中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (10): 1475-1486 DOI: 10.7536/PC180608 Previous Articles   Next Articles

• Review •

SOD1 Inhibition Regulates the ROS Signaling Transduction

Xiang Li, Jiayuan Shi, Shuang Qiu, Mingfang Wang, Changlin Liu*   

  1. Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, School of Chemistry, Central China Normal University, Wuhan 430079, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21271079, 21771073).
PDF ( 599 ) Cited
Export

EndNote

Ris

BibTeX

Copper-zinc superoxide dismutase(SOD1) is an antioxidant metalloenzyme that widely distriutes within a cell, and catalyzes rapid dismutation of superoxide anion(O2·-) into hydrogen peroxide(H2O2) and oxygen(O2) to maintain the homeostasis of intracellular reactive oxygen species(ROS). The growth and proliferation of cancer cells depend on higher concentrations of H2O2, whereas high expression of SOD1 can maintain higher H2O2 levels and ROS homeostasis of cancer cells. SOD1 inhibition effectively regulates ROS signaling pathways in a cancer cell, inhibits cancer cell growth and proliferation, arrests cancer cell cycle, and promotes cancer cell apoptosis. Targeting SOD1 can regulate the ROS signaling network and selectively kill cancer cells. This review summarizes various types of SOD1 inhibitors designed so far, the regulation of ROS signaling transduction by SOD1 inhibition, and the mechanism of specific SOD1 inhibition-mediated apoptosis of cancer cells.
Contents
1 Introduction
2 The structure and function of SOD1
2.1 Structure and catalytic mechanism of SOD1
2.2 Functions of SOD1
3 Regulation of ROS signaling pathways by SOD1
3.1 SOD1 and ROS signaling pathways
3.2 SOD1 and cancer
4 SOD1 inhibition
4.1 Inhibition of SOD1 expression
4.2 SOD1 inhibitors
5 SOD1 inhibition-regulated ROS signaling pathways
6 Conclusion

CLC Number: 

