙伟(Sun W),夏春谷(Xia C G). 催化学报(Chin. Catal.), 2010, 31(1):1.
[4] Lapidus A L, Eliseev O L, Stepin N N, Bondarenko T N. Russ. Chem. Bull., 2004, 53:(11):2564.
[5] Eliseev O L, Stepin N N, Bondarenko T N, Lapidus A L. Dokl. Chem., 2005, 401(2):59.
[6] Lapidus A, Eliseev O, Bondarenko T, Stepin N. J. Mol. Catal. A:Chem., 2006, 252:245.
[7] Zim D, de Souza R F, Dupont J, Monteiro A L. Tetrahedron Lett., 1998, 39:7071.
[8] Rangits G, Kollár L. J. Mol. Catal. A:Chem., 2006, 246:59.
[9] Lapidus A, Eliseev O, Bondarenko T, Stepin N. J. Mol. Catal. A:Chem., 2006, 252:245.
[10] Lapidus A L, Eliseev O L. Solid Fuel Chem., 2010, 44(3):60.
[11] Qiao K, Yokoyama C. Catal. Commun., 2006, 7(7):450.
[12] 乔焜(Qiao K),邓友全(Deng Y Q). 化学学报(Acta Chim. Sinica), 2002, 60(6):996.
[13] Jiang T, Han B X, Zhao G Y, Chang Y H, Gao L, Zhang J M, Yang G Y. J. Chem. Res., 2003, 29:549.
[14] Dong W S, Zhou X S, Xin C S, Liu C L, Liu Z T. Appl. Catal. A:Gen., 2008, 334(1/2):100.
[15] Wang H, Wang B, Liu C L, Dong W S. Microporous Mesoporous Mater., 2010, 134(1/3):51.
[16] Schneider M J, Haumann M, Stricker M, Sundermeyer J, Wasserscheid P. J. Catal., 2014, 309:71.
[17] De C Y, Lu B, Lv H, Yu Y Y, Bai Y, Cai Q H. Catal. Lett., 2009,128(3):459.
[18] 肖丽平(Xiao L P), 张贵荣(Zhang G R), 张丽(Zhang L), 钮东方(Niu D F),陆嘉星(Lu J X). 催化学报(Chin. J. Catal.), 2009, 30(1):43.
[19] Consorti C S, Ebeling G, Dupont J. Tetrahedron Lett., 2002, 43(5):753.
[20] Zhang Q H, Shi F, Gu Y L, Yang J, Deng Y Q. Tetrahedron Lett., 2005, 46(35):5907.
[21] Knifton J F. US 4554383, 1985.
[22] Yanni S R. WO 00/15594, 2000.
[23] Brausch N, Metlen A, Wasserscheid P. Chem. Commun., 2004(13), 1552.
[24] Angueira E J, White M G. J. Mol. Catal. A:Chem., 2005, 238:163.
[25] 章维超(Zhang W C), 赵卫娟(Zhao W J), 卓广澜(Zhuo G L), 姜玄珍(Jiang X Z). 催化学报(Chin. J. Catal.), 2006, 27(1):36.
[26] Angueira E J, White M G. J. Mol. Catal. A:Chem., 2007, 277:164.
[27] 金云(Jin Y), 辛忠(Xin Z). 应用化工(Appl. Chem. Industry), 2009, 38(3):421.
[28] Zhao W J, Jiang X Z. Catal. Lett., 2006, 107(1/2):123.
[29] Shi F, He Y D, Li D M, Ma Y B, Zhang Q H, Deng Y Q. J. Mol. Catal. A:Chem., 2006, 244:64.
[30] Peng X G, Li F W, Hu X X, Xia C G, Christian A S. Chin. J. Catal., 2008, 29(7):638.
[31] Fu X L, Zhang Z, Li C M, Wang L B, Ji H Y, Yang Y, Zou T, Gao G H. Catal. Commoun., 2009, 10:665.
[32] Choi Y S, Shim Y N, Lee J, Yoon J H, Hong C S, Cheong M, Kim H S, Jang H G, Lee J S. Appl. Catal. A:Gen., 2011, 404:87.
[33] Wang X F, Li P, Yuan X H, Liu S W. J. Mol. Catal. A:Chem., 2006, 255:25.
[34] 金德宽(Jin D K). 精细化工(Fine Chem.), 2011, 28(2):191.
