中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (04): 446-456 DOI: 10.7536/PC121131 Previous Articles   Next Articles

Progress in Bioinformatics Studies on Essential Metals

Li Gaopeng, Zhang Yan*   

  1. Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
  • Received: Revised: Online: Published:
PDF ( 1101 ) Cited
Export

EndNote

Ris

BibTeX

Metals are utilized through the three domains of life. Except for potassium, calcium, sodium and magnesium, all essential metals are trace elements. They play important roles in a variety of biological processes, but are needed in very small quantities. Previously, much effort has been focused on experimental studies of metal utilization pathways and metalloproteins. However, with the accumulation of large amount of data from genomics and proteomics studies, it becomes necessary and possible for computational and systematic analyses of the metallomes (or metalloproteomes) to be carried on, which would provide new insights into metal utilization, metabolization and biological functions. In this review, we introduce recent advances in bioinformatics studies on several metals, such as copper, molybdenum, nickel, cobalt, zinc, iron and the metalloid selenium. Furthermore, we also discuss the major techniques and recent advances of high-throughput ionomics studies. We hope that this review may provide a foundation for investigating the fundamental questions and future directions of metal research.

Contents
1 Introduction
2 Copper
3 Molybdenum
4 Nickel and cobalt
5 Zinc
6 Iron
7 Selenium
8 Ionomics
9 Conclusions and outlook

CLC Number: 