[1] Jones C T, Brock D J H, Chancellor A M, Warlow C P, Swingler R J. Lancet, 1993, 342:1050.
[2] Sheng Y, Abreu I A, Cabelli D E, Maroney M J, Miller A F, Teixeira M, Valentine J S. Chem. Rev., 2014, 114:3854.
[3] Marklund S L. Biochem. J., 1984, 222:649.
[4] Bourne Y, Redford S M, Steinman H M, Lepock J R, Tainer J A, Getzoff E D. Proc. Natl. Acad. Sci. U.S.A., 1996, 93:12774.
[5] Bedard K, Krause K H. Physiol. Rev., 2007, 87:245.
[6] Reczek C R, Chandel N S. Annu. Rev. Cancer Biol., 2017, 1:79.
[7] Corson L B, Strain J J, Culotta V C, Cleveland D W. Proc. Natl. Acad. Sci. U.S.A., 1998, 95:6361.
[8] Schafer Z T, Grassian A R, Song L, Jiang Z Y, Gerhart-Hines Z, Irie H Y, Gao S Z, Puigserver P, Brugge J S. Nature, 2009, 461:109.
[9] Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, Yamamoto M, Motohashi H. Cancer Cell, 2012, 22:66.
[10] Huang P, Feng L, Oldham E A, Keating M J, Plunkett W. Nature, 2000, 407:390.
[11] Papa L, Manfredi G, Germain D. Genes & Cancer, 2014, 5:15.
[12] Abraham W, Ilana R, Yogita P, Adam B, Lev W, Jonathan G. Langmuir, 2001, 17:5621.
[13] Lowndes S A, Adams A, Timms A, Fisher N, Smythe J, Watt S M, Joel S, Donate F, Hayward C, Reich S, Middleton M. Clin. Cancer Res., 2008, 14:7526.
[14] Juarez J C, Manuia M, Burnett M E, Betancourt O, Boivin B, Shaw D E, Tonks N K, Mazar A P, Doñate F. Proc. Natl. Acad. Sci. U.S.A., 2008, 105:7147.
[15] Lee K, Briehl M M, Mazar A P, Batinic-Haberle I, Reboucas J S, Glinsmann-Gibson B, Rimsza L M, Tome M E. Free Radical Bio. Med., 2013, 60:157.
[16] Alvarez H M, Xue Y, Robinson C D, Canalizo-Hernández M A, Marvin R G, Kelly R A, Mondragón A, Penner-Hahn J E, O'Halloran T V. Science, 2010, 327:331.
[17] Dong X W, Zhang Z, Zhao J D, Lei J, Chen Y Y, Li X, Chen H H, Tian J L, Zhang D, Liu C R, Liu C L. Chem. Sci., 2016, 7:6251.
[18] McCord J M, Fridovich I. J. Biol. Chem., 1969, 244:6049.
[19] Muñoza C M, Meeterena L A, Posta J A, Verkleija A J, Boonstra T V B. Free Radical Bio. Med., 2002, 33:1061.
[20] Zelko I N, Mariani T J, Folz R J. Free Radical Bio. Med., 2002, 33:337.
[21] Sasaki T, Shimizu T, Koyama T, Sakai M, Uchiyama S, Kawakami S, Noda Y, Shirasawa T, Kojima S. J. Neurosci. Res., 2011, 89:601.
[22] Sturtz L A, Diekert K, Jensen L T, Lill R, Culotta V C. J. Biol. Chem., 2001, 276:38084.
[23] Seetharaman S V, Taylor A B, Holloway S, Hart P J. Arch. Biochem. Biophys., 2010, 503:183.
[24] Spagnolo L, Törö I, D'Orazio M, O'Neill P, Pedersen J Z, Carugo O, Rotilio G, Battistoni A, Djinovic-Carugo K. J. Biol. Chem., 2004, 279:33447.
[25] Valentine J S, Doucette P A, Zittin P S. Annu. Rev. Biochem., 2005, 74:563.
[26] Bertini I, Manganl S, Viezzoli M S. Adv. Inorg. Chem., 1998, 45:127.
[27] Ellerby L M, Cabelli D E, Graden G A, Valentine J S. J. Am. Chem. Soc., 1996, 118:6556.
[28] Fisher C L, Cabelli D E, Tainer J A, Hallewell R A, Getzoff E D. Proteins:Struct. Funct. Bioinf., 1994, 19:24.
[29] Hart P J. Curr. Opin. Chem. Biol., 2006, 10:131.
[30] Reddi A, Culotta V. Cell, 2013, 152:224.
[31] Homma K, Fujisawa T, Tsuburaya N, Yamaguchi N, Kadowaki H, Takeda K, Nishitoh H, Matsuzawa A, Naguro I, Ichijo H. Mol. Cell, 2013, 52:75.
[32] Tsang C K, Liu Y, Thomas J, Zhang Y J, Zheng X F S. Nat. Commun., 2014, 5:3446.
[33] Zhang F, Strö M A L, Fukada K, Lee S, Hayward L J, Zhu H. J. Biol. Chem., 2007, 282:16691.
[34] Magrì A, Belfore R, Reina S, Tomasello M F, Rosa M C D, Guarino F, Leggio L, Pinto V D, Messina A. Sci. Rep., 2016, 6:34802.
[35] Trist B G, Davies K M, Cottam V, Genoud S, Ortega R, Roudeau S, Carmona A, Silva K D, Wasinger V, Lewis S J G, Sachdev P, Smith B, Troakes C, Vance C, Shaw C, Al-Sarraj S, Ball H J, Halliday G M, Hare D J, Double K L. Acta Neuropathol., 2017, 134:113.
