中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (04): 563-576 DOI: 10.7536/PC121048 Previous Articles   Next Articles

• Review •

Bioinspired Catalysis for New Energy Exploration and CO2 Photoreduction

Liu Lei, Liu Jingang*   

  1. Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
  • Received: Revised: Online: Published:
PDF ( 854 ) Cited
Export

EndNote

Ris

BibTeX

Inspired by natural photosynthesis, artificial photosynthesis using solar energy and abundant natural resources, H2O and CO2, to produce renewable energy fuels has recently been received considerable attentions. This review focuses on recent developments in construction of artificial photosynthesis systems. Special attention has been paid to the various kinds of transition metal complexes as photocatalysts employed in water oxidation as well as in CO2 photo-reduction reactions, the semi-reactions of artificial photosynthesis. The performances of various photocatalytic systems together with their related photocatalytic reaction mechanisms have been summarized and compared. The challenges of current studies and prospects for future development in artificial photosynthesis have also been suggested.

Contents
1 Introduction
2 Principles of natural photosynthesis and constr-uction of artificial photosynthesis
3 Photocatalysts for water splitting
3.1 Proton reduction for H2 evolution
3.2 Water oxidation for O2 evolution
4 Photocatalytic conversion of CO2
4.1 Mononuclear photocatalysts
4.2 Supermolecular photocatalysts
5 Conclusion

CLC Number: 

[1] Fujishima A, Honda K. Nature, 1972, 238: 37-38
[2] Halmann M. Nature, 1978, 275: 115-116
[3] Kubacka A, Fernandez-Garcia M, Colon G. Chem. Rev., 2012, 112: 1555-1614
[4] Roy S C, Varghese O K, Paulose M, Grimes C A. ACS Nano, 2010, 4: 1259-1278
[5] Frischmann P D, Mahata K, W黵thner F. Chem. Soc. Rev., 2013, 42: 1847-1870
[6] Balzani V, Credi A, Venturi M. Curr. Opin. Chem. Biol., 1997, 1: 506-513
[7] Dau H, Zaharieva I. Acc. Chem. Res., 2009, 42: 1861-1870
[8] Artero V, Chavarot-Kerlidou M, Fontecave M. Angew. Chem. Int. Ed., 2011, 50: 7238-7266
[9] Esswein A J, Nocera D G. Chem. Rev., 2007, 107: 4022-4047
[10] Dempsey J L, Brunschwig B S, Winkler J R, Gray H B. Acc. Chem. Res., 2009, 42: 1995-2004
[11] Concepcion J J, Jurss J W, Brennaman M K, Hoertz P G, Patrocinio A O T, Iha N Y M, Templeton J L, Meyer T J. Acc. Chem. Res., 2009, 42: 1954-1965
[12] Kilgore U J, Roberts J A S, Pool D H, Appel A M, Stewart M P, DuBois M R, Dougherty W G, Kassel W S, Bullock R M, DuBois D L. J. Am. Chem. Soc., 2011, 133: 5861-5872
[13] Yin Q, Tan J M, Besson C, Geletii Y V, Musaev D G, Kuznetsov A E, Luo Z, Hardcastle K I, Hill C L. Science, 2010, 328: 342-345
[14] Loll B, Kern J, Saenger W, Zouni A, J. Biesiadka. Nature, 2005, 438: 1040-1044
[15] Umena Y, Kawakami K, Shen J R, Kamiya N. Nature, 2011, 473: 55-60
[16] Watkinson M, Whiting A, McAuliffe C A. J. Chem. Soc. Chem. Commun., 1994, 2141-2142
[17] Limburg J, Vrettos J S, Liable-Sands L M, Rheingold A L, Crabtree R H, Brudvig G W. Science, 1999, 283: 1524-1527
[18] Yagi M, Narita K. J. Am. Chem. Soc., 2004, 126: 8084-8085
[19] Poulsen A K, Rompel A, McKenzie C J. Angew. Chem. Int. Ed., 2005, 44: 6916-6920
[20] Beckmann K, Uchtenhagen H, Berggren G, Anderlund M F, Thapper A, Messinger J, Styring S, Kurz P. Energy Environ. Sci., 2008, 1: 668-676
[21] Karlsson E A, Lee B L, Åkermark T, Johnston E V, Kärkäs M D, Sun J L, Hansson O, Bäckvall J E, Åkermark B. Angew. Chem. Int. Ed., 2011, 50: 11715-11718
[22] R黣ttinger W, Yagi M, Wolf K, Bernasek S, Dismukes G C. J. Am. Chem. Soc., 2000, 122: 10353-10357
[23] Yagi M, Wolf K V, Baesjou P J, Bernasek S L, Dismukes G C. Angew. Chem. Int. Ed., 2001, 40: 2925-2928
[24] Hocking R K, Brimblecombe R, Chang L Y, Singh A, Cheah M H, Glover C, Casey W H, Spiccia L. Nat. Chem., 2011, 3: 461-466
[25] Naruta Y, Sasayama M, Sasaki T. Angew. Chem. Int. Ed., 1994, 33: 1839-1841
[26] Gao Y, Åkermark T, Liu J, Sun L, Åkermark B. J. Am. Chem. Soc., 2009, 131: 8726-8727
[27] Gersten S W, Samuels G J, Meyer T J. J. Am. Chem. Soc., 1982, 104: 4029-4030
[28] Hurst J K. Coord. Chem. Rev., 2005, 249: 313-328
[29] Huynh M H V, Meyer T J. Chem. Rev., 2007, 107: 5004-5064
[30] Duan L, Tong L, Xu Y, Sun L. Energy Environ. Sci., 2011, 4: 3296-3313
[31] Sens C, Romero I, Rodriguez M, Llobet A, Parella T, Benet-Buchholz J. J. Am. Chem. Soc., 2004, 126: 7798-7799
[32] Romain S, Vigara L, Llobet A. Acc. Chem. Res., 2009, 42: 1944-1953
[33] Zong R, Thummel R P. J. Am. Chem. Soc., 2005, 127: 12802-12803
[34] Deng Z, Tseng H W, Zong R, Wang D, Thummel R. Inorg. Chem., 2008, 47: 1835-1848
[35] Xu Y, Åkermark T R, Gyollai V, Zou D, Eriksson L, Duan L, Zhang R, Åkermark B R, Sun L. Inorg. Chem., 2009, 48: 2717-2719
[36] Xu Y, Fischer A, Duan L, Tong L, Gabrielsson E, Åkermark B, Sun L. Angew. Chem. Int. Ed., 2010, 49: 8934-8937
[37] Xu Y H, Duan L L, Tong L P, Åkermark B, Sun L C. Chem. Commun., 2010, 46: 6506-6508
[38] Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. ChemCatChem, 2010, 2: 724-761
[39] Liu X, Wang F Y. Coord. Chem. Rev., 2012, 256: 1115-1136
[40] Tseng H W, Zong R, Muckerman J T, Thummel R P. Inorg. Chem., 2008, 47: 11763-11773
[41] Duan L, Fischer A, Xu Y, Sun L. J. Am. Chem. Soc., 2009, 131: 10397-10399
[42] Duan L L, Xu Y H, Tong L P, Sun L C. ChemSusChem, 2011, 4: 238-244
