中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (8): 1082-1096 DOI: 10.7536/PC171246 Previous Articles   Next Articles

• Review •

Synthesis of the Functionalized Enamine

Mengya Yuan, Xiaoyun Chen*, Shengling Lin*   

  1. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21602085) and the Natural Science Foundation of Jiangsu Province(No.BK20160551).
PDF ( 774 ) Cited
Export

EndNote

Ris

BibTeX

Enamines, with one amino group connected with carbon-carbon double bond, are key frameworks of many drugs. They have important applications in organic synthesis, especially in the synthesis of natural products and N-containing heterocycles owing to their unique structures. Therefore, the synthesis of enamines is particularly noticeable. In order to develop novel and applicable methodologies to synthesize enamines, the recent progress in their synthesis has been reviewed herein. Firstly, the related work of conventional synthesis, which include condensation reaction, addition reaction, heterocyclic cracking Curtius rearrangement, Wittig reaction, α, β-elimination of amide, reductive acylation of ketoxime, etc. has been summarized. Then, the catalytic amination of olefins to prepare enamine has been introduced in detail. In transition-metal catalyzed (mainly Cu (Ⅰ or Ⅱ) or Pd (0 or Ⅱ)) Buchwald-Hartwig reaction, the research progress of using various substituted olefins as substrates, including halogenated olefins, pseudohalogenated olefins and alkenyl boronic acid, has been reviewed. The methodology called Aza-Wacker oxidative coupling reaction to synthesize enamine via C (sp2)-H direct activation to construct C-N bond with different amines have also been summarized. Finally, the progress to prepare enamines and their derivatives by hydroamination of alkynes has been introduced here. It is of great significance for the development of the new methodologies to synthesize enamine.
Contents
1 Introduction
2 Synthese of enamine by traditional methods
3 Synthese of enamine from olefins and amines
3.1 Synthese of enamine from substituted olefins and amines
3.2 Synthese of enamine by C-H activation of olefins
4 Synthese of enamine from alkynes and amines
4.1 Synthese of enamine from alkynes and aliphatic amines and its derivatives
4.2 Synthese of enamine from alkynes and aromatic amines
4.3 Synthese of enamine from alkynes and amides and its derivatives
4.4 Synthese of enamine from alkynes and diazo or azide
5 Conclusion

CLC Number: 

[1] Courant T, Dagousset G, Masson G. Synthesis, 2015, 47:1799.
[2] Chikhalikar S, Bhawe V, Ghotekar B, Jachak M, Ghagare M. J. Org. Chem., 2011,76:3829.
[3] Gopalaiah K, Kagan H B. Chem. Rev., 2011, 111:4599.
[4] Murugan K, Liu S T. Tetrahedron Lett., 2013, 54:2608.
[5] Strube F, Rath S, Mattay J. Eur. J. Org. Chem., 2011, 2011:4645.
[6] Lian X L, Ren Z H, Wang Y Y, Guan Z H. Org. Lett., 2014, 16:3360.
[7] Yet L. Chem. Rev., 2003, 103:4283.
[8] Tan N H, Zhou J. Chem. Rev., 2006, 106:840.
[9] He G, Wang J, Ma D W. Org. Lett., 2007, 9:1367.
[10] Nicolaou K C, Sun Y P, Guduru R, Banerji B, Chen D Y K. J. Am. Chem. Soc., 2008, 130:3633.
[11] Bernadat G, Masson G. Synlett, 2014, 25:2842.
[12] Kiss L, Cherepanova M, Fülöp F. Tetrahedron, 2015, 71:2049.
[13] Elassar A Z A, El-Khair A A. Tetrahedron, 2003, 59:8463.
[14] Katritzky A R, Fang Y F, Donkor A, Xu J Y. Synthesis, 2000, 2000:2029.
[15] Li M, Guo W S, Wen L R, Yang Y Z. Chin. J. Org. Chem., 2006, 26:1192.
[16] Zheng G, Li Y, Han J, Xiong T, Zhang Q. Nat. Commun., 2015, 6.
[17] Evano G, Gaumont A C, Alayrac C, Wrona I E, Giguere J R, Delacroix O, Bayle A, Jouvin K, Theunissen C, Gatignol J, Silvanus A C. Tetrahedron, 2014, 70:1529.
[18] Kuramochi K, Watanabe H, Kitahara T. Synlett, 2000, 2000:397.
[19] Villa M V J, Targett S M, Barnes J C, Whittingham W G, Marquez R. Org. Lett., 2007, 9:1631.
[20] Dali H, Sugumaran M. Org. Prep. Proced. Int., 1988, 20:191.
[21] Barton D H R, Zard S Z. J. Chem. Soc. Perkin Trans. 1, 1985, 2191.
[22] Murugan K, Huang D W, Chien Y T, Liu S T. Tetrahedron, 2013, 69:268.
[23] Taillefer M, Ma D W. Topics in Organometallic Chemistry. Springer, 2013, 46:5240.
[24] Bolshan Y, Batey R A. Tetrahedron, 2010, 66:5283.
[25] Ogawa T, Kiji T, Hayami K, Suzuki H. Chem. Lett., 1991, 20:1443.
[26] Shen R C, Porco J A. Org. Lett., 2000, 2:1333.
[27] Jiang L, Job G E, Klapars A, Buchwald S L. Org. Lett., 2003, 5:3667.
[28] Dehli J R, Bolm C. Adv. Synth. Catal., 2005, 347:239.
[29] Taillefer M, Ouali A, Renard B, Spindler J F. Chem. Eur. J., 2006, 12:5301.
[30] Mao J C, Hua Q Q, Guo J, Shi D, Ji S J. Synlett, 2008, 2011.
[31] Sperotto E, van Klink G P M, van Koten G, de Vries J G. Dalton Transactions, 2010, 39:10338.
[32] Lam P Y S, Vincent G, Bonne D, Clark C G. Tetrahedron Lett., 2003, 44:4927.
[33] Bolshan Y, Batey R A. Angew. Chem., 2008, 120:2139.
[34] Mo D L, Wink D A, Anderson L L. Org. Lett., 2012, 14:5180.
[35] Willis M C, Brace G N. Tetrahedron Lett., 2002, 43:9085.
[36] Willis M C, Brace G N, Holmes I P. Synthesis, 2005, 2005:3229.
[37] Klapars A, Campos K R, Chen C Y, Volante R P. Org. Lett., 2005, 7:1185.
[38] Brice J L, Meerdink J E, Stahl S S. Org. Lett., 2004, 6:1845.
[39] Bozell J J, Hegedus L S. J. Org. Chem., 1981, 46:2561.
[40] Obora Y, Shimizu Y, Ishii Y. Org. Lett., 2009, 11:5058.
[41] Mizuta Y, Yasuda K, Obora Y. J. Org. Chem., 2013, 78:6332.
[42] Ji X C, Huang H W, Wu W Q, Li X W, Jiang H F. J. Org. Chem., 2013, 78:11155.
[43] Timokhin V I, Anastasi N R, Stahl S S. J. Am. Chem. Soc., 2003, 125:12996.
[44] Timokhin V I, Stahl S S. J. Am. Chem. Soc., 2005, 127:17888.
[45] Brice J L, Harang J E, Timokhin V I, Anastasi N R, Stahl S S. J. Am. Chem. Soc., 2005, 127:2868.
[46] Lee J M, Ahn D S, Jung D Y, Lee J, Do Y, Kim S K, Chang S. J. Am. Chem. Soc., 2006, 128:12954.
[47] Hu H Y, Tian J X, Liu Y, Liu Y, Shi F, Wang X, Kan Y H, Wang C. J. Org. Chem., 2015, 80:2842.
[48] Jiang B, Meng F F, Liang Q J, Xu Y H, Loh T P. Org. Lett., 2017, 19:914.
[49] Song L, Luo S, Cheng J P. Org. Chem. Front., 2016, 3:447.
[50] Ortgies S, Breder A. ACS Catal., 2017, 7:5828.