[36] Helferich A M, Ruf W P, Grozdanov V, Freischmidt A, Feiler M S, Zondler L, Ludolph A C, McLean P J, Weishaupt J H, Danzer K M. Mol. Neurodegener., 2015, 10:66.
[37] Pasinelli P, Belford M E, Lennon N, Bacskai B J, Hyman B T, Trotti D, Brown R H. Neuron, 2004, 43:19.
[38] Tsang C K, Chen M, Cheng X, Qi Y M, Chen Y, Das I, Li X X, Vallat B, Fu L W, Qian C N, Wang H Y, White E, Burley S K, Zheng X F S. Mol. Cell, 2018, 70:502.
[39] Chattopadhyay M, Valentine J S. Antioxid. Redox Signal., 2009, 11:1603.
[40] Pasinelli P, Brown R H. Nat. Rev. Neurosci., 2006, 7:710.
[41] Soto C. Nat. Rev. Neurosci., 2003, 4:49.
[42] Valentine J S, Hart P J. Proc. Natl. Acad. Sci. U.S.A., 2003, 100:3617.
[43] Beckman J S, Carson M, Smith C D, Koppenol W H. Nature, 1993, 364:584.
[44] Wiedau-Pazos M, Goto J J, Rabizadeh S, Gralla E B, Roe J A, Lee M K, Valentine J S, Bredesen D E. Science, 1996, 271:515.
[45] Estévez A G, Crow J P, Sampson J B, Reiter C, Zhuang Y, Richardson G J, Tarpey M M, Barbeito L, Beckman J S. Science, 1999, 286:2498.
[46] D'Autreaux B, Toledano M B. Nat. Rev. Mol. Cell Biol., 2007, 8:813.
[47] Veal E A, Day A M, Morgan B A. Mol. Cell, 2007, 26:1.
[48] Dickinson B C, Chang C J. Nat. Chem. Biol., 2011, 7:504.
[49] Bindoli A, Rigobello M P. Antioxid. Redox Signal., 2013, 18:1557.
[50] Trachootham D, Lu W, Ogasawara M A, Nilsa R D, Huang P. Antioxid. Redox Signal., 2008, 10:1343.
[51] Moloney J N, Cotter T G. Semin. Cell Dev. Biol., 2017, 80:50.
[52] Groeger G, Quiney C, Cotter T G. Antioxid. Redox Signal., 2009, 11:2655.
[53] Azad M B, Chen Y, Gibson S B. Antioxid. Redox Signal., 2009, 11:777.
[54] Glass C K, Saijo K, Winner B, Marchetto M C, Gage F H. Cell, 2010, 140:918.
[55] Wheeler M D, Katuna M, Smutney O M, Froh M, Dikalova A, Mason R P, Samulski R J, Thurman R G. Hum. Gene Ther., 2001, 12:2167.
[56] Afonso V, Santos G, Collin P, Khatib A M, Mitrovic D R, Lomri N, Leitman D C, Lomri A. Free Radical Bio. Med., 2006, 41:709.
[57] Bhattacharya A, Hegazy A N, Deigendesch N, Kosack L, Cupovic J, Kandasamy R K, Hildebrandt A, Merkler D, Kuhl A A, Vilagos B, Schliehe C, Panse I, Khamina K, Baazim H, Arnold I, Flatz L C, Xu H F, Lang P A, Aderem A, Takaoka A, Superti-Furga G, Colinge J, Ludewig B, Lohning M, Bergthaler A. Immunity, 2015, 43:974.
[58] Marikovsky M, Ziv V, Nevo N, Harris-Cerruti C, Mahler O. J. Immunol., 2003, 170:2993.
[59] Dimayuga F O, Wang C, Clark J M, Dimayuga E R, Dimayuga V M, Bruce-Keller A J. J. Neuroimmunol., 2007, 182:89.
[60] Li Q, Spencer N Y, Oakley F D, Buettner G R, Engelhardt J F. Antioxid. Redox Signal., 2009, 11:1249.
[61] He C, Ryan A J, Murthy S, Carter A B. J. Biol. Chem., 2013, 288:20745.
[62] Harraz M M, Marden J J, Zhou W, Zhang Y, Williams A, Sharov V S, Nelson K, Luo M H, Paulson H, Schöneich C, Engelhardt J F. J. Clin. Invest., 2008, 118:659.
[63] Carter B J, Anklesaria P, Choi S, Engelhardt J F. Antioxid. Redox Signal., 2009, 11:1569.
[64] Frakes A K, Ferraiulol L, Haidet-Philips A M, Schmelzer L, Braun L, Miranda C J, Ladner K J, Bevan A K, Foust K D, Godbout J P, Popovich P G, Guttridge D C, Kaspar B K. Neuron, 2014, 81:1009.
[65] Irani K, Xia Y, Zweier J L, Sollott S J, Der C J, Fearon E R, Sundaresan M, Finkel T, Goldschmidt-Clermont P J. Science, 1997, 275:1649.
[66] Oakley F D, Abbott D, Li Q, Engelhardt J F. Antioxid. Redox Signal., 2009, 11:1313.
[67] Shaw A T, Winslow M M, Magendantz M, Ouyang C, Dowdle J, Subramanian A, Lewis T A, Maglathin R L, Tolliday N, Jacks T. Proc. Natl. Acad. Sci. U.S.A., 2011, 108:8773.