[43] Duan L, Xu Y H, Gorlov M, Tong L P, Andersson S, Sun L. Chem. Eur. J., 2010, 16: 4659-4668
[44] Tong L, Duan L, Xu Y, Privalov T, Sun L. Angew. Chem. Int. Ed., 2011, 50: 445-449
[45] Duan L L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, Sun L C. Nat. Chem., 2012, 4: 418-423
[46] Nyhl閚 J, Duan L, Åkermark B, Sun L, Privalov T. Angew. Chem. Int. Ed., 2010, 49: 1773-1777
[47] Chen Z F, Concepcion J J, Hu X Q, Yang W T, Hoertz P G, Meyer T J. Proc. Nat. Acad. Sci. USA, 2010, 107: 7225-7229
[48] Boyer J L, Polyansky D E, Szalda D J, Zong R F, Thummel R P, Fujita E. Angew. Chem. Int. Ed., 2011, 50: 12600-12604
[49] Kaveevivitchai N, Chitta R, Zong R F, El Ojaimi M, Thummel R P. J. Am. Chem. Soc., 2012, 134: 10721-10724
[50] McDaniel N D, Coughlin F J, Tinker L L, Bernhard S. J. Am. Chem. Soc., 2008, 130: 210-217
[51] Blakemore J D, Schley N D, Balcells D, Hull J F, Olack G W, Incarvito C D, Eisenstein O, Brudvig G W, Crabtree R H. J. Am. Chem. Soc., 2010, 132: 16017-16029
[52] Lalrempuia R, McDaniel N D, Muller-Bunz H, Bernhard S, Albrecht M. Angew. Chem. Int. Ed., 2010, 49: 9765-9768
[53] Hetterscheid D G H, Reek J N H. Chem. Commun., 2011, 47: 2712-2714
[54] Grotjahn D B, Brown D B, Martin J K, Marelius D C, Abadjian M C, Tran H N, Kalyuzhny G, Vecchio K S, Specht Z G, Cortes-Llamas S A, Miranda-Soto V, van Niekerk C, Moore C E, Rheingold A L. J. Am. Chem. Soc., 2011, 133: 19024-19027
[55] Ellis W C, McDaniel N D, Bernhard S, Collins T J. J. Am. Chem. Soc., 2010, 132: 10990-10991
[56] Fillol J L, Codola Z, Garcia-Bosch I, Gomez L, Pla J J, Costas M. Nat. Chem., 2011, 3: 807-813
[57] Singh R N, Mishra D, Anindita, Sinha A S K, Singh A. Electrochem. Commun., 2007, 9: 1369-1373
[58] Kanan M W, Nocera D G. Science, 2008, 321: 1072-1075
[59] Risch M, Khare V, Zaharieva I, Gerencser L, Chernev P, Dau H. J. Am. Chem. Soc., 2009, 131: 6936-6937
[60] Kanan M W, Yano J, Surendranath Y, Dinca M, Yachandra V K, Nocera D G. J. Am. Chem. Soc., 2010, 132: 13692-13701
[61] Huang Z Q, Luo Z, Geletii Y V, Vickers J W, Yin Q S, Wu D, Hou Y, Ding Y, Song J, Musaev D G, Hill C L, Lian T Q. J. Am. Chem. Soc., 2011, 133: 2068-2071
[62] Takeda H, Ishitani O. Coord. Chem. Rev., 2010, 254: 346-354
[63] Morris A J, Meyer G J, Fujita E. Acc. Chem. Res., 2009, 42: 1983-1994
[64] Schneider J, Jia H F, Muckerman J T, Fujita E. Chem. Soc. Rev., 2012, 41: 2036-2051
[65] Yui T, Tamaki Y, Sekizawa K, Ishitani O. Top. Curr. Chem., 2011, 303: 151-184
[66] Hawecker J, Lehn J M, Ziessel R. J. Chem. Soc. Chem. Commun., 1983, 536-538
[67] Kurz P, Probst B, Spingler B, Alberto R J. Inorg. Chem., 2006, 2966-2974
[68] Koike K, Okoshi N, Hori H, Takeuchi K, Ishitani O, Tsubaki H, Clark I P, George M W, Johnson F P A, Turner J J, J. Am. Chem. Soc., 2002, 125: 11448-11455
[69] Hori H, Johnson F P A, Koike K, Ishitani O, Ibusuki T. J. Photochem. Photobiol. A, 1996, 96: 171-174
[70] Hori H, Ishihara J, Koike K, Takeuchi K, Ibusuki T, Ishitani O. J. Photochem. Photobiol. Chem., 1999, 120: 119-124
[71] Takeda H, Koike K, Inoue H, Ishitani O. J. Am. Chem. Soc., 2008, 130: 2023-2031
[72] Hayashi Y, Kita S, Brunschwig B S, Fujita E. J. Am. Chem. Soc., 2003, 125: 11976-11987
[73] Gibson D H, Yin X L. J. Am. Chem. Soc., 1998, 120: 11200-11201
[74] Agarwal J, Johnson R P, Li G H. J. Phys. Chem. A, 2011, 115: 2877-2881
[75] Agarwal J, Fujita E, Schaefer H F, Muckerman J T. J. Am. Chem. Soc., 2012, 134: 5180-5186
[76] Koike K, Hori H, Ishizuka M, Westwell J R, Takeuchi K, Ibusuki T, Enjouji K, Konno H, Sakamoto K, Ishitani O. Organometallics, 1997, 16: 5724-5729
[77] Tsubaki H, Sugawara A, Takeda H, Gholamkhass B, Koike K, Ishitani O. Res. Chem. Intermed., 2007, 33: 37-48
[78] Sato S, Sekine A, Ohashi Y, Ishitani O. Inorg. Chem., 2007, 46: 3531-3540
[79] Grodkowski J, Behar D, Neta P, Hambright P. J. Phys. Chem. A, 1997, 101: 248-254
