中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (10): 1464-1474 DOI: 10.7536/PC180528 Previous Articles   Next Articles

Special Issue: 酶化学

• Review •

Rational Design of Artificial Metalloenzymes: Case Studies in Myoglobin

Yingwu Lin1,2*   

  1. 1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China;
    2. Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 31370812,21701081).
PDF ( 1032 ) Cited
Export

EndNote

Ris

BibTeX

Metalloenzymes play diverse important functions in biological systems. Meanwhile, design of artificial metalloenzymes may fine-tune and expand the functionalities of natural metalloenzymes, and even create novel enzymes with more advanced functions. Myoglobin(Mb) is an ideal protein model for design of heme proteins and other metalloenzymes. In recent years, various approaches have been developed for design of artificial metalloenzymes based on the protein scaffold of Mb, which include design of hydrogen-bonding network, intramolecular disulfide bond, the use of post-translational modifications, introduction of non-natural amino acids and non-native cofactors. This review summaries the recent progress in these aspects, which will help us understand the structure and function relationship of metalloenzymes, master the idea and methodologies of artificial metalloenzyme design, thereby promoting the rapid development in this field.
Contents
1 Introduction
2 Approaches and cases studies
2.1 Design of hydrogen-bonding network
2.2 Design of metal-binding site
2.3 Design of disulfide bond
2.4 Use of post-translational modifications
2.5 Introduction of non-natural amino acids
2.6 Introduction of non-native cofactors
3 Conclusion and outlook

CLC Number: 