[68] Elchuri S, Oberley T D, Qi W, Eisenstein R S, Roberts L J, van Remmen H, Epstein C J, Huang T T. Oncogene, 2005, 24:367.
[69] Glasauer A, Sena L A, Diebold L P, Mazar A P, Chandel N S. J. Clin. Invest., 2014, 124:117.
[70] Papa L, Hahn M, Marsh E L, Evans B S, Germain D. J. Biol. Chem., 2014, 289:5412.
[71] Somwar R, Erdjument-Bromage H, Larsson E, Shum D, Lockwood W W, Yang G, Sander C, Ouerfelli O, Tempst P J, Djaballah H, Varmus H E. Proc. Natl. Acad. Sci. U.S.A., 2011, 108:16375.
[72] Che M, Wang R, Li X, Wang H Y, Zheng X F S. Drug Discov. Today, 2016, 21:143.
[73] Kang D H, Kang S W. Biomol. Ther., 2013, 21:89.
[74] Van Empel V P M, Bertrand A T, van Oort R, van der Nagel R, Engelen M, van Rijen H V, Doevendans P A, Crijins H J, Ackerman S L, Sluiter W, De Windt L W. J. Am. Coll. Cardiol., 2006, 48(4):824.
[75] Ozturk P, Arican O, Belge K E, Karakas T, Kabakci B. Acta Dermatovenerol. Croat., 2013, 21:80.
[76] Xia H, Mao Q, Eliason S L, Harper S Q, Martins I H, Orr H T, Paulson H L, Yang L, Kotin R M, Davidson B L. Nat. Med., 2004, 10:816.
[77] Saito Y, Yokota T, Mitani T, Ito K, Anzai M, Miyagishi M, Taira K, Mizusawa H. J. Biol. Chem., 2005, 280:42826.
[78] Smith R A, Miller T M, Yamanaka K, Monia B P, Condon T P, Hung G, Lobsiger C S, Ward C M, McAlonis-Downes M, Wei H, Wancewicz E V, Bennett C F, Cleveland D W. J. Clin. Invest., 2006, 116:2290.
[79] Broom W J, Greenway M, Sadrivakili G, Russ C, Auwarter K E, Glajch K E, Dupe N, Swingler R J, Purcell S, Hayward C, Sapp P C, McKennayasek D, Valdmanis P N, Bouchard J P, Meininger V, Hosler B A, Glass J D, Polack M, Rouleau G A, Cha J H, Hardiman O, Brown R H. Amyotroph. Lateral. Scler., 2008, 9:229.
[80] Wright P D, Huang M, Weiss A, Matthews J, Wightman N, Glicksman M, Brown R H. Neurosci. Lett., 2010, 482:188.
[81] Broom W J, Auwarter K E, Ni J, Russel D E, Yeh L A, Maxwell M M, Glicksman M, Kazantsev A G, Brown R H. J. Biomol. Screen., 2006, 11:729.
[82] Murakami G, Inoue H, Tsukita K, Asai Y, Amagai Y, Aiba K, Shimogawa H, Uesugi M, Nakatsuji N, Takahashi R. J. Biomol. Screen., 2011, 16:405.
[83] Mizuguchi S, Capretta A, Suehiro S, Nishiyama N, Luke P, Potter R F, Fraser D D, Cepinskas G. Free Radical Bio. Med., 2010, 49:1534.
[84] Taillé C, Elbenna J, Lanone S, Boczkowski J, Motterlini R. J. Biol. Chem., 2005, 280:25350.
[85] Howland D S, Liu J, She Y, Goad B, Maragakis N J, Kim B, Erickson J, Kulik J, DeVito L, Psaltis G, DeGennaro L J, Cleveland D W, Rothstein J D. Proc. Natl. Acad. Sci. U.S.A., 2002, 99:1604.
[86] Subramaniam J R, Lyons W E, Liu J, Bartnikas T B, Rothstein J, Price D L, Cleveland D W, Gitlin J D, Wong P C. Nat. Neurosci., 2002, 5:301.
[87] Auclair J R, Agar J N. Proc. Natl. Acad. Sci. U. S. A., 2010, 107:21394.
[88] Furukawa Y, Kaneko K, Yamanaka K, O'Halloran T V, Nukina N. J. Biol. Chem., 2008, 283:24167.
[89] Kerman A, Liu H N, Croul S, Bilbao J, Rogaeva E, Zinman L, Robertson J, Chakrabartty A. Acta Neuropathol., 2010, 119:335.
[90] Heikkila R E, Cabbat F S, Cohen G. J. Biol. Chem., 1976, 251:2182.
[91] Misra H P. J. Biol. Chem., 1979, 254:11623.
[92] Lushchak V, Semchyshyn H, Lushchak O, Mandryk S. Biochem. Bioph. Res. Co., 2005, 338:1739.
[93] Kelner M J, Bagnell R, Hale B, Alexander N M. Free Radical Bio. Med., 1989, 6:355.
[94] Chauret N, Gauthier A, Martin J, Nicoll-Griffith D A. Drug MeTab. Dispos., 1997, 25:1130.
[95] Griffiths D E, Wharton D C. J. Biol. Chem., 1961, 236:1850.
[96] Regland B, Lehmann W, Abedini I, Blennow K, Jonsson M, Karlsson I, Sjögren M, Wallin A, Xilinas M, Gottfries C. Dement. Geriatr. Cogn. Disord., 2001, 12:408.
