中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (04): 577-588 DOI: 10.7536/PC121054 Previous Articles   Next Articles

Special Issue: 酶化学

• Review •

Metalloenzyme Mimics with Non-Covalent Interactions

Wang Haibo, Zhao Meng, Ji Liangnian, Mao Zongwan*   

  1. MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
  • Received: Revised: Online: Published:
PDF ( 1161 ) Cited
Export

EndNote

Ris

BibTeX

Metalloenzyme efficiency and specificity originate from the cooperative roles between the metal-mediated catalysis at the first coordination sphere and the non-covalent interactions at the secondary coordination sphere. While the structures and functions of metal coordination sites have drawn wide researches, the elucidations of the non-covalent interactions have been less assessed. The enzymatic non-covalent interactions in terms of hydrogen bonding, electrostatic attraction, van der Waals force and hydrophobic interaction are produced from the amino acid residues in the secondary coordination sphere. The primary hurdle that hampers the elucidation of the amino acids in the secondary coordination sphere is their complicated intra- and intermolecular interaction networks that are exceptionally difficult to define. A practical approach to circumvent this challenge is to prepare metalloenzyme mimics that include non-covalent interactions. This approach not only opens an avenue to understand the synergism between the non-covalent interactions and the metal ions, but also contributes to the development of biomimetic catalysts applied in industry, pharmaceutics, biotechnology and even wider areas. To make an overview of the recent progresses in this field, this review discusses the representative mimics which are organized according to the interaction categories. The mimics exemplified here include the ones based on the simple multi-dentate ligands like bipyridine, terpyridine, cyclic amine and porphyrin, and the supramolecular ligands like the functionalized cyclodextrins and calixarenes. Prior to the discussions of mimics, the non-covalent interactions of native metalloenzymes are commented.

Contents
1 Introduction
2 Non-covalent interactions in native metalloenzyme
2.1 Hydrolase
2.2 Oxido-reductase
3 Metalloenzyme models involving non-covalent interactions
3.1 Hydrogen bonding
3.2 Electrostatic interaction
3.3 Hydrophobic sphere
4 Conclusion and outlook

CLC Number: 