[1] Poulos T L. Chem. Rev., 2014, 114:3919.
[2] Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Chem. Rev., 2014, 114:4366.
[3] Huang X, Groves J T. Chem. Rev., 2018, 118:2491.
[4] Waldron K J, Rutherford J C, Ford D, Robinson N J. Nature, 2009, 460:823.
[5] Valdez C E, Smith Q A, Nechay M R, Alexandrova A N. Acc. Chem. Res., 2014, 47:3110.
[6] Lu Y, Berry S M, Pfister T D. Chem. Rev., 2001, 101:3047.
[7] Lu Y, Yeung N, Sieracki N, Marshall N M. Nature, 2009, 460:855.
[8] Lin Y W, Sawyer E B, Wang J Y. Chem. Asian J., 2013, 8:2534.
[9] Petrik I D, Liu J, Lu Y. Curr. Opin. Chem. Biol., 2014, 19:67.
[10] Huang P S, Boyken S E, Baker D. Nature, 2016, 537:320.
[11] Nastri F, Chino M, Maglio O, Bhagi-Damodaran A, Lu Y, Lombardi A. Chem. Soc. Rev., 2016, 45:5020.
[12] Lin Y W. Coord. Chem. Rev., 2017, 336:1.
[13] Hu C, Yu Y, Wang J Y. Chem. Commun. (Camb.)., 2017, 53:4173.
[14] Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni M M, Lebrun V, Reuter R, Kohler V, Lewis J C, Ward T R. Chem. Rev., 2018, 118:142.
[15] Moody P C E, Raven E L. Acc. Chem. Res., 2018, 51:427.
[16] Hirota S, Lin Y W. J. Biol. Inorg. Chem., 2018, 23:7.
[17] Lin Y, Wang J Y, Lu Y. Sci. China Chem., 2014, 57:346.
[18] Du J F, Li W, Li L, Wen G B, Lin Y W, Tan X. ChemistryOpen, 2015, 4:97.
[19] Zeng J, Zhao Y, Li W, Tan X, Wen G B, Lin Y W. J. Mol. Catal. B:Enzym., 2015, 111:9.
[20] Zhao Y, Du K J, Gao S Q, He B, Wen G B, Tan X, Lin Y W. J. Inorg. Biochem., 2016, 156:113.
[21] Wu L B, Yuan H, Gao S Q, You Y, Nie C M, Wen G B, Lin Y W, Tan X. Nitric Oxide, 2016, 57:21.
[22] Wu L B, Du K J, Nie C M, Gao S Q, Wen G B, Tan X, Lin Y W. J. Mol. Catal. B:Enzym., 2016, 134:367.
[23] Ferguson-Miller S, Babcock G T. Chem. Rev., 1996, 96:2889.
[24] Sigman J A, Kwok B C, Lu Y. J. Am. Chem. Soc., 2000, 122:8192.
[25] Miner K D, Mukherjee A, Gao Y G, Null E L, Petrik I D, Zhao X, Yeung N, Robinson H, Lu Y. Angew. Chem. Int. Ed., 2012, 51:5589.
[26] Petrik I D, Davydov R, Ross M, Zhao X, Hoffman B, Lu Y. J. Am. Chem. Soc., 2016, 138:1134.
[27] Buschmann S, Warkentin E, Xie H, Langer J D, Ermler U, Michel H. Science, 2010, 329:327.
[28] Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S. Science, 1996, 272:1136.
[29] Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, Murata T, Iwata S, Shiro Y. Science, 2010, 330:1666.
[30] Sundaramoorthy M, Kishi K, Gold M H, Poulos T L. J. Mol. Biol., 1994, 238:845.
[31] Sigman J A, Kim H K, Zhao X, Carey J R, Lu Y. Proc. Natl. Acad. Sci. U. S. A., 2003, 100:3629.
[32] Yeung N, Lin Y W, Gao Y G, Zhao X, Russell B S, Lei L, Miner K D, Robinson H, Lu Y. Nature, 2009, 462:1079.
[33] Bhagi-Damodaran A, Michael M A, Zhu Q, Reed J, Sandoval B A, Mirts E N, Chakraborty S, Moënne-Loccoz P, Zhang Y, Lu Y. Nat. Chem., 2017, 9:257.
[34] Lin Y W, Yeung N, Gao Y G, Miner K D, Tian S, Robinson H, Lu Y. Proc. Natl. Acad. Sci. U. S. A., 2010, 107:8581.
[35] Matsumura H, Hayashi T, Chakraborty S, Lu Y, Moënne-Loccoz P. J. Am. Chem. Soc., 2014, 136:2420.
