中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (11): 1285-1296 DOI: 10.7536/PC170567 Previous Articles   Next Articles

• Review •

Fabrication and Strain Sensing Properties of Two-Dimensional Atomic Crystal Materials

Wenjie Zhu1, Guoan Tai1,2*, Xufeng Wang1,2, Qilin Gu1,2, Zenghui Wu1,2, Kongjun Zhu1,2*   

  1. 1. State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 61474063, 61774085, 51672130), the Natural Science Foundation of Jiangsu Province (No. BK20151475), the Fundamental Research Funds for the Central Universities (No. NE2017101), the Priority Academic Program Development of Jiangsu Higher Education Institutions,and the Six Talent Peaks Project in Jiangsu Province (XCL-046).
PDF ( 668 ) Cited
Export

EndNote

Ris

BibTeX

Two-dimensional atomic crystal materials have attracted a wide range of research interests due to their excellent optical, electrical, mechanical, magnetic and thermal properties. In particular, two-dimensional atomic crystal materials can produce a large resistance change steadily under the micro-deformation. They can bear a greater elastic strain than the corresponding bulk material without causing breaking of the structures. The characteristic makes them have an important potential application for the high-performance strain sensors. Besides, they are expected to fabricate flexible integrated electronic devices which are appropriate for all kinds of working condition. At present, the studies related to two-dimensional atomic crystal materials have mainly concentrated on graphene, molybdenum disulfide and black phosphorus. In this review, we firstly introduce the basic properties of the three typical two-dimensional materials and explain theoretically their strain sensing characteristics based on their physical property and microstructure. Secondly, some important methods for preparing the 2D materials, such as micromechanical exfoliation, solution exfoliation and chemical vapor deposition (CVD), are summarized. Thirdly, the applications of the 2D materials in the strain sensing fields, such as health monitoring, wearable devices and electronic skin, are introduced in detailed. Finally, we present the future research direction and application prospect of two-dimensional materials.
Contents
1 Introduction
2 Basic physical properties of 2D materials
2.1 Graphene
2.2 MoS2
2.3 Phosphorene
2.4 Theory explanation for strain sensing
3 Synthesis of 2D materials
3.1 Mechanical exfoliation methods
3.2 Solution methods
3.3 Chemical vapor deposition
4 Application in strain sensing
4.1 Graphene
4.2 MoS2
4.3 Phosphorene
5 Conclusion

CLC Number: 