[1] Kirby A J. Angew. Chem. Int. Ed. Engl., 1996, 35: 706-724
[2] Williams D H, Westwell M S. Chem. Soc. Rev., 1998, 27: 57-63
[3] Breslow R. Acc. Chem. Res., 1995, 28: 146-153
[4] Thomas C M, Ward T R. Chem. Soc. Rev., 2005, 34: 337-346
[5] Mancin F, Scrimin P, Tecilla P. Chem. Commun., 2012, 48: 5545-5559
[6] Mill醤 J L. Anticancer Res., 1988, 8: 995-1004
[7] Coleman J E. Annu. Rev. Biophys. Biomol. Struct., 1992, 21: 441-483
[8] Krämer R. Coord. Chem. Rev., 1999, 182: 243-261
[9] Serpersu E H, Shortle D, Mildvan A S. Biochemistry, 1987, 26: 1289-1300
[10] Wolfenden R. Chem. Rev., 2006, 106: 3379-3396
[11] Cho J H, Kim D H, Kim D H, Lee K J, Choi K Y. Biochemistry, 2001, 40: 10197-10203
[12] Yun M, Park C, Kim S, Nam D, Kim S C, Kim D H. J. Am. Chem. Soc., 1992, 114: 2281-2282
[13] Fern醤dez D, Pallar鑣 I, Vendrell J, Avil閟 F X. Biochimie, 2010, 92: 1484-1500
[14] Bukrinsky J T, Bjerrum M J, Kadziola A. Biochemistry, 1998, 37: 16555-16564
[15] Xu D, Guo H. J. Am. Chem. Soc., 2009, 131: 9780-9788
[16] Guengerich F P. Chem. Res. Toxicol., 2001, 14: 611-650
[17] Feiters M C, Rowan A E, Nolte R J M. Chem. Soc. Rev., 2000, 29: 375-384
[18] Nagano S, Cupp-Vickery J R, Poulos T L. J. Biol. Chem., 2005, 280: 22102-22107
[19] Nagano S, Poulos T L. J. Biol. Chem., 2005, 280: 31659-31663
[20] Shook R L, Borovik A S. Inorg. Chem., 2010, 49: 3646-3660
[21] Schlichting I, Berendzen J, Chu K, Stock A M, Maves S A, Benson D E, Sweet R M, Ringe D, Petsko G A, Sligar S G. Science, 2000, 287: 1615-1622
[22] Galinato M G I, Spolitak T, Ballou D P, Lehnert N. Biochemistry, 2010, 50: 1053-1069
[23] Matsu-ura M, Tani F, Nakayama S, Nakamura N, Naruta Y. Angew. Chem. Int. Ed., 2000, 39: 1989-1991
[24] Greenleaf W B, Perry J J P, Hearn A S, Cabelli D E, Lepock J R, Stroupe M E, Tainer J A, Nick H S, Silverman D N. Biochemistry, 2004, 43: 7038-7045
[25] Yikilmaz E, Rodgers D W, Miller A F. Biochemistry, 2006, 45: 1151-1161
[26] Wang J T, Xia Q, Zheng X H, Chen H Y, Chao H, Mao Z W, Ji L N. Dalton Trans., 2010, 39: 2128-2136
[27] Wang J T, Zheng X H, Ji L N, Mao Z W. J. Coord. Chem., 2010, 63: 2440-2449
[28] Sreedhara A, Freed J D, Cowan J A. J. Am. Chem. Soc., 2000, 122: 8814-8824
[29] Wright D J, Jack W E, Modrich P. J. Biol. Chem., 1999, 274: 31896-31902
[30] Feng G, Natale D, Prabaharan R, Mareque-Rivas J C, Williams N H. Angew. Chem. Int. Ed., 2006, 45: 7056-7059
[31] Kinoshita E, Takahashi M, Takeda H, Shiro M, Koike T. Dalton Trans., 2004, 1189-1193
[32] O' Donoghue A, Pyun S Y, Yang M Y, Morrow J R, Richard J P. J. Am. Chem. Soc., 2006, 128: 1615-1621
[33] Borovik A S. Acc. Chem. Res., 2005, 38: 54-61
[34] Borovik A S. Chem. Soc. Rev., 2011, 40: 1870-1874
[35] Mukherjee J, Lucas R L, Zart M K, Powell D R, Day V W, Borovik A S. Inorg. Chem., 2008, 47: 5780-5786
[36] MacBeth C E, Gupta R, Mitchell-Koch K R, Young V G, Lushington G H, Thompson W H, Hendrich M P, Borovik A S. J. Am. Chem. Soc., 2004, 126: 2556-2567
[37] Kendall A J, Zakharov L N, Gilbertson J D. Inorg. Chem., 2010, 49: 8656-8658
[38] Das S, Incarvito C D, Crabtree R H, Brudvig G W. Science, 2006, 312: 1941-1943
[39] Chang C J, Chng L L, Nocera D G. J. Am. Chem. Soc., 2003, 125: 1866-1876
[40] Kovari E, Krämer R. J. Am. Chem. Soc., 1996, 118: 12704-12709
[41] An Y, Tong M L, Ji L N, Mao Z W. Dalton Trans., 2006, 2066-2071
[42] An Y, Liu S D, Deng S Y, Ji L N, Mao Z W. J. Inorg. Biochem., 2006, 100: 1586-1593
[43] Li J H, Wang J T, Hu P, Zhang L Y, Chen Z N, Mao Z W, Ji L N. Polyhedron, 2008, 27: 1898-1904
[44] Li J H, Wang J T, Zhang L Y, Chen Z N, Mao Z W, Ji L N. J. Coord. Chem., 2009, 62: 1775-1783
[45] He J, Hu P, Wang Y J, Tong M L, Sun H, Mao Z W, Ji L N. Dalton Trans., 2008, 3207-3214
[46] An Y, Lin Y Y, Wang H, Sun H Z, Tong M L, Ji L N, Mao Z W. Dalton Trans., 2007, 1250-1254
[47] He J, Sun J, Mao Z W, Ji L N, Sun H. J. Inorg. Biochem., 2009, 103: 851-858
[48] Li J H, Wang J T, Mao Z W, Ji L N. J. Coord. Chem., 2009, 62: 446-455
[49] Li J H, Wang J T, Zhang L Y, Chen Z N, Mao Z W, Ji L N. Inorg. Chim. Acta, 2009, 362: 1918-1924