[36] Matsumura H, Chakraborty S, Reed J, Lu Y, Moënne-Loccoz P. Biochemistry, 2016, 55:2091.
[37] Lin Y W. Inorg. Chem. Front., 2017, 4:918.
[38] Reed J H, Shi Y, Zhu Q, Chakraborty S, Mirts E N, Petrik I D, Bhagi-Damodaran A, Ross M, Moënne-Loccoz P, Zhang Y, Lu Y. J. Am. Chem. Soc., 2017, 139:12209.
[39] Sun M H, Li W, Liu J H, Wen G B, Tan X, Lin Y W. RSC Adv., 2013, 3:9337.
[40] Castello P R, David P S, McClure T, Crook Z, Poyton R O. Cell metabol., 2006, 3:277.
[41] Bhagi-Damodaran A, Reed J H, Zhu Q, Shi Y, Hosseinzadeh P, Sandoval B A, Harnden K A, Wang S, Sponholtz M R, Mirts E N, Dwaraknath S, Zhang Y, Moënne-Loccoz P, Lu Y. Proc. Natl. Acad. Sci. U. S. A., 2018, 115:6195.
[42] Suzuki S, Kataoka K, Yamaguchi K. Acc. Chem. Res., 2000, 33:728.
[43] Shu X G, Su J H, Du K J, You Y, Gao S Q, Wen G B, Tan X, Lin Y W. ChemistryOpen, 2016, 5:192.
[44] Hagihara Y, Saerens D. Biochim. Biophys. Acta, 2014, 1844:2016.
[45] Tiso M, Tejero J, Basu S, Azarov I, Wang X, Simplaceanu V, Frizzell S, Jayaraman T, Geary L, Shapiro C, Ho C, Shiva S, Kim-Shapiro D B, Gladwin M T. J. Biol. Chem., 2011, 286:18277.
[46] Guimaraes B G, Hamdane D, Lechauve C, Marden M C, Golinelli-Pimpaneau B. Acta Crystallogr. D Biol. Crystallogr., 2014, 70:1005.
[47] Ascenzi P, Di Masi A, Leboffe L, Fiocchetti M, Nuzzo M T, Brunori M, Marino M. Mol. Aspects Med., 2016, 52:1.
[48] Ascenzi P, Marino M, Polticelli F, Coletta M, Gioia M, Marini S, Pesce A, Nardini M, Bolognesi M, Reeder B J, Wilson M T. Biochim. Biophys. Acta, 2013, 1834:1750.
[49] Sugimoto H, Makino M, Sawai H, Kawada N, Yoshizato K, Shiro Y. J. Mol. Biol., 2004, 339:873.
[50] Astudillo L, Bernad S, Derrien V, Sebban P, Miksovska J. J. Inorg. Biochem., 2013, 129:23.
[51] Beckerson P, Reeder B J, Wilson M T. FEBS Lett., 2015, 589:507.
[52] Boron I, Capece L, Pennacchietti F, Wetzler D E, Bruno S, Abbruzzetti S, Chisari L, Luque F J, Viappiani C, Marti M A, Estrin D A, Nadra A D. Biochim. Biophys. Acta, 2015, 1850:169.
[53] Wu L B, Yuan H, Zhou H, Gao S Q, Nie C M, Tan X, Wen G B, Lin Y W. Arch. Biochem. Biophys., 2016, 600:47.
[54] Yin L L, Yuan H, Du K J, He B, Gao S Q, Wen G B, Tan X, Lin Y W. Chem. Commun. (Camb.)., 2018, 54:4356.
[55] Zhao J, Lu C, Franzen S. J. Phys. Chem. B, 2015, 119:12828.
[56] Lin Y W. Arch. Biochem. Biophys., 2018, 641:1.
[57] Lin Y W. Biochim. Biophys. Acta, 2015, 1854:844.
[58] Barker P D, Ferrer J C, Mylrajan M, Loehr T M, Feng R, Konishi Y, Funk W D, MacGillivray R T, Mauk A G. Proc. Natl. Acad. Sci. U.S.A., 1993, 90:6542.
[59] Lin Y W, Wang W H, Zhang Q, Lu H J, Yang P Y, Xie Y, Huang Z X, Wu H M. ChemBioChem, 2005, 6:1356.
[60] Hu S, He B, Du K J, Wang X J, Gao S Q, Lin Y W. ChemistryOpen, 2017, 6:325.
[61] Cheng H M, Yuan H, Wang X J, Xu J K, Gao S Q, Wen G B, Tan X, Lin Y W. J. Inorg. Biochem., 2018, 182:141.
[62] Yan D J, Li W, Xiang Y, Wen G B, Lin Y W, Tan X. ChemBioChem, 2015, 16:47.
[63] Yan D J, Yuan H, Li W, Xiang Y, He B, Nie C M, Wen G B, Lin Y W, Tan X. Dalton Trans., 2015, 44:18815.