[97] Cherny R A, Atwood C S, Xilinas M E, Gray D N, Jones W D, McLean C A, Barnham K J, Volitakis I, Fraser F W, Kim Y, Huang X, Goldstein L E, Moir R D, Lim J T, Beyreuther K, Zheng H, Tanzi R E, Masters C L, Bush A I. Neuron, 2001, 30:665.
[98] Di Viara M, Bazzicalupi C, Orioli P, Messori L, Bruni B, Zatta P. Inorg. Chem., 2004, 43:3795.
[99] Ferrada E, Arancibia V, Loeb B, Norambuena E, Olea-Azar C, Huidobro-Toro J P. Neurotoxicology, 2007, 28:445.
[100] Kawamura K, Kuroda Y, Sogo M, Fujimoto M, Inui T, Mitsui T. Biochem. Bioph. Res. Co., 2014, 452:181.
[101] Rothstein J D, Bristol L A, Hosler B, Brown R H, Kuncl R W. Proc. Natl. Acad. Sci. U.S.A., 1994, 91:4155.
[102] Katsuyama M, Iwata K, Ibi M, Matsuno K, Matsumoto M, Yabe-Nishimura C. Toxicology, 2012, 299:55.
[103] Mandinov L, Mandinova A, Kyurkchiev S, Kyurkchiev D, Kehayov I, Kolev V, Soldi R, Bagala C, de Muinck E D, Lindner V, Post M J, Simons M, Bellum S, Prudovsky I, Maciag T. Proc. Natl. Acad. Sci. U.S.A., 2003, 100:6700.
[104] Doñate F, Juarez J C, Burnett M E, Manuia M M, Guan X, Shaw D E, Smith E L, Timucin C, Braunstein M J, Batuman O A, Mazar A P. Br. J. Cancer, 2008, 98:776.
[105] Lowndes S A, Sheldon H V, Cai S, Taylor J M, Harris A L. Microvasc. Res., 2009, 77:314.
[106] Pan Q, Bao L W, Merajver S D. Mol. Cancer Res., 2003, 1:701.
[107] Juarez J C, Betancourt O, Pirie-Shepherd S R, Guan X, Price M L, Shaw D E, Mazar A P, Doñate F. Clin. Cancer Res., 2006, 12:4974.
[108] Pan Q, Kleer C G, van Golen K L, Irani J, Bottema K M, Bias C, de Carvalho M, Mesri E A, Robins D M, Dick R D, Brewer G J, Merajver S D. Cancer Res., 2002, 62:4854.
[109] Chidambaram M V, Barnes G, Frieden E. J. Inorg. Biochem., 1984, 22:231.
[110] Bissig K D, Voegelin T C, Solioz M. FEBS Lett., 2001, 507:367.
[111] Banci L, Bertini I, Ciofi-Baffoni S, Kozyreva T, Zovo K, Palumaa P. Nature, 2010, 465:645.
[112] 张哲(Zhang Z), 陈欢欢(Chen H H), 杨婵丽(Yang C L), 章丹(Zhang D), 刘春荣(Liu C R), 刘长林(Liu C L). 中国科学:化学(Scientia Sinica Chimica), 2015, 45:829.
[113] Li X, Chen Y Y, Zhao J D, Shi J Y, Wang M F, Qiu S, Hu Y H, Xu Y L, Cui Y F, Liu C R, Liu C L, unpublished work.
[114] Sugawara T, Lewén A, Gasche Y, Yu F, Chan P H. FASEB J., 2002, 16:1997.
[1] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[2] Jiliang Guo, Jianfei Peng, Ainan Song, Jinsheng Zhang, Zhuofei Du, Hongjun Mao. Studies on the Formation of Secondary Organic Aerosol from Vehicle Exhaust [J]. Progress in Chemistry, 2023, 35(1): 177-188.
[3] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[4] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[5] Hui Zhang, Shanshan Wang, Jinshan Yu. Low-Symmetry Two-Dimensional ReS2 and its Heterostructures:Chemical Vapor Deposition Synthesis and Properties [J]. Progress in Chemistry, 2022, 34(6): 1440-1452.
[6] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[7] Jiali Zhong, Weigang Wang, Chao Peng, Nan Ma, Zhijun Wu, Maofa Ge. Atmospheric Aerosol Hygroscopicity and Their Influence on Environment [J]. Progress in Chemistry, 2022, 34(4): 801-814.
[8] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.
[9] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[10] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[11] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[12] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[13] Zhuke Gong, Hui Xu. Crystalline Carbazole Based Organic Room-Temperature Phosphorescent Materials [J]. Progress in Chemistry, 2022, 34(11): 2432-2461.
[14] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[15] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.