[80] Behar D, Dhanasekaran T, Neta P, Hosten C M, Ejeh D, Hambright P, Fujita E. J. Phys. Chem. A, 1998, 102: 2870-2877
[81] Ishida H, Terada T, Tanaka K, Tanaka T. Inorg. Chem., 1990, 29: 905-911
[82] Lehn J M, Ziessel R. J. Organomet. Chem., 1990, 382: 157-173
[83] Fisher B, Eisenberg R. J. Am. Chem. Soc., 1980, 102: 7361-7363
[84] Hu X, Brunschwig B S, Peters J C. J. Am. Chem. Soc., 2007, 129: 8988-8998
[85] Tinnemans A H A, Koster T P M, Thewissen D, Mackor A. Recl. Trav. Chim. Pays-Bas, 1984, 103: 288-295
[86] Craig C A, Spreer L O, Otvos J W, Calvin M. J. Phys. Chem., 1990, 94: 7957-7960
[87] Matsuoka S, Yamamoto K, Ogata T, Kusaba M, Nakashima N, Fujita E, Yanagida S. J. Am. Chem. Soc., 1993, 115: 601-609
[88] Matsuoka S, Kohzuki T, Pac C, Ishida A, Takamuku S, Kusaba M, Nakashima N, Yanagida S. J. Phys. Chem., 1992, 96: 4437-4442
[89] Ogata T, Yanagida S, Brunschwig B S, Fujita E. J. Am. Chem. Soc., 1995, 117: 6708-6716
[90] Schulz M, Karnahl M, Schwalbe M, Vos J G. Coord. Chem. Rev., 2012, 256: 1682-1705
[91] Amao Y. ChemCatChem, 2011, 3: 458-474
[92] Kimura E, Wada S, Shionoya M, Takahashi T, Litaka Y. J. Chem. Soc. Chem. Commun., 1990, 397-398
[93] Kimura E, Bu X, Shionoya M, Wada S, Maruyama S. Inorg. Chem., 1992, 31: 4542-4546
[94] Kimura E, Wada S, Shionoya M, Okazaki Y. Inorg. Chem., 1994, 33: 770-778
[95] Komatsuzaki N, Himeda Y, Hirose T, Sugihara H, Kasuga K. Bull. Chem. Soc. Jpn., 1999, 72: 725-731
[96] Lehn J M, Ziessel R. Proc. Natl. Acad. Sci. USA, 1982, 79: 701-704
[97] Gholamkhass B, Mametsuka H, Koike K, Tanabe T, Furue M, Ishitani O. Inorg. Chem., 2005, 44: 2326-2336
[98] Bian Z Y, Chi S M, Li L, Fu W F. Dalton Trans., 2010, 39: 7884-7887
[99] Sato S, Koike K, Inoue H, Ishitani O. Photochem. Photobiol. Sci., 2007, 6: 454-461
[100] Koike K, Naito S, Sato S, Tamaki Y, Ishitani O. J. Photochem. Photobiol. A, 2009, 207: 109-114
[101] Tamaki Y, Watanabe K, Koike K, Inoue H, Morimoto T, Ishitani O. Faraday Discuss., 2012, 155: 115-127
[102] Bian Z Y, Sumi K, Furue M, Sato S, Koike K, Ishitani O. Dalton Trans., 2009, 38: 983-993
[103] Tamaki Y, Morimoto T, Koike K, Ishitani O. Proc. Natl. Acad. Sci. USA, 2012, 109: 15673-15678
[104] Kiyosawa K, Shiraishi N, Shimada T, Masui D, Tachibana H, Takagi S, Ishitani O, Tryk D A, Inoue H. J. Phys. Chem. C, 2009, 113: 11667-11673
[105] Windle C D, Campian M V, Duhme-Klair A K, Gibson E A, Perutz R N, Schneider J. Chem. Commun., 2012, 48: 8189-8191

[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[3] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[4] Shixiang Xue, Pan Wu, Liang Zhao, Yanli Nan, Wanying Lei. The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(12): 2686-2699.
[5] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[6] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[7] Wendi Guo, Ye Liu. Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 512-523.
[8] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[9] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[10] Xuqiang Zhang, Gongxuan Lu. Thin Film Protection Strategy of Ⅲ-Ⅴ Semiconductor Photoelectrode for Water Splitting [J]. Progress in Chemistry, 2020, 32(9): 1368-1375.
[11] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[12] Xin Ni, Yang Zhou, Ruiqin Tan, Yongbo Kuang. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting [J]. Progress in Chemistry, 2020, 32(10): 1515-1534.
[13] Yajing Chen, Xubing Li, Chenho Tung, Lizhu Wu. Artificial Photosynthesis for Hydrogen Production [J]. Progress in Chemistry, 2019, 31(1): 38-49.
[14] Lishan Peng, Zidong Wei*. Design and Product Engineering of High-Performance Electrode Catalytic Materials for Water Electrolysis [J]. Progress in Chemistry, 2018, 30(1): 14-28.
[15] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.