中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (10): 1656-1666 DOI: 10.7536/PC130137 Previous Articles   Next Articles

Syntheses and Catalytic Applications of the Transition Metal Complex-Functionalized Ionic Liquids

You Hongxing, Wang Yongyong, Wang Xuezhu, Liu Ye   

  1. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China
  • Received: Revised: Online: Published:
PDF ( 1418 ) Cited
Export

EndNote

Ris

BibTeX

The ligand- and transition metal complex-functionalized ionic liquids (FILs) can be defined narrowly as the ionic ligands and ionic transition metal complexes since they are not strictly room temperature ionic liquids (RTILs) any more in the range of RT to 100 ℃. Such kinds of ligand- and transition metal complex-FILs have attracted more and more attention due to their promising applications in homogeneous catalysis as one of alternative methods to heterogenize the homogenous catalysts into the RTILs phase. Due to similarity in the composition and the ionic structure to the parent RTILs (as a solvent), the ligand- and transition metal complex-FILs as catalysts have the following advantages. The catalysts are stable, and their leaching can be avoided, which make the separation workup simple. In addition, the recyclability of the catalysts is available. This review summarizes the progress in the syntheses of ligand- and transition metal complex-FILs and their applications in homogeneous catalysis, developed in the past decade.

Contents
1 Introduction
2 Syntheses and catalytic applications of the transition metal complex-functionalized ionic liquids (FILs)
2.1 Transition metal complex-FILs coordinated by the ligands remote to positive-charged quaternary ammonium/phosphonium of ILs
2.2 Transition metal complex-FILs coordinated by the ligands vicinal to positive-charged quaternary ammonium/phosphonium of ILs
3 Conclusions and outlook

CLC Number: 