[35] 刘长春(Liu C C). 化学世界(Chem. World), 2013, 4:223.
[36] Gaddge S T, Kusumawati E N, Harada K, Sasaki T, Nishio-Hamane D, Bhanage B M. J. Mol. Catal. A:Chem., 2015, 400:170.
[37] Mizushima E, Hayashi T, Tanaka M. Green Chem., 2001, 3:76.
[38] Calò V, Giannoccaro P, Nacci A, Monopoli A. J. Organomet. Chem., 2002, 645:152.
[39] Wojtków W, Trzeciak A M, Choukroun R, Pellegatta J L. J. Mol. Catal. A:Chem., 2004, 224:81.
[40] Lin Q, Yang C F, Jiang W D, Chen H, Li X J. J. Mol. Catal. A:Chem., 2007, 264:17.
[41] McNulty J, Nair J J, Robertson A. Org. Lett., 2007, 9(22):4575.
[42] Müller E, Péczely G, Skoda-FÖldes R, Takács E, Kokotos G, Bellis E, Kollrár L. Tetrahedron, 2005, 61(4):797.
[43] 张欣(Zhang X), 杨彩玲(Yang C L), 宋伟伟(Song W W), 张远丽(Zhang Y L),刘建明(Liu J M),卓克垒(Zhuo K L). 分子催化(J. Mol. Catal. (China)), 2014, 28(4):312.
[44] Khedkar M V, Sasaki T, Bhanage B M. ACS Catal., 2013, 3(3):287.
[45] Khedkar M V, Shinde A R, Sasaki T, Bhanage B M. J. Mol. Catal. A:Chem., 2014, 385:91.
[46] 李涛(Li T), 李光兴(Li G X), 谭猗升(Tan Y S), 徐强(Xu Q). 石油化工(Petrochemical Technology), 2004, 33(增刊):297.
[47] Li T, Souma Y, Xu Q. Catal. Today, 2006, 111:288.
[48] Song H Y, Jing F X, Jin R H, Li Z, Chen J. Catal. Lett., 2012, 144:711.
[49] Song H Y, Li Z, Chen J, Xia C G. Catal. Lett., 2012, 142:81.
[1] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[2] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[3] Simin Sun, Jiaxi Xu. Reactions of Sulfonyl Chlorides and Unsaturated Compounds [J]. Progress in Chemistry, 2022, 34(6): 1275-1289.
[4] Qiong Wang, Kang Xiao. Indoor Formaldehyde Concentrations and the Influencing Factors in Urban China [J]. Progress in Chemistry, 2022, 34(3): 743-772.
[5] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Wendi Guo, Ye Liu. Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 512-523.
[8] Xuemei Wei, Zhanwei Ma, Xinyuan Mu, Jinzhi Lu, Bin Hu. Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous [J]. Progress in Chemistry, 2021, 33(2): 243-253.
[9] Xiaoshan Zeng, Chuanjia Shan, Mingdi Sun, Taohong He, Shaopeng Rong. Manganese Dioxides for Catalytic Decomposition of Formaldehyde in Indoor Air [J]. Progress in Chemistry, 2021, 33(12): 2245-2258.
[10] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[11] Xinzhi Wang, Hongli Wang, Feng Shi. Alcohol Amination for N-Alkyl Amine Synthesis with Heterogeneous Catalysts [J]. Progress in Chemistry, 2020, 32(2/3): 162-178.
[12] Fengguo Liu, Bo Wang, Lianyu Zhang, Aimin Liu, Zhaowen Wang, Zhongning Shi. Application of Ionic Liquids in Aluminum and Alloy Electrodeposition [J]. Progress in Chemistry, 2020, 32(12): 2004-2012.
[13] Miao Qian, Yang Daiyue. From Polycyclic Arenes Containing Eight-Membered Rings to Negatively Curved Nanocarbons: Progress and Outlook [J]. Progress in Chemistry, 2020, 32(11): 1835-1845.
[14] Ping Yang, Minjie Liu, Hao Zhang, Wenting Guo, Chaoyang Lv, Di Liu. Reductive Amination of Nitroarenes and Alcohols: Catalyst and Catalytic Mechanism [J]. Progress in Chemistry, 2020, 32(1): 72-83.
[15] Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li, Shouxin Liu. Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids [J]. Progress in Chemistry, 2019, 31(8): 1136-1147.