中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (5): 539-549 DOI: 10.7536/PC141120 Previous Articles   Next Articles

• Review and evaluation •

Synthesis and Applications of ATRP Macromolecular Initiator

Mu Siyang, Guo Jing*, Yu Chunfang, Gong Yumei, Zhang Sen   

  1. School of Textile & Material Engineering, Dalian Polytechnic University, Dalian 116034, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51373027).
PDF ( 4587 ) Cited
Export

EndNote

Ris

BibTeX

Atom transfer radical polymerization (ATRP), as a new type of controllable/living polymerization reaction, has been applied in many fields widely, such as the structure design of the polymer,the surface modification of inorganic materials, protein detection, biopolymer separation, antibacterial and antifouling, etc. Three major factors are involved in the reaction process:monomer, initiator system (initiator, catalyst, complexant), and reaction medium, the core element of which is the choice of ATRP initiator. The microstructure and performance of the initiator are the key factors for the ATRP reaction. In this paper, we firstly introduce the types and properties of the micromolecule initiator and the reaction mechanism of the ATRP briefly. Then,we emphatically summarize the latest advances about the preparation methods of the ATRP macromolecular initiator in recent years, such as functional group reaction, coupling reaction and free radical polymerization. Moreover, we also review the latest application of the macromolecular initiator through ATRP reaction in the structure design of the polymer, the surface modification of inorganic materials and biological materials. Finally, an outlook for the prospective development of the ATRP initiator system is given.

Contents
1 Introduction
2 Small molecular initiator
3 Preparation of the macromolecular initiator
3.1 Functional group reaction method
3.2 Coupling reaction method
3.3 Free radical polymerization method
4 Application
4.1 Structure design of the polymer
4.2 Surface modification of inorganic materials
4.3 Surface modification of biomolecular
5 Conclusion

CLC Number: 