[1] Mertz W. Science, 1981, 213: 1332-1338
[2] Mertz W. Biol. Trace Elem. Res., 1998, 66: 185-191
[3] Goldhaber S B. Regul. Toxicol. Pharmacol., 2003, 38: 232-242
[4] Van Gossum A, Neve J. Curr. Opin. Clin. Nutr. MeTab. Care, 1998, 1: 499-507
[5] Ba L A, Doering M, Burkholz T, Jacob C. Metallomics, 2009, 1: 292-311
[6] Patzer S I, Hantke K. Mol. Microbiol., 1998, 28: 1199-1210
[7] Bartsevich V V, Pakrasi H B. J. Biol. Chem., 1996, 271: 26057-26061
[8] Maupin-Furlow J A, Rosentel J K, Lee J H, Deppenmeier U, Gunsalus R P, Shanmugam K T. J. Bacteriol., 1995, 177: 4851-4856
[9] Eitinger T, Mandrand-Berthelot M A. Arch. Microbiol., 2000, 173: 1-9
[10] Makui H, Roig E, Cole S T, Helmann J D, Gros P, Cellier M F. Mol. Microbiol., 2000, 35: 1065-1078
[11] Liuzzi J P, Cousins R J. Annu. Rev. Nutr., 2004, 24: 151-172
[12] Grass G, Franke S, Taudte N, Nies D H, Kucharski L M, Maguire M E, Rensing C. J. Bacteriol., 2005, 187: 1604-1611
[13] Phung L T, Ajlani G, Haselkorn R. Proc. Natl. Acad. Sci. U. S. A., 1994, 91: 9651-9654
[14] Dancis A, Yuan D S, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner R D. Cell, 1994, 76: 393-402
[15] Degen O, Eitinger T. J. Bacteriol., 2002, 184: 3569-3577
[16] Ackland M L, McArdle H J. Biometals, 1996, 9: 29-37
[17] Maguire M E. Methods Mol. Biol., 2007, 394: 289-305
[18] Bremner I, Beattie J H. Proc. Nutr. Soc., 1995, 54: 489-499
[19] Schwarz G, Mendel R R. Annu. Rev. Plant Biol., 2006, 57: 623-647
[20] Kräutler B. Biochem. Soc. Trans., 2005, 33: 806-810
[21] Coleman J E. Annu. Rev. Biochem., 1992, 61: 897-946
[22] Wattt R K, Ludden P W. Cell. Mol. Life Sci., 1999, 56: 604-625
[23] Haraguchi H. J. Anal. At. Spectrom., 2004, 19: 5-14
[24] Peña M M, Lee J, Thiele D J. J. Nutr., 1999, 129: 1251-1260
[25] Gaetke L M, Chow C K. Toxicology, 2003, 189: 147-163
[26] Tottey S, Rondet S A M, Borrelly G P M, Robinson P J, Rich P R, Robinson N J. J. Biol. Chem., 2002, 277: 5490-5497
[27] Banci L, Bertini I, Ciofi-Baffoni S, Su X C, Borrelly G P M, Robinson N J. J. Biol. Chem., 2004, 279: 27502-27510
[28] Bull P C, Thomas G R, Rommens J M, Forbes J R, Cox D W. Nat. Genet., 1993, 5: 327-337
[29] Burkhead J L, Gray L W, Lutsenko S. Biometals, 2011, 24: 455-466
[30] Andreini C, Bertini I, Rosato A. Bioinformatics, 2004, 20: 1373-1380
[31] Andreini C, Banci L, Bertini I, Rosato A. J. Proteome Res., 2008, 7: 209-216
[32] Ridge P G, Zhang Y, Gladyshev V N. PLoS ONE, 2008, 3: e1378
[33] Zhang Y, Gladyshev V N. J. Biol. Chem., 2010, 285: 3393-3405
[34] Zhang Y, Gladyshev V N. Chem. Rev., 2009, 109: 4828-4861
[35] Roelofsen H, Balgobind R, Vonk R J. J. Cell. Biochem., 2004, 93: 732-740
[36] Kulkarni P P, She Y M, Smith S D, Roberts E A, Sarkar B. Chemistry, 2006, 12: 2410-2422
[37] Wilmarth P A, Short K K, Fiehn O, Lutsenko S, David L L, Burkhead J L. Metallomics, 2012, 4: 660-668
[38] Mendel R R. Biofactors, 2009, 35: 429-434
[39] Hille R. Trends Biochem. Sci., 2002, 27: 360-367
[40] Schwarz G, Mendel R R, Ribbe M W. Nature, 2009, 460: 839-847
[41] Grunden A M, Ray R M, Rosentel J K, Healy F G, Shanmugam K T. J. Bacteriol., 1996, 178: 735-744
[42] Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N, Fujiwara T. Proc. Natl. Acad. Sci. U. S. A., 2007, 104: 18807-18812
[43] Tejada-Jiménez M, Galván A, Fernández E. Proc. Natl. Acad. Sci. U. S. A., 2011, 108: 6420-6425
[44] Zhang Y, Gladyshev V N. J. Mol. Biol., 2008, 379: 881-899
[45] Zhang Y, Rump S, Gladyshev V N. Coord. Chem. Rev., 2011, 255: 1206-1217
[46] Banerjee R, Ragsdale S W. Annu. Rev. Biochem., 2003, 72: 209-247
[47] Rodionov D A, Vitreschak A G, Mironov A A, Gelfand M S. J. Biol. Chem., 2003, 278: 41148-41159
[48] Rodionov D A, Hebbeln P, Gelfand M S, Eitinger T. J. Bacteriol., 2006, 188: 317-327
[49] Zhang Y, Rodionov D A, Gelfand M S, Gladyshev V N. BMC Genomics, 2009, 10: art. no. 78
[50] Heiss K, Junkes C, Guerreiro N, Swamy M, Camacho-Carvajal M M, Schamel W W A, Haidl I D, Wild D, Weltzien H U, Thierse H J. Proteomics, 2005, 5: 3614-3622
[51] Hershfinkel M, Silverman W F, Sekler I. Mol. Med., 2007, 13: 331-336
[52] Fosmire G J. Am. J. Clin. Nutr., 1990, 51: 225-227
[53] Andreini C, Banci L, Bertini I, Rosato A. J. Proteome Res., 2006, 5: 3173-3178
[54] Makarova K S, Ponomarev V A, Koonin E V. Genome Biol., 2001, 2: art. no. RESEARCH 0033
[55] Panina E M, Mironov A A, Gelfand M S. Proc. Natl. Acad. Sci. U. S. A., 2003, 100: 9912-9917