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306:666.
[2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Proc. Natl. Acad. Sci. U.S.A., 2005, 102:10451.
[3] Wu M, Zeng X. Nano Lett., 2016, 16:3236.
[4] Zhao S J, Kang W, Xue J M. Appl. Phys. Lett., 2014, 104:13.
[5] Tai G, Hu T, Zhou Y, Wang X, Kong J, Zeng T, You Y, Wang Q. Angew. Chem. Int. Ed., 2015, 54:15473.
[6] Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Chen S M L, Wu K H. Nat.Chem., 2016, 8:564.
[7] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Brandon L F, Santiago U, Jeffrey R, Yacaman M J, Ponce A, Oganov A R, Mark C, Guisinger N P. Science, 2015, 350:1513.
[8] Schwierz F. Nat. Nano, 2010, 5:487.
[9] Sundaram R S, Navarro C G, Balasubramaniam K, Burghard M, Kern K. Adv. Mater., 2008, 20:3050.
[10] Li X H, Choy W C H, Huo L J, Xie F X, Sha W E I, Ding B F, Guo X, Li Y F, Hou J H, You J B, Yang Y. Adv. Mater., 2012, 24:3046.
[11] Michael E, Mathias S, Phaedon A. Nano Lett., 2014, 14:6414.
[12] Koenig S P, Doganov R A, Schmidt H, Neto A H C, Ozyilmaz B. Appl. Phys. Lett., 2014, 104:103106.
[13] Mayorga-Martinez C C, Sofer Z, Pumera M. Angew. Chem. Int. Ed., 2015, 54:14317.
[14] Dai J, Zeng X C. J. Phys. Chem. Lett., 2014, 5:1289.
[15] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. Nat. Nanotechnol., 2013, 8:497.
[16] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nat. Nanotechnol., 2011, 6:147.
[17] Pu J, Yomogida Y, Liu K K, Li L J, Iwasa Y, Takenobu T. Nano Lett., 2012, 12:4013.
[18] Gao M R, Xu Y F, Jiang J, Yu S H. Chem. Soc. Rev., 2013, 42:2986.
[19] Park M, Park Y, Chen X, Park Y K, Kim M S, Ahn J H. Adv. Mater., 2016, 28:2556.
[20] Shi G, Zhao Z H, Pai J H, Lee I, Zhang L Q, Stevenson C, Ishara K, Zhang R J, Zhu H W, Ma J. Adv. Funct. Mater., 2016, 2:619.
[21] Wang Y, Wang L, Yang T, Li X, Zang X, Zhu M, Wang K, Wu D, Zhu H. Adv. Funct. Mater., 2014, 24:4666.
[22] Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov K S, Ferrari A C. Nano Lett., 2007, 7:2711.
[23] Katsnelson M. Mater. Today, 2007, 10:20.
[24] Balandin A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8:902.
[25] Chae H, Siberio-Pérez D, Kim J, Go Y B, Eddaoudi M, Matzger A, O'Keeffe M, Yaghi1 O M. Nature, 2004, 427:523.
[26] Liu Y, Xiao N, Gong N, Wang H, Shi X, Gu W, Ye L. Carbon, 2014, 68:258.
[27] Lee C, Wei X, Kysar J, Hone J. Science, 2008, 321:385.
[28] Xu M S, Liang T, Shi M M, Chen H Z. Chem. Rev., 2013, 113:3766.
[29] Mak K F, Lee C, Hone J, Shan J, Heinz T F. Phys. Rev. Lett., 2010, 105:136805.
[30] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli, G, Wang F. Nano Lett., 2010, 10:1271.
[31] Hui Y Y, Liu X, Jie W, Chan N Y, Hao J, Hsu Y T, Li L J, Guo W, Lau S P. ACS Nano, 2013, 7:7126.
[32] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y. Nat. Nanotechnol., 2014, 9:372.
[33] Asahina H, Shindo K, Morita A. J. Phys. Soc. Jpn., 1982, 51:1193.
[34] Qiao J, Kong X, Hu Z X, Yang F, Ji W. Nat. Commun., 2014, 5:4475.
[35] Li L, Kim J, Jin C, Ye G, Qiu D Y, da Jornada F H, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie S G, Chen X, Zhang Y, Wang F. Nat. Nanotechnol., 2016, 12:21.
[36] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D. ACS Nano, 2014, 8:4033.
[37] Guo X F, Qiu J P, Guo W L. Nanotechnology, 2016, 27:505702.
[38] Pan D X, Li Y, Wang T C, Guo W L. Acta Mech. Sin., 2017,33:71.
[39] Liu X F, Pan D X, Hong Y Z, Guo W L. Am. Phys. Soc., 2014, 112:205502.
[40] Geim A K, Novoselov K S. Nat. Mater., 2007, 6:183.
[41] Xie L M, Jiao L Y, Dai H J. J. Am. Chem. Soc., 2010, 132:14751.
[42] Yin Z Y, Li H. ACS Nano, 2011, 6:74.