[64] Li L L, Yuan H, Liao F, He B, Gao S Q, Wen G B, Tan X, Lin Y W. Dalton Trans., 2017, 46:11230.
[65] Lu Y. Curr. Opin. Chem. Biol., 2005, 9:118.
[66] Lewis J C. Curr. Opin. Chem. Biol., 2015, 25:27.
[67] Yu Y, Hu C, Xia L, Wang J Y. ACS Catal., 2018, 8:1851.
[68] Liu X, Yu Y, Hu C, Zhang W, Lu Y, Wang J Y. Angew. Chem. Int. Ed., 2012, 124:4388.
[69] Yu Y, Zhou Q, Wang L, Liu X, Zhang W, Hu M, Dong J, Li J, Lv X, Ouyang H, Li H, Gao F, Gong W, Lu Y, Wang J Y. Chem. Sci., 2015, 6:3881.
[70] Zhou Q, Hu M, Zhang W, Jiang L, Perrett S, Zhou J, Wang J Y. Angew. Chem. Int. Ed., 2013, 52:1203.
[71] Chand S, Ray S, Wanigasekara E, Yadav P, Crawford J A, Armstrong D W, Rajeshwar K, Pierce B S. Arch. Biochem. Biophys., 2018, 639:44.
[72] Ensign A A, Jo I, Yildirim I, Krauss T D, Bren K L. Proc. Natl. Acad. Sci. U. S. A., 2008, 105:10779.
[73] Heinecke J L, Yi J, Pereira J C, Richter-Addo G B, Ford P C. J. Inorg. Biochem., 2012, 107:47.
[74] Posey J E, Gherardini F C. Science, 2000, 288:1651.
[75] Sommer D J, Vaughn M D, Ghirlanda G. Chem. Commun. (Camb.), 2014, 50:15852.
[76] Key H M, Dydio P, Clark D S, Hartwig J F. Nature, 2016, 534:534.
[77] Sreenilayam G, Moore E J, Steck V, Fasan R. Adv. Synth. Catal., 2017, 359:2076.
[78] Cai Y B, Li X H, Jing J, Zhang J L. Metallomics, 2013, 5:828.
[79] 蔡元博(Cai Y B), 张俊龙(Zhang J L).中国科学:化学(Scientia Sinica Chimica), 2014, 44:555.
[80] Cai Y B, Yao S Y, Hu M, Liu X, Zhang J L. Inorg. Chem. Front., 2016, 3:1236.
[81] Shi Z H, Du K J, He B, Gao S Q, Wen G B, Lin Y W. Inorg. Chem.Front., 2017, 4:2033.
[82] Ozaki S I, Matsui T, Roach M P, Watanabe Y. Coord. Chem. Rev., 2000, 198:39.
[83] Ueno T, Abe S, Yokoi N, Watanabe Y. Coord. Chem. Rev., 2007, 251:2717.
[84] Hayashi T, Sano Y, Onoda A. Isr. J. Chem., 2015, 55:76.
[85] Carey J R, Ma S K, Pfister T D, Garner D K, Kim H K, Abramite J A, Wang Z, Guo Z, Lu Y. J. Am. Chem. Soc., 2004, 126:10812.
[86] Garner D K, Liang L, Barrios D A, Zhang J L, Lu Y. ACS Catal., 2011, 1:1083.
[87] Zhang J L, Garner D K, Liang L, Chen Q, Lu Y. Chem. Commun. (Camb.), 2008, 1665.
[88] Zhang J L, Garner D K, Liang L, Barrios D A, Lu Y. Chem. Eur. J., 2009, 15:7481.
[89] Hayashi T, Morita Y, Mizohata E, Oohora K, Ohbayashi J, Inoue T, Hisaeda Y. Chem. Commun. (Camb.), 2014, 50:12560.
[90] Morita Y, Oohora K, Sawada A, Doitomi K, Ohbayashi J, Kamachi T, Yoshizawa K, Hisaeda Y, Hayashi T. Dalton Trans., 2016, 45:3277.
[91] Oohora K, Meichin H, Kihira Y, Sugimoto H, Shiro Y, Hayashi T. J. Am. Chem. Soc., 2017, 139:18460.
[92] Oohora K, Meichin H, Zhao L, Wolf M W, Nakayama A, Hasegawa J Y, Lehnert N, Hayashi T. J. Am. Chem. Soc., 2017, 139:17265.
[93] Sreenilayam G, Moore E J, Steck V, Fasan R. ACS Catal., 2017, 7:7629.
[94] Lin Y W, Nagao S, Zhang M, Shomura Y, Higuchi Y, Hirota S. Angew. Chem. Int. Ed., 2015, 54:511.
[95] Nanda V, Koder R L. Nat. Chem., 2010, 2:15.
[96] Kries H, Blomberg R, Hilvert D. Curr. Opin. Chem. Biol., 2013, 17:221.