[51] Deng Z M, Wei J L, Liao L H, Huang H Y, Zhao X D. Org. Lett., 2015, 17:1834.
[52] Pouambeka T W, Zhang G, Zheng G F, Xu G X, Zhang Q, Xiong T, Zhang Q. Org. Chem. Front., 2017, 4:1420.
[53] Liao L H, Guo R, Zhao X D. Angew. Chem. In. Ed., 2017, 56:3201.
[54] Ji X C, Huang H W, Wu W Q, Jiang H F. J. Am. Chem. Soc., 2013, 135:5286.
[55] Ji X C, Huang H W, Xiong W, Huang K, Wu W Q, Jiane H F. J. Org. Chem., 2014, 79:7005.
[56] Chen X Y, Bohmann R A, Wang L, Dong S, Räuber C, Bolm C. Chem. Eur. J., 2015, 21:10330.
[57] Severin R, Doye S. Chem. Soc. Rev., 2007, 36:1407.
[58] Shaffer A R, Schmidt J A R. Organometallics, 2008, 27:1259.
[59] Thorwirth R, Stolle A. Synlett, 2011, 2200.
[60] Yoon H, Kim Y,Lee Y. Org. Biomol. Chem., 2017, 15:790.
[61] Batail N, Dufaud V, Djakovitch L. Tetrahedron Lett., 2011, 52:1916.
[62] Hu D, Liu Y, Wan J P. Tetrahedron, 2015, 71:6094.
[63] Panda N, Mothkuri R. J. Org. Chem., 2012, 77:9407.
[64] Li M R, Yuan H Y, Zhao B Z, Liang F S, Zhang J P. Chem. Commun., 2014, 50:2360.
[65] Brahmchari D, Verma A K, Mehta S. J. Org. Chem., 2018, DOI:10.1021/acs.joc.7b02903.
[66] Manan R S, Kilaru P, Zhao P J. J. Am. Chem. Soc., 2015, 137:6136.
[67] Lee D, Kim S M, Hirao H, Hong S H. Org. Lett., 2017, 19:4734.
[68] Zhu C, Yamane M. Tetrahedron, 2011, 67:4933.
[69] Park S, Yong W S, Kim S, Lee P H. Org. Lett., 2014, 16:4468.
[70] Shin S, Park Y, Kim C E, Son J Y, Lee P H. J. Org. Chem., 2015, 80:5859.
[1] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[2] Liao Yiming, Wu Baoqi, Tang Rongzhi, Lin Feng, Tan Yu. Strain-Promoted Azide-Alkyne Cycloaddition [J]. Progress in Chemistry, 2022, 34(10): 2134-2145.
[3] Wendi Guo, Ye Liu. Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 512-523.
[4] Lianwei Sun, Zhonghe Sun, Xue Wang, Lin Xu, Anchao Feng, Liqun Zhang. Synthesis of Polyethylene and Polyhalogenated Olefin by Controlled/“Living” Radical Polymerization [J]. Progress in Chemistry, 2020, 32(6): 727-737.
[5] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[6] Chenghao Zhu, Junliang Zhang. Palladium Catalyzed Heck-Type Reaction of Organic Halides and Alkyl-Alkynes [J]. Progress in Chemistry, 2020, 32(11): 1745-1752.
[7] Jiang Kun, Chen Yingchun. The Development of Asymmetric Trienamine Catalysis [J]. Progress in Chemistry, 2015, 27(2/3): 137-145.
[8] Niu Fanfan, Nie Changjun, Chen Yong, Sun Xiaoling. Asymmetric Catalytic Epoxidation of Unfunctionalized Olefins [J]. Progress in Chemistry, 2014, 26(12): 1942-1961.
[9] Zhang Yongjie, Li Huayi, Dong Jinyong, Hu Youliang. Synthesis and Applications of Chain End Functionalized Polyolefins [J]. Progress in Chemistry, 2014, 26(01): 110-124.
[10] Cao Kun, Wu Shuiliang, Li Yan, Zhu Fangjun, Yao Zhen. Flame Retardant Based on N-Alkoxyoxy Hindered Amines and Their Application in Polyolefins [J]. Progress in Chemistry, 2011, 23(6): 1189-1195.
[11] Liu guangyu Tian Peng Liu Zhongmin. Modification of SAPO-34 Molecular Sieve Used for Methanol to Olefins Reaction [J]. Progress in Chemistry, 2010, 22(08): 1531-1537.
[12] . Conversion of Ethanol into Light Olefins over ZSM-5 Catalysts [J]. Progress in Chemistry, 2010, 22(04): 754-759.
[13] Ma Liyong Wang Yang Chen Fengqiu Zhan Xiaoli. Catalysts in the Catalytic Cracking of Hydrocarbons to Produce Light Olefins [J]. Progress in Chemistry, 2010, 22(0203): 265-269.
[14] Shi Xinbo Gao Haiyang Wu Qing. Syntheses of Branched Polyolefins [J]. Progress in Chemistry, 2009, 21(12): 2651-2659.
[15] Yu Xianbo Liu Ye Yang Yongrong Wang Jingdai. Mechanisms of Methanol-to-Olefin Reaction [J]. Progress in Chemistry, 2009, 21(09): 1757-1762.
Viewed
Full text


Abstract

Synthesis of the Functionalized Enamine