[43] Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, Zhang H. Small, 2012, 8:63.
[44] Jeong H K, Lee Y P, Lahaye R J W E, Park M H, An K H, Kim I J, Yang C W, Park C Y, Ruoff R S, Lee Y H. J. Am. Chem. Soc., 2008, 130:1362.
[45] Zhang L, Liang J J, Huang Y, Ma Y F, Wang Y, Chen Y S. Carbon, 2009, 47:3365.
[46] Becerril H A, Mao J, Liu Z, Stoltenberg R M, Randall M, Bao Z, Chen Y. ACS Nano, 2008, 2:463.
[47] Chang H X, Sun Z H, Yuan Q H, Ding F, Tao X M, Yan F, Zheng Z J. Adv. Mater., 2010, 22:4872.
[48] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3:101.
[49] Zeng Z Y, Yin Z Y, Huang X, Li H, He Q Y, Lu G, Boey F, Zhang H. Angew. Chem. Int. Edit., 2011, 50:11093.
[50] Gopalakrishnan D, Damien D, Shaijumon M M. ACS Nano, 2014, 8:5297.
[51] Sun Z B, Xie H H, Tang S Y, Yu X F, Guo Z N, Shao J D, Zhang H, Huang H, Wang H Y, Chu P K. Angew. Chem. Int. Ed., 2015, 54:11526.
[52] Obraztsov A N, Obraztsova E A, Tyurnina A V. Carbon, 2007, 45:2017.
[53] Yu Q, Lian J, Siriponglert S. Appl. Phys. Lett., 2008, 93:113103.
[54] Li X S, Cai W W, Colombo L G, Ruoff R S. Nano Lett., 2009, 9:4268.
[55] Bae S, Kim H, Lee Y, Xu X F, Park J, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y, Kim Y, Kim K S, Özyilmaz B, Ahn J, Hong B H, Iijima S.Nat. Nanotechnol., 2010, 5:574.
[56] Ling X, Lee Y H, Lin Y X, Fang W J, Yu L L, Dresselhaus M S, Kong J. Nano lett., 2014, 14:464.
[57] Wang X S, Feng H B, Wu Y M, Jiao L Y. J. Am. Chem. Soc., 2013, 135:5304.
[58] Tai G, Zeng T, Yu J, Zhou J, You Y, Wang X, Wu H, Sun X, Hu T, Guo W. Nanoscale, 2016, 8:2234.
[59] Wang Y, Yang R, Shi Z W, Zhang L Z, Shi D X, Wang E G, Zhang G Y. ACS Nano, 2011, 5:3645.
[60] Li X, Sun P, Fan L, Zhu M, Wang K, Zhong M, Wei J, Wu D, Cheng Y, Zhu H. Sci. Rep., 2012, 2:395.
[61] Yang T, Wang W, Zhang H, Li X, Shi J, He Y, Zheng Q, Li Z, Zhu H. ACS Nano, 2015, 9:10867.
[62] Fei R, Yang L. Nano Lett., 2014, 14:2884.
[63] Wu H R, Liu X F, Yin J, Zhou J X, Guo W L. Small, 2016, 12:5276.
[1] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[2] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[3] Hui Zhang, Shanshan Wang, Jinshan Yu. Low-Symmetry Two-Dimensional ReS2 and its Heterostructures:Chemical Vapor Deposition Synthesis and Properties [J]. Progress in Chemistry, 2022, 34(6): 1440-1452.
[4] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[5] Cheng Chen, Zhiqiang Dong, Haowen Chen, Yang Chen, Zhigang Zhu, Weiheng Shih. Two-Dimensional Photonic Crystals [J]. Progress in Chemistry, 2018, 30(6): 775-784.
[6] Honglei Wang, Wenzhen Lv, Xingxing Tang, Lingfeng Chen, Runfeng Chen, Wei Huang. Two-Dimensional Perovskites and Their Applications on Optoelectronic Devices [J]. Progress in Chemistry, 2017, 29(8): 859-869.
[7] Zeng Tian, You Yuncheng, Wang Xufeng, Hu Tingsong, Tai Guoan. Chemical Vapor Deposition and Device Application of Two-Dimensional Molybdenum Disulfide-Based Atomic Crystals [J]. Progress in Chemistry, 2016, 28(4): 459-470.
[8] You Yuncheng, Zeng Tian, Liu Jinsong, Hu Tingsong, Tai Guoan. Chemical Vapor Deposition and Application of Graphene-Like Tungsten Disulfide [J]. Progress in Chemistry, 2015, 27(11): 1578-1590.
[9] Yan Changling1,2 Lu Yan1,2 ** . Two-Dimensional Imprinting of Protein Molecules [J]. Progress in Chemistry, 2008, 20(06): 969-974.
[10] Wang Shutao,Zhang Zude*. Preparation of Titanium Nitride by Chemical Vapor Deposition [J]. Progress in Chemistry, 2003, 15(05): 374-.
[11] Cui Xiaoli,Jiang Zhiyu**. Advances in Preparation of the Films of TiO2 [J]. Progress in Chemistry, 2002, 14(05): 325-.