[97] Lin Y W, Nie C M, Liao L F. J. Mol. Model., 2012, 18:4409.
[98] Zhang M, Nakanishi T, Yamanaka M, Nagao S, Yanagisawa S, Shomura Y, Shibata N, Ogura T, Higuchi Y, Hirota S. ChemBioChem, 2017, 18:1712.
[99] Lin Y W. Proteins, 2011, 79:679.
[100] Marshall N M, Garner D K, Wilson T D, Gao Y G, Robinson H, Nilges M J, Lu Y. Nature, 2009, 462:113.
[101] Heinisch T, Ward T R. Acc. Chem. Res., 2016, 49:1711.
[102] Peacock A F. Curr. Opin. Chem. Biol., 2013, 17:934.
[103] Woolfson D N, Bartlett G J, Burton A J, Heal J W, Niitsu A, Thomson A R, Wood C W. Curr. Opin. Struct. Biol., 2015, 33:16.
[104] Boyken S E, Chen Z, Groves B, Langan R A, Oberdorfer G, Ford A, Gilmore J M, Xu C, DiMaio F, Pereira J H, Sankaran B, Seelig G, Zwart P H, Baker D. Science, 2016, 352:680.
[105] Yin L L, Yuan H, Liu C, He B, Gao S Q, Wen G B, Tan X, Lin Y W. ACS Catal., 2018, 8:9619.
[1] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[2] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[3] Yunbo Jiang, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Thermally Activated Delayed Fluorescence Polymers and Applications in Organic Light Emitting Devices [J]. Progress in Chemistry, 2019, 31(8): 1116-1128.
[4] Mu Siyang, Guo Jing, Yu Chunfang, Gong Yumei, Zhang Sen. Synthesis and Applications of ATRP Macromolecular Initiator [J]. Progress in Chemistry, 2015, 27(5): 539-549.
[5] Lin Yingwu. Dimerization, Oligomerization and Polymerization of Heme Proteins [J]. Progress in Chemistry, 2014, 26(06): 987-995.
[6] Li Gaopeng, Zhang Yan*. Progress in Bioinformatics Studies on Essential Metals [J]. Progress in Chemistry, 2013, 25(04): 446-456.
[7] Xu Caihong, Zhao Yaqin, Yang Binsheng*. Mediating Roles of Metal Ions in the Structures and Functions of Metalloproteins [J]. Progress in Chemistry, 2013, 25(04): 520-529.
[8] Wang Haibo, Zhao Meng, Ji Liangnian, Mao Zongwan*. Metalloenzyme Mimics with Non-Covalent Interactions [J]. Progress in Chemistry, 2013, 25(04): 577-588.
[9] Lin Yingwu. Computer-Aided Rational Protein Design: From Myoglobin to Nitric Oxide Reductases [J]. Progress in Chemistry, 2012, 24(05): 784-789.
[10] Peng Xiaomin, Zhang Jinchao, Gao Yuxi, Chai Zhifang. Techniques for Extraction and Separation of Metalloproteins [J]. Progress in Chemistry, 2012, 24(05): 834-843.
[11] Lin Yingwu. Cytochrome b5-Protein Interactions [J]. Progress in Chemistry, 2012, 24(04): 589-597.
[12] Ying-Wu Lin. Expanding Protein Functionalities by Rational Design of Artificial Metal-binding Sites [J]. Progress in Chemistry, 2010, 22(06): 1203-1211.
[13] . Molecular Design of Polymeric Electroluminescent Materials [J]. Progress in Chemistry, 2010, 22(04): 696-705.
[14] Zhao Jianxin Qiao Yitao Yuan Zhi. Interaction of Synthetic Receptor with Oligopeptide [J]. Progress in Chemistry, 2009, 21(10): 2123-2131.
[15] Jiang Hualin Tan Xiangshi. Human Hepatic Cytochrome P450 2C Metalloenzymes and Drug Metabolism [J]. Progress in Chemistry, 2009, 21(05): 911-918.