[1] Cianga I, Yagci Y. Des.Monomers Polym.,2007, 10 (6):575.
[2] Gois J R, Konkolewic D,Popov A V, Guliashvili T, Matyjaszewski K, Serraa A, Coelho J F J. Polym. Chem., 2014, 5:4617.
[3] Mendonça P V, Konkolewicz D, Averick S E, Serra A C, Popov A V, Guliashvili T, Matyjaszewski K, Coelho J F J. Polym. Chem.,2014,5:5829.
[4] Brar A,Saini T. Journal of Polymer Science Part A:Polymer Chemistry, 2006,44(6):1975.
[5] Hou C,Ying L,Wang C G. J.Appl. Polym.Sci., 2006, 99(3):1050.
[6] Liu F Y, Seuring J, Agarwal S. Polym. Chem.,2013, 4:3123.
[7] Percec V, Barboiu B,Bera T K,vanderSluis M,Grubbs R B, Fréchet J M J.J.Polym.Sci.,PartA:Polym.Chem.,2000, 38: 4776.
[8] Grigoras C,Percec V. Journal of Polymer Science Part A:Polymer Chemistry, 2005, 43(2):319.
[9] Matyjaszewski K. Macromolecules, 2012, 45:4015.
[10] Song T X, Li Y,Zhang H Q,Zhang A L,Wang X H,Wang Y R. Acta Polvmerica Sinica, 2010, 2:143.
[11] Wu D X,Yang Y F,Cheng X H,Liu L,Tian J,Zhao H Y. Macromolecules, 2006, 39:7513.
[12] Spasova M,MespouilleL, Coulembier O,Paneva D, Manolova N, Rashkov I, Dubois P. Biomacromolecules, 2009, 10:1217.
[13] Schramm O G,Meier M A R, Hoogenboom R,van Erp H P, Gohy J F, Schubert U S. Soft Matter, 2009,5:1662.
[14] Schramm O G,Pavlov G M, van Erp H P,Meier M A R, Hoogenboom R, Schubert U S. Macromolecules,2009,42:1808.
[15] MalmstrÖm E, Carlmark A. Polym. Chem., 2012, 3:1702.
[16] Lin C X, Zhan H Y, Liu M H, Fu S Y, Zhang J J. Carbohydrate Polymers, 2009, 78(3):432.
[17] Carlmark A, Malmstrm E. J. Am.Chem.Soc, 2002, 6:900.
[18] Carlmark A, Malmstrm E. Biomacromolecules, 2003,4:1740.
[19] Tahlawy K E, Hudson S M. Journal of Applied Polymer Science, 2003, 89(4):901.
[20] Li N, Bai R, Liu C. Langmuir, 2005,21(25):11780.
[21] Lindqvist J, Malmström E. Journal of Applied Polymer Science, 2006, 100(5):4155.
[22] Vayachuta L,Phinyocheep P,Derouet D,Pascual S.Journal of Applied Polymer Science, 2011, 121(1):508.
[23] 杨耀华(Yang Y H), 廖建和(Liao J H), 廖禄生(Liao L S), 赵伟(Zhao W), 黄仙红(Huang X H), 陈永平(Chen Y P).合成化学(Chinese Journal of Synthetic Chemistry), 2012, 20:56.
[24] Ross E B, Bryce A W, Brandy L S, Lynn M W, Eric W C. Macromolecules, 2009, 42:1867.
[25] Mauro M, John R P W, Steve E, Steven P A, Simon T. Langmuir, 2010, 26 (15):12684.
[26] Chen X Y, Armes S P. Langmuir,2004, 20:587.
[27] Tang F, Zhang L F, Zhu J, Cheng Z P, Zhu X L. Ind. Eng. Chem. Res., 2009, 48:6216.
[28] 何嫄(He Y), 於麟(Yu L), 谭松巍(Tan S W), 蒋宏亮(Jiang H L), 涂克华(Tu K H), 王利群(Wang L Q).高分子学报(Acta Polymerica Sinica), 2010, 7:897.
[29] Misty D R, Brenton A G H,Stephen G B. Macromolecules, 2008, 41:4147.
[30] Barner L, Quick A S, Vogt A P, Winkler V, Junkers T, Barner K C. Polymer Chemistry, 2012, 3(8):2266.
[31] Wang X L,Ye Q, Gao T T, Liu J X, Zhou F. Langmuir, 2012, 28:2574.
[32] Li A, Ma J, Wooley K L. Macromolecules, 2009, 42:5433.
[33] Mueller L, Jakubowski W, Tang W, Matyjaszewski K. Macromolecules, 2007, 40:6464.
[34] Voter A F, Tillman E S, Findeis P M, Radzinski S C. ACS Macro Lett., 2012, 1(8):1066.
[35] Voter A F, Tillman E S. Macromolecules, 2010, 43 (24):10304.
[36] 胡爱娟(Hu A J), 崔玉双(Cui Y S), 鲁在君(Lu Z J).中国科学:化学(Science China Chemistry),2010, 40(5):476.
[37] Mu X Y, Qiao J, Qi L, Liu Y, Ma H M. ACS Appl. Mater.Interfaces, 2014, 6:12979.
[38] Jiang H, Xu F J. Chem. Soc. Rev., 2013, 42:3394.
[39] Averick S, Simakova A, Park S, Konkolewicz D, Magenau A J D, Mehl R A, Matyjaszewski K. ACS Macro Lett., 2012, 1:6.
[40] Stoffelbach F, Belardi B, Santos J M R C A,Tessier L,Matyjaszewski K, Charleux B. Macromolecules, 2007, 40:8813.
[41] Nicel C E, Jin Y P, Rigoberto C A. Macromolecules, 2010, 43:6588.
[42] Li M, Jahed N M, Min K, Matyjaszewski K. Macromolecules, 2004, 37:2434.
