中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (4): 459-470 DOI: 10.7536/PC151027 Previous Articles   Next Articles

• Review and comments •

Chemical Vapor Deposition and Device Application of Two-Dimensional Molybdenum Disulfide-Based Atomic Crystals

Zeng Tian1,2, You Yuncheng1,2, Wang Xufeng1,2, Hu Tingsong2, Tai Guoan1,2*   

  1. 1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.61474063, 11302100), the Innovation Fund of NUAA(No.NJ20140002, NE2015102, NZ2015101),the National Natural Science Foundation of Jiangsu Province(No.SBK2015022205), SKL Funding of NUAA(No.0413Y02, 0415G02), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
PDF ( 1503 ) Cited
Export

EndNote

Ris

BibTeX

Transition metal dichalcogenides (TMDCs) materials has a great potential for applications in electronics and optoelectronics devices owing to its tuning band gap strongly depending on the thickness. Among the TMDCs materials, monolayer MoS2, as a direct band gap semiconductor, has fascinating optical, electrical, magnetic, thermal and mechanical properties. 2D MoS2 is expected to be widely used in photodetectors, photovoltic devices, field effect transistors, memory devices, valley electronics, spintronics, thermoelectrics, micro-nanoelectromechanical devices and systems. At present, chemical vapor deposition (CVD) is the most promising method to synthesize large-area two-dimensional transition metal chalcogenide (such as MoS2, MoSe2, WS2 and WSe2) atomic layers. Electronic and optoelectronic devices of CVD-made 2D MoS2 have been extensively investigated. In this review, we summarize extensive chemical vapor deposition methods such as thermal decomposition of (NH4)2MoS4, sulfurization of metal Mo or MoO3-x thin film, gas-phase synthesis of sulfur-based precursors and direct sulfurization of molybdenum foils. Then, the preparation of different 2D heterostructures has also been introduced. On the basis of preparing the 2D materials, we introduce in detail the research progress of MoS2-based transistors, photoelectric devices, flexible devices and related heterostructures. Finally, we analyze the research of two-dimensional materials with further applications in semiconductor devices.

Contents
1 Introduction
2 Basic character of 2D molybdenum disulfide
2.1 Crystal structure and band structure
2.2 Optical properties
3 Synthesis of 2D molybdenum disulfide via chemical vapor deