中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (06): 987-995 DOI: 10.7536/PC140103 Previous Articles   Next Articles

• Review •

Dimerization, Oligomerization and Polymerization of Heme Proteins

Lin Yingwu*1,2   

  1. 1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China;
    2. Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21101091, 31370812) and the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars, Ministry of Education, China

PDF ( 1462 ) Cited
Export

EndNote

Ris

BibTeX

Heme proteins play various important roles in biological systems such as oxygen storage and transport, electron transfer, catalysis and signaling. Although most heme proteins exist as a monomer, homomeric complexes are also observed for some heme proteins in vitro and/or in vivo. This review summarized the progress of dimerization, oligomerization and polymerization of heme proteins, including myoglobin, cytochrome c, cytoglobin, cytochrome b5, cytochrome b562, nitrite reductase, heme-based sensor and heme transport proteins, etc., and focused on the resultant structures and functions, as well as the approaches for rational design of polymers and their applications. These progresses, on one hand, enhanced our knowledge of the structure-function relationship of heme proteins in biological systems, and on the other hand, endowed us an ability of regulating and utilizing heme proteins by functional protein design through polymerization.

Contents
1 Introduction
2 Dimerization of heme proteins
2.1 Structure and function of dimeric myoglobin
2.2 Structure and function of dimeric cytochrome c
2.3 Structure and function of dimeric cytoglobin
2.4 Structure and function of dimeric nitrite reductase
2.5 Structure and function of dimeric heme-based sensor protein
2.6 Structure and function of dimeric heme transport protein
3 Oligomerization of heme proteins
4 Polymerization of heme proteins
4.1 Rational design of heme protein polymer
4.2 Applications of heme protein polymer
5 Conclusion and outlook

CLC Number: 

[1] Lu Y, Yeung N, Sieracki N, Marshall N M. Nature, 2009, 460: 855.
[2] Lin Y W, Sawyer E B, Wang J. Chem. Asian J., 2013, 8: 2534.
[3] Lin Y W, Wang J, Lu Y. Sci. China Chem., 2014, 57(3): 346.
[4] 林英武(Lin Y W),黄仲贤(Huang Z X). 化学进展(Progress in Chemistry), 2006, 18(6): 794.
[5] 林英武(Lin Y W). 化学进展(Progress in Chemistry), 2010, 22(6): 1203.
[6] 林英武(Lin Y W).化学进展(Progress in Chemistry), 2012, 24(4): 147.
[7] 林英武(Lin Y W).化学进展(Progress in Chemistry), 2012, 24(5): 129.
[8] Lin Y W, Wang J. J. Inorg. Biochem., 2013, 129(12): 162.
[9] Uversky V N. FEBS J., 2010, 277: 2940.
[10] Kendrew J C, Bodo G, Dintzis H M, Parrish R G, Wyckoff H, Phillips D C. Nature, 1958, 181(4610): 662.
[11] Phillips S E. J. Mol. Biol., 1980, 142(4): 531.
[12] Van den Oord A H, Wesdorp J J, van Dam A F, Verheij J A. Eur. J. Biochem., 1969, 1: 140.
[13] Nagao S, Osuka H, Yamada T, Uni T, Shomura Y, Imai K, Higuchi Y, Hirota S. Dalton Trans., 2012, 41: 11378.
[14] Bushnell G W, Louie G V, Brayer G D. J. Mol. Biol., 1990, 214(2): 585.
[15] Margoliash E, Lustgarten J. J. Biol. Chem., 1962, 237: 3397.
[16] Hirota S, Hattori Y, Nagao S, Taketa M, Komori H, Kamikubo H, Wang Z, Takahashi I, Negi S, Sugiura Y, Kataoka M, Higuchi Y. Proc. Natl. Acad. Sci. U.S.A., 2010, 107: 12854.
[17] Wang Z, Matsuo T, Nagao S, Hirota S. Org. Biomol. Chem., 2011, 9: 4766.
[18] Hirota S, Ueda M, Hayashi Y, Nagao S, Kamikubo H, Kataoka M. J. Biochem., 2012, 152: 521.
[19] Parui P P, Deshpande M S, Nagao S, Kamikubo H, Komori H, Higuchi Y, Kataoka M, Hirota S. Biochemistry, 2013, 52(48): 8732.
[20] Nugraheni A D, Nagao S, Yanagisawa, Ogura T, Hirota S. J. Biol. Inorg. Chem., 2013, 18: 383.
[21] De Sanctis D, Dewilde S, Pesce A, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M. J. Mol. Biol., 2004, 336: 917.
[22] Burmester T, Weich B, Reinhardt S, Hankeln T. Nature, 2000, 407: 520.
[23] Fiocchettia M, DeMarinis E, Ascenzi P, Marino M. Biochim. Biophys. Acta, 2013, 1834(9): 1744.
[24] Astudillo L, Bernad S, Derrien V, Sebban P, Miksovska J. J. Inorg. Biochem., 2013, 129: 23.
[25] Makino M, Sugimoto H, Sawai H, Kawada N, Yoshizato K, Shiro Y. Acta Crystallogr. D: Biol. Crystallogr., 2006, 62: 671.
[26] 蒋华麟(Jiang H L), 谭相石(Tan X S). 化学进展(Progress in Chemistry), 2009, 21(5): 911.
[27] Rinaldo S, Giardina G, Castiglione N, Stelitano V, Cutruzzolà F. Biochem. Soc. Trans., 2011, 39: 195.
[28] Nurizzo D, Silvestrini M C, Mathieu M, Cutruzzolà F, Bourgeois D, Fülöp V, Hajdu J, Brunori M, Tegoni M, Cambillau C. Structure, 1997, 5: 1157.
[29] Cutruzzola F, Brown K, Wilson E K, Bellelli A, Arese M, Tegoni M, Cambillau C, Brunori M. Proc. Natl. Acad. Sci. U.S.A., 2001, 98: 2232.
[30] Lin Y W, Nie C M, Liao L F. J. Mol. Model., 2012, 18(9): 4409.
[31] Rodgers K R. Curr. Opin. Chem. Biol., 1999, 3: 158.
[32] Spiro T G, Jarzecki A A. Curr. Opin. Chem. Biol., 2001, 5: 715.
[33] Aono S. Acc. Chem. Res., 2003, 36: 825.
[34] Gilles-Gonzalez M A, Gonzalez G. J. Inorg. Biochem., 2005, 99: 1.
[35] Shimizu T. J. Inorg. Biochem., 2012, 108: 171.
[36] Uchida T, Sagami I, Shimizu T, Ishimori K, Kitagawa T. J. Inorg. Biochem., 2012, 108: 188.
[37] Nakajima K, Kitanishi K, Kobayashi K, Kobayashi N, Igarashi J, Shimizu T. J. Inorg. Biochem., 2012, 108: 163.
[38] Takahashi H, Sekimoto M, Tanaka M, Tanaka A, Igarashi J, Shimizu T. J. Inorg. Biochem., 2012, 109: 66.
[39] Liebl U, Lambry J C, Vos M H. Biochim. Biophys. Acta, 2013, 1834(9): 1684.
[40] Lanzilotta W N, Schuller D J, Thorsteinsson M V, Kerby R L, Roberts G P, Poulos T L. Nat. Struct. Biol., 2000, 7(10): 876.
[41] Russwurm M, Koesling D. Mol. Cell. Biochem., 2002, 230(1/2): 159.
[42] Zhong F, Wang H, Ying T, Huang Z X, Tan X. Amino Acids, 2010, 39(2): 399.
[43] Zhong F, Pan J, Liu X, Wang H, Ying T, Su J, Huang Z X, Tan X. J. Biol. Inorg. Chem., 2011, 16(8): 1227.
[44] Pan J, Xu Q, Lin Y W, Zhong F, Tan X. Chem. Commun., 2013, 49: 7454.
[45] Komori H, Inagaki S, Yoshioka S, Aono S, Higuchi Y. J. Mol. Biol., 2007, 367: 864.
[46] Wang J, Karpus J, Zhao B S, Luo Z, Chen P R, He C. Angew. Chem. Int. Ed., 2012, 51: 9652.
[47] Giegé P, Grienenberger J M, Bonnard G. Mitochondrion, 2008, 8(1): 61.
[48] Stevens J M, Mavridou D A, Hamer R, Kritsiligkou P, Goddard A D, Ferguson S J. FEBS J., 2011, 278(22): 4170.
[49] Simon J, Hederstedt L. FEBS J., 2011, 278(22): 4179.
[50] De Vitry C. FEBS J., 2011, 278(22): 4189.
[51] Allen J W. FEBS J., 2011, 278(22): 4198.
[52] Sawyer E B, Barker P D. Protein and Cell, 2012, 3(6): 405.
[53] Chan A C K, Lelj-Garolla B, Rosell F I, Pedersen K A, Mauk A G, Murphy M E P. J. Mol. Biol., 2006, 362: 1108.
[54] Junedi S, Yasuhara K, Nagao S, Kikuchi J I, Hirota S. Chem. Bio. Chem., 2014,15(4): 517.
[55] Miller W L, Auchus R J, Geller D H. Steroids, 1997, 62: 133.
[56] Durley R C, Mathews F S. Acta Crystallogr. D, 1996, 52: 65.
[57] Schenkman J B, Jansson I. Pharmacol. Ther., 2003, 97: 139.
[58] Ahuja S, Jahr N, Im S C, Vivekanandan S, Popovych N, Le Clair S V, Huang R, Soong R, Xu J, Yamamoto K, Nanga R P, Bridges A, Waskell L, Ramamoorthy A. J. Biol. Chem., 2013, 288(30): 22080.
[59] Ren Y, Wang W H, Wang Y H, Case M, Qian W, McLendon G, Huang Z X. Biochemistry, 2004, 43: 3527.
[60] Lin Y W, Wang W H, Zhang Q, Lu H J, Yang P Y, Xie Y, Huang Z X, Wu H M. Chem. Bio. Chem., 2005, 6(8): 1356.
[61] Lin Y W, Zhao D X, Wang Z H, Yu W H, Huang Z X. Protein Expr. Purif., 2006, 45(2): 352.
[62] Wan D, Liao L F, Zhao M M, Wu M L, Wu Y M, Lin Y W. J. Mol. Model., 2012, 18(3): 1009.
[63] Lin Y W, Sun M H, Wan D, Liao L F. Spectrochim. Acta A, 2012, 96: 365.
[64] Sun M H, Liu S Q, Du K J, Nie C M, Lin Y W. Spectrochim. Acta A, 2014, 118: 130.
[65] Storbeck K, Swart A C, Lombard N, Adriaanse C V, Swart P. J. Steroid Biochem. Mol. Biol., 2012, 132: 311.
[66] Storbeck K H, Swart A C, Goosen P, Swart P. Mol. Cell. Endocrinol., 2013, 371: 87.
[67] Oohora K, Onoda A, Hayashi T. Chem. Commun., 2012, 48: 11714.
[68] Arnesano F, Banci L, Bertini I, Faraone-Mennella J, Rosato A, Barker P D, Fersht A R. Biochemistry, 1999, 38: 8657.
[69] Urayama P, Phillips G N Jr, Gruner S M, Structure, 2002, 10: 51.
[70] Kitagishi H, Oohora K, Yamaguchi H, Sato H, Matsuo T, Harada A, Hayashi T. J. Am. Chem. Soc., 2007, 129: 10326.
[71] Kitagishi H, Oohora K, Hayashi T. Biopolymers, 2009, 91: 194.
[72] Kitagishi H, Kakikura Y, Yamaguchi H, Oohora K, Harada A, Hayashi T. Angew. Chem. Int. Ed., 2009, 48: 1271.
[73] Oohora K, Oohora A, Kitagishi H, Yamaguchi H, Harada A, Hayashi T. Chem. Sci., 2011, 2: 1033.
[74] Radford R J, Brodin J D, Salgado E N, Tescan F A. Coord. Chem. Rev., 2011, 255: 790.
[75] Brodin J D, Ambroggio X I, Tang C, Parent K N, Baker T S, Tezcan F A. Nat. Chem., 2012, 4: 375.
[76] Onoda A, Ueya Y, Sakamoto T, Uematsu T, Hayashi T. Chem. Commun., 2010, 46: 9107.
[77] Onoda A, Kakikura Y, Uematsu T, Kuwabata S, Hayashi T. Angew. Chem. Int. Ed., 2012, 51: 2628.
[78] Onoda A, Kakikura Y, Hayashi T. Dalton Trans., 2013, 42: 16102.
[79] Fndrich M, Fletcher M A, Dobson C M. Nature, 2001, 410: 165.
[80] Fndrich M, Forge V, Buder K, Kittler M, Dobson C M, Diekmann S. Proc. Natl. Acad. Sci. U.S.A., 2003, 100: 15463.
[81] Fabiani E, Stadler A M, Madern D, Fabiani E, Stadler A M, Madern D, Koza M M, Tehei M, Hirai M, Zaccai G. Eur. Biophys. J., 2009, 38: 237.
[82] Infusini G, Iannuzzi C, Vilasi S, Birolo L, Pagnozzi D, Pucci P, Irace G, Sirangelo I. Eur. Biophys. J., 2012, 41: 615.
[83] Iannuzzi C, Marritato R, Irace G, Sirangelo I. Int. J. Mol. Sci., 2013, 14: 14287.
[84] Brodin J D, Carr J R, Sontz P A, Tezcan F A. Proc. Natl. Acad. Sci. U.S.A., 2014, 11: 2897.