[1] Davis J H Jr, Fox P A. Chem. Commun., 2003, (11): 1209—1211
[2] Wilkes J S. Green Chem., 2002, 4(2): 73—80
[3] Hallett J P, Welton T. Chem. Rev., 2011, 111(5): 3508—3576
[4] Lee S G. Chem. Commun., 2006, (10): 1049—1063
[5] 刘鹰(Liu Y). 离子液体在催化过程中的应用(Application of Ionic Liquids in the Catalytic Process). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2008. 150—177
[6] 王军(Wang J). 离子液体的性能及应用(The Performance and Application of Ionic Liquids). 北京: 中国纺织出版社(Beijing: China Textile & Apparel Press), 2007. 186—219
[7] Tang S, Baker G A, Zhao H. Chem. Soc. Rev., 2012, 41(10): 4030—4066
[8] 李雪辉(Li X H), 赵东滨(Zhao D B), 费兆福(Fei Z F). 中国科学B辑: 化学(Science in China Series B: Chemistry), 2006, 36 (3): 181—196
[9] Liu Y, Wang S, Liu W, Wan Q, Wu H, Gao G. Curr. Org. Chem., 2009, 13(13): 1322—1346
[10] Luo S, Zhang L, Cheng L. Chem. Asian J., 2009, 4(8), 1184—1195
[11] Wiebus E, Cornils B. Catalysis by Metal Complexes Catalysis by Metal Complexes: Catalyst Separation, Recovery and Recycling (Vol. 30). Netherlands: Springer, 2006
[12] Brunet J, Chauvin R, Commenges G, Donnadieu B, Leglaye P. Organometallics, 1996, 15(7): 1752—1754
[13] Leglaye P, Donnadieu B, Brunet J, Chauvin R. Tetrahedron Lett., 1998, 39(50): 9179—9182
[14] Gurtler C, Jautelat M. European Patent, EP 1035093
[15] Buijsman R C, van Vuuren E, Sterrenburg J G. Org. Lett., 2001, 3(23): 3785—3787
[16] Audic N, Clavier H, Mauduit M, Guillemin J C. J. Am. Chem. Soc., 2003, 125(31): 9248—9249
[17] Clavier H, Audic N, Guillemin J C, Mauduit M. J. Organomet. Chem., 2005, 690(15): 3585—3599
[18] Yao Q, Zhang Z. Angew. Chem. Int. Ed., 2003, 42(29): 3395—3398
[19] Yao Q, Sheets M. J. Organomet. Chem., 2005(15): 3577—3584
[20] Baleizao C, Gigante, Garciab B H. Tetrahedron Lett., 2003, 44(36): 6813—6816
[21] Xiao J C, Shreeve J M. J. Org. Chem., 2005, 70(8): 3072—3078
[22] Zhao D B, Fei Z F, Geldbach T J, Scopelliti R, Dyson P J. J. Am. Chem. Soc., 2004, 126(48): 15876—15882
[23] Corma A, Garcia H, Leyva A. Terahedron, 2004, 60(38): 8553—8560
[24] Wang R, Melissa M P, Shreeve J M. Org. Biomol. Chem., 2006, 4(10): 1878—1886
[25] Xiao J, Twamley B, Shreeve J M. Organic Letters, 2004, 6(21): 3845—3847
[26] Wang R H, Xiao J C, Twamley B, Shreeve J M. Org. Biomol. Chem., 2007, 5(4): 671—678
[27] Lee S, Zhang Y J, Piao J Y, Yoon H, Song C E, Choi J H, Hong J. Chem. Commun., 2003, (20): 2624—2625
[28] Peng Y Q, Cai Y Q, Song G H, Chen J. Synlett, 2005, (14): 2147—2150
[29] Xu L, Chen W, Xiao J. Organometallics, 2000, 19(6): 1123—1127
[30] Field L D, Messerle B A, Vuong K Q, Turner P. Organometallics, 2005, 24(17): 4241—4250
[31] Hahn F E, Jahnke M C, Gomez-Benitez V, Morales-Morales D, Pape T. Organometallics, 2005, 24(26): 6458—6463
[32] Pozo C D, Iglesias M, Sanchez F. Organometallics, 2011, 30(8): 2180—2188
[33] Topf C, Hirtenlehner C, Monkowius U. J. Organomet. Chem., 2011, 696(20): 3274—3278
[34] Mas-Marzá E, Poyatos M, Sanau M, Peris E. Inorg. Chem., 2004, 43(6): 2213—2219
[35] Brauer D J, Kottsieper K W, Liek C, Stelzer O, Waffenschmidt H, Wasserscheid P. J. Organomet. Chem., 2001, 630(2): 177—184
[36] Azouri M, Andrieu J, Picquet M, Richard P, Hanquet B, Tkatchenko I. Eur. J. Inorg. Chem., 2007, (31): 4877—4883
[37] Zhang J, D aković M, Popović Z, Wu H, Liu Y. Catal. Commun., 2012, 17: 160—163
[38] Zhou C L, Zhang J, D aković M, Popović Z, Zhao X L, Liu Y. Eur. J. Inorg. Chem., 2012, (21): 3435—3440
[39] Wang S S, Zhang J, Zhou C L, Vo-Thanh G, Liu Y. Catal. Commun., 2012, 28: 152—154
[40] Ruiz J, Mesa A F. Chem. Eur. J., 2012, 18(15): 4485—4488
[41] Debono N, Canac Y, Duhayon C, Chauvin R. Eur. J. Inorg. Chem., 2008, (19): 2991—2999
[42] Abdellah I, Boggio-Pasqua M, Canac Y, Lepetit C, Duhayon C, Chauvin R. Chem. Eur. J., 2011, 17(18): 5110—5115
[43] (a) Canac Y, Debono N, Vendier L, Chauvin R. Inorg. Chem., 2009, 48(12): 5562—5568; (b) Canac Y, Debono N, Lepetit C, Duhayon C, Chauvin R. Inorg. Chem., 2011, 50(21): 10810—10819
[44] Viau L, Lepetit C, Commenges G, Chauvin R. Organometallics, 2001, 20(5): 808—810
[45] (a) Zurawinski R, Donnadieu B, Mikolajczyk M, Chauvin R. Organometallics, 2003, 22(23): 4810—4817 ; (b) Zurawinski R, Lepetit C, Canac Y, Mikolajczyk M, Chauvin R. Inorg. Chem., 2009, 48(5): 2147—2155
[46] Zurawinski R, Donnadieu B, Mikolajczyk M, Chauvin R. J. Organomet. Chem., 2004, 689(2): 380—386
[47] Canac Y, Duhayon C, Chauvin R. Angew. Chem. Int. Ed., 2007, 46(33): 6313—6315
[48] Canac Y, Lepetit C, Abdalilah M, Canac Y, Chauvin R. J. Am. Chem. Soc., 2008, 130(26): 8406—8413
[49] Meguro H, Koizumi T, Yamamoto T, Kanbara T. J. Organomet. Chem., 2008, 693(6): 1109—1116
[50] Durben S, Baumgartner T. Inorg. Chem., 2011, 50(14): 6823—6836
[51] Zhang G J, Gan X, Xu Q Q, Chen Y, Zhao X J, Qin B, Lv X J, Lai S W, Fu W F, Che C M. Dalton Trans., 2012, 41(27): 8421—8429
[52] Wan Q X, Liu Y. Catal. Lett., 2009, 128(3/4): 487—492
[53] Zhang H J, Liu Y, Li X S, Wang X, Ding X. J. Mol. Catal. A: Chem., 2008, 287(1/2): 80—86
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[13] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[14] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.