[56] Zhang Y, Gladyshev V N. J. Biol. Chem., 2011, 286: 23623-23629
[57] Andreini C, Bertini I, Cavallaro G, Holliday G L, Thornton J M. J. Biol. Inorg. Chem., 2008, 13: 1205-1218
[58] Imbert M, Blondeau R. Curr. Microbiol., 1998, 37: 64-66
[59] Posey J E, Gherardini F C. Science, 2000, 288: 1651-1653
[60] Andreini C, Banci L, Bertini I, Elmi S, Rosato A. Proteins, 2007, 67: 317-324
[61] Andreini C, Bertini I, Rosato A. Acc. Chem. Res., 2009, 42: 1471-1479
[62] Andreini C, Bertini I, Cavallaro G, Najmanovich R J, Thornton J M. J. Mol. Biol., 2009, 388: 356-380
[63] Cavallaro G, Decaria L, Rosato A. J. Proteome Res., 2008, 7: 4946-4954
[64] Hatfield D L, Gladyshev V N. Mol. Cell. Biol., 2002, 22: 3565-3576
[65] Kryukov G V, Kryukov V M, Gladyshev V N. J. Biol. Chem., 1999, 274: 33888-33897
[66] Zhang Y, Gladyshev V N. Bioinformatics, 2005, 21: 2580-2589
[67] Lescure A, Gautheret D, Carbon P, Krol A. J. Biol. Chem., 1999, 274: 38147-38154
[68] Jiang L, Liu Q, Ni J. BMC Genomics, 2010, 11: 289
[69] Zhang Y, Fomenko D E, Gladyshev V N. Genome Biol., 2005, 6: art. no. R37
[70] Zhang Y, Gladyshev V N. Nucleic Acids Res., 2007, 35: 4952-4963
[71] Zhang Y, Gladyshev V N. PLoS Genet., 2008, 4: art. no. e1000095
[72] Zhang Y, Romero H, Salinas G, Gladyshev V N. Genome Biol., 2006, 7: art. no. R94
[73] Gobler C J, Berry D L, Dyhrman S T, Wilhelm S W, Salamov A, Lobanov A V, Zhang Y, Collier J L, Wurch L L, Kustka A B, Dill B D, Shah M, VerBerkmoes N C, Kuo A, Terry A, Pangilinan J, Lindquist E A, Lucas S, Paulsen I T, Hattenrath-Lehmann T K, Talmage S C, Walker E A, Koch F, Burson A M, Marcoval M A, Tang Y-Z, Lecleir G R, Coyne K J, Berg G M, Bertrand E M, Saito M A, Gladyshev V N, Grigoriev I V. Proc. Natl. Acad. Sci. U. S. A., 2011, 108: 4352-4357
[74] Lobanov A V, Fomenko D E, Zhang Y, Sengupta A, Hatfield D L, Gladyshev V N. Genome Biol., 2007, 8: art. no. R198
[75] Mariotti M, Ridge P G, Zhang Y, Lobanov A V, Pringle T H, Guigo R, Hatfield D L, Gladyshev V N. PLoS ONE, 2012, 7: art. no. e33066
[76] Zhang H, Dong Y, Zhao H, Brooks J D, Hawthorn L, Nowak N, Marshall J R, Gao A C, Ip C. Cancer Genomics Proteomics, 2005, 2: 97-114
[77] Méplan C. J. Trace Elem. Med. Biol., 2011, 25 Suppl 1: S11-S16
[78] Kipp A, Banning A, Van Schothorst E M, Méplan C, Schomburg L, Evelo C, Coort S, Gaj S, Keijer J, Hesketh J, Brigelius-Flohé R. Mol. Nutr. Food Res., 2009, 53: 1561-1572
[79] Fontana L, Partridge L, Longo V D. Science, 2010, 328: 321-326
[80] Mahn A V, Muñoz M C, Zamorano M J. J. Chromatogr. Sci., 2009, 47: 840-843
[81] Costa-Mallen P, Checkoway H, Zabeti A, Edenfield M J, Swanson P D, Longstreth W T Jr, Franklin G M, Smith-Weller T, Sadrzadeh S M H. Am. J. Med. Genet. B Neuropsychiatr. Genet., 2008, 147B: 216-222
[82] Ingenbleek Y, Young V. Annu. Rev. Nutr., 1994, 14: 495-533
[83] Kannel W B, Wolf P A, Castelli W P, D’Agostino R B. JAMA, 1987, 258: 1183-1186
[84] Lahner B, Gong J, Mahmoudian M, Smith E L, Abid K B, Rogers E E, Guerinot M L, Harper J F, Ward J M, McIntyre L, Schroeder J I, Salt D E. Nat. Biotechnol., 2003, 21: 1215-1221
[85] Baxter I. Brief. Funct. Genomics, 2010, 9: 149-156
[86] Baxter I, Muthukumar B, Park H C, Buchner P, Lahner B, Danku J, Zhao K, Lee J, Hawkesford M J, Guerinot M L, Salt D E. PLoS Genet., 2008, 4: art. no. e1000004
[87] Morrissey J, Baxter I R, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt D E, Guerinot M L. Plant Cell, 2009, 21: 3326-3338
[88] Eide D J, Clark S, Nair T M, Gehl M, Gribskov M, Guerinot M L, Harper J F. Genome Biol., 2005, 6: art. no. R77
[89] Sun L, Yu Y, Huang T, An P, Yu D, Yu Z, Li H, Sheng H, Cai L, Xue J, Jing M, Li Y, Lin X, Wang F. PLoS ONE, 2012, 7: art. no. e38845

[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[3] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[6] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[7] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[8] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[9] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[10] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[13] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[14] Yi Zeng, Yongsheng Ren, Wenhui Ma, Hui Chen, Shu Zhan, Jing Cao. Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method [J]. Progress in Chemistry, 2022, 34(4): 926-949.
[15] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.