[43] Xu F J, Yuan Z L E, Kang T E, Neoh K G. Langmuir, 2004, 20:8200.
[44] Zhu W P, Zhong M J, Li W W, Dong H C, Matyjaszewski K. Macromolecules, 2011, 44:1920.
[45] Sakellariou G, Priftis D,Baskaranw D. Chem. Soc. Rev., 2013, 42:677.
[46] Zhang W J, Zhou Z, Li Q F, Chen G X. Ind. Eng. Chem. Res., 2014, 53:6699.
[47] Ilcíkova M, Mrlík M, Sedlacek T, Slouf M, Zhigunov A, Koynov K, Mosnacek J. ACS Macro Lett., 2014, 3:999.
[48] Zhao M N, Zhou G W, Zhang L, Li X Y, Li T D, Liu F F. Soft Matter, 2014, 10:1110.
[49] Zhang G W, Lin S D, Wyman I, Zou H L, Hu J W, Liu G J, Wang J D, Li F, Liu F, Hu M L. ACS Appl. Mater. Interfaces, 2013, 5:13466.
[50] Xu Z F, Uddin K M A, Kamra T, Schnadt J, Ye L. ACS Appl. Mater. Interfaces, 2014, 6:1406.
[51] Vasquez E S, Chu I W, Walters K B. Langmuir, 2014, 30:6858.
[52] Bayramoglu G, Arica M Y. Ind. Eng. Chem.Res., 2012, 51:10629.
[53] Majewski A P, Stahlschmidt U, Jerome V, Freitag R, Muller A H E, Schmalz H. Biomacromolecules, 2013,14:3081.
[54] Liu G Q, Cai M R, Wang X L, Zhou F, Liu W M. ACS Appl. Mater. Interfaces, 2014, 6:11625.
[55] Zhang Y, He H K, Gao C. Macromolecules, 2008, 41:9581.
[56] Baskaran D, Mays J W, Bratcher M S. Angew Chem. Int. Ed., 2004, 43:2138.
[57] Narain R, Housni A, Lane L. J. Polym. Sci. Part A Polym. Chem., 2006, 44:6558.
[58] Choi J H, Oh S B, Chang J, Kim I, Ha C S, Kim B G, Han J H, Joo S W, Kim G H, Paik H J. Polym. Bull., 2005, 55:173.
[59] Kruk M, Dufour B, Celer E B, Kowalewski T,Jaroniec M, Matyjaszewski K. Macromolecules, 2008, 41:8584.
[60] Xu F J, Kang E T, Neoh K G. Macromolecules, 2005, 38:1573.
[61] Liu Y, Viktor K, Bogdan Z, Igor L. Langmuir, 2004, 20:6710.
[62] Liu J L, He W W, Zhang L F, Zhang Z B, Zhu J, Yuan L, Chen H, Cheng Z P, Zhu X L. Langmuir, 2011, 27:12684.
[63] Xu L Q, Yao F, Fu G D, Kang E T. Biomacromolecules, 2010, 11:1810.
[64] Qian H, He L. Anal. Chem., 2009, 81:9824.
[65] Jaqueline D W, Katie A R, Jonathan K P. Polym. Chem., 2014, 5(5):1545.
[66] Xu F J, Li Y L, Kang E T, Neoh K G. Biomacromolecules, 2005, 6:1759.
[67] Yang Q, Tian J, Hu M X, Xu Z K. Langmuir, 2007, 23:6684.
[68] Mendonça P V, Averick S E, Konkolewicz D, Serra A C, Popov A V, Guliashvili T, Matyjaszewski K, Coelho J F J. Macromolecules, 2014, 47:4615.
[69] Yang X C, Niu Y L, Zhao N N, Mao C, Xu F J. Biomaterials, 2014, 35(12):3873.
[70] Liu Y, Cheng Q. Anal. Chem. 2012, 84:3179.
[71] Aied A, Zheng Y, Pandit A, Wang W X. ACS Appl. Mater. Interfaces, 2012, 4:826.
[72] Zhu Y H, Xu X W, Brault N D, Keefe A J, Han X, Deng Y, Xu J Q, Yu Q M, Jiang S Y. Anal. Chem., 2014, 86:2871.
[73] Qian H, He L. Anal. Chem., 2009, 81:4536.
[74] Liu Y, Dong Y, Jauw J, Linman M J, Cheng Q. Anal. Chem., 2010, 82:3679.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[3] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[4] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[5] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[6] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[7] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[8] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[9] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[10] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[11] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[12] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[13] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[14] Yunbo Jiang, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Thermally Activated Delayed Fluorescence Polymers and Applications in Organic Light Emitting Devices [J]. Progress in Chemistry, 2019, 31(8): 1116-1128.
[15] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.