[1] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[2] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[3] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[6] Tingting Heng, Hui Zhang, Mingxue Chen, Xin Hu, Liang Fang, Chunhua Lu. Graft Modification of PVDF-Based Fluoropolymers [J]. Progress in Chemistry, 2021, 33(4): 596-609.
[7] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[8] Yanhua Sang, Haihua Pan, Ruikang Tang. Condensed-Matter Chemistry in Biomineralization [J]. Progress in Chemistry, 2020, 32(8): 1100-1114.
[9] Jing Wen, Yuhong Li, Li Wang, Xiunan Chen, Qi Cao, Naipu He. Carbon Dioxide Smart Materials Based on Chitosan [J]. Progress in Chemistry, 2020, 32(4): 417-422.
[10] Li Liangjun, Jianhui Deng, Jianwei Guo, Hangbo Yue. Synthesis and Properties of Microporous Organic Polymers Based on Adamantane [J]. Progress in Chemistry, 2020, 32(2/3): 190-203.
[11] Kerui Chen, Xin Hu, Jiangkai Qiu, Ning Zhu, Kai Guo. Synthesis of Bottlebrush Polymers by Ring-Opening Metathesis Polymerization [J]. Progress in Chemistry, 2020, 32(1): 93-102.
[12] Jingshi Liang, Jiaming Zeng, Junjie Li, Jueqin She, Ruixuan Tan, Bo Liu. Cationic Antimicrobial Polymers [J]. Progress in Chemistry, 2019, 31(9): 1263-1282.
[13] Yunbo Jiang, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Thermally Activated Delayed Fluorescence Polymers and Applications in Organic Light Emitting Devices [J]. Progress in Chemistry, 2019, 31(8): 1116-1128.
[14] Hao Zhang, Jing Liu, Kun Cui, Tao Jiang, Zhi Ma. Synthesis and Application of Guanidine-Based Antibacterial Polymers [J]. Progress in Chemistry, 2019, 31(5): 681-689.
[15] Rui Hou, Guiqun Li, Yan Zhang, Mingjun Li, Guiming Zhou, Xiaoming Chai. Self-Healing Polymers Materials Based on Dynamic Supramolecular Motifs [J]. Progress in Chemistry, 2019, 31(5): 690-698.