[50] Liu S, Hamilton A D. Tetrahedron Lett., 1997, 38: 1107-1110
[51] Aït Haddou H, Sumaoka J, Wiskur S L, Folmer-Andersen J F, Anslyn E V. Angew. Chem. Int. Ed., 2002, 41: 4013-4016
[52] Tobey S L, Jones B D, Anslyn E V. J. Am. Chem. Soc., 2003, 125: 4026-4027
[53] Tobey S L, Anslyn E V. J. Am. Chem. Soc., 2003, 125: 14807-14815
[54] Sheng X, Lu X M, Chen Y T, Lu G Y, Zhang J J, Shao Y, Liu F, Xu Q. Chem. Eur. J., 2007, 13: 9703-9712
[55] Aoki S, Iwaida K, Hanamoto N, Shiro M, Kimura E. J. Am. Chem. Soc., 2002, 124: 5256-5257
[56] Tani F, Matsu-ura M, Nakayama S, Ichimura M, Nakamura N, Naruta Y. J. Am. Chem. Soc., 2001, 123: 1133-1142
[57] Cronin L, Walton P H. Chem. Commun., 2003, 1572-1573
[58] Zhao M, Helms B, Slonkina E, Friedle S, Lee D, DuBois J, Hedman B, Hodgson K O, Fr閏het J M J, Lippard S J. J. Am. Chem. Soc., 2008, 130: 4352-4363
[59] Zhou Y H, Mao Z W. Sci. China Ser. B Chem., 2009, 39: 289-300
[60] Breslow R, Dong S D. Chem. Rev., 1998, 98: 1997-2012
[61] Hapiot F, Tilloy S, Monflier E. Chem. Rev., 2006, 106: 767-781
[62] Singleton M L, Reibenspies J H, Darensbourg M Y. J. Am. Chem. Soc., 2010, 132: 8870-8871
[63] Kano K, Kitagishi H, Kodera M, Hirota S. Angew. Chem. Int. Ed., 2005, 44: 435-438
[64] Kano K, Kitagishi H, Dagallier C, Kodera M, Matsuo T, Hayashi T, Hisaeda Y, Hirota S. Inorg. Chem., 2006, 45: 4448-4460
[65] Kitagishi H, Tamaki M, Ueda T, Hirota S, Ohta T, Naruta Y, Kano K. J. Am. Chem. Soc., 2010, 132: 16730-16732
[66] Fu H, Zhou Y H, Chen W L, Deqing Z G, Tong M L, Ji L N, Mao Z W. J. Am. Chem. Soc., 2006, 128: 4924-4925
[67] Zhou Y H, Fu H, Zhao W X, Chen W L, Su C Y, Sun H, Ji L N, Mao Z W. Inorg. Chem., 2007, 46: 734-739
[68] Zhou Y H, Fu H, Zhao W X, Tong M L, Su C Y, Sun H, Ji L N, Mao Z W. Chem. Eur. J., 2007, 13: 2402-2409
[69] Zhou Y H, Zhao M, Sun H, Mao Z W, Ji L N. J. Mol. Catal. A Chem., 2009, 308: 61-67
[70] Zhou Y H, Zhao M, Li J H, Mao Z W, Ji L N. J. Mol. Catal. A Chem., 2008, 293: 59-64
[71] Zhou Y H, Zhao M, Mao Z W, Ji L N. Chem. Eur. J., 2008, 14: 7193-7201
[72] Tang S P, Zhou Y H, Chen H Y, Zhao C Y, Mao Z W, Ji L N. Chem. Asian J., 2009, 4: 1354-1360
[73] Tang S P, Chen S, Wu G F, Chen H Y, Mao Z W, Ji L N. Inorg. Chem. Commun., 2011, 14: 184-188
[74] Zhao M, Zhao C, Jiang X Q, Ji L N, Mao Z W. Dalton Trans., 2012, 41: 4469-4476
[75] Zhao M, Zhang L, Chen H Y, Wang H L, Ji L N, Mao Z W. Chem. Commun., 2010, 46: 6497-6499
[76] Zhao M, Wang H L, Zhang L, Zhao C, Ji L N, Mao Z W. Chem. Commun., 2011, 47: 7344-7346
[77] Hu P, Liu G F, Ji L N, Mao Z W. Chem. Commun., 2012, 48: 5515-5517
[78] S閚鑡ue O, Rager M N, Giorgi M, Reinaud O. J. Am. Chem. Soc., 2001, 123: 8442-8443
[79] Blanchard S, Le Clainche L, Rager M N, Chansou B, Tuchagues J P, Duprat A F, Le Mest Y, Reinaud O. Angew. Chem. Int. Ed., 1998, 37: 2732-2735
[80] LePoul N, Campion M, Douziech B, Rondelez Y, Le Clainche L, Reinaud O, Le Mest Y. J. Am. Chem. Soc., 2007, 129: 8801-8810
[81] LePoul N, Campion M, Izzet G, Douziech B, Reinaud O, Le Mest Y. J. Am. Chem. Soc., 2005, 127: 5280-5281
[82] Molenveld P, Kapsabelis S, Engbersen J F J, Reinhoudt D N. J. Am. Chem. Soc., 1997, 119: 2948-2949
[83] Molenveld P, Engbersen J F J, Reinhoudt D N. Angew. Chem. Int. Ed., 1999, 38: 3189-3192
[84] Cacciapaglia R, Casnati A, Mandolini L, Reinhoudt D N, Salvio R, Sartori A, Ungaro R. J. Am. Chem. Soc., 2006, 128: 12322-12330
[85] Cacciapaglia R, Casnati A, Mandolini L, Peracchi A, Reinhoudt D N, Salvio R, Sartori A, Ungaro R. J. Am. Chem. Soc., 2007, 129: 12512-12520

[1] Dan-Wei Zhang, Hui Wang, Zhan-Ting Li. Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions [J]. Progress in Chemistry, 2020, 32(11): 1665-1679.
[2] Yuxia Gao, Yun Liang, Jun Hu, Yong Ju. Supramolecular Chiral Self-Assembly Based on Small Molecular Natural Products [J]. Progress in Chemistry, 2018, 30(6): 737-752.
[3] Tang Guotao Wang Qinglun Liao Daizheng Yang Guangming. Spin Crossover and Its Research Progress [J]. Progress in Chemistry, 2010, 22(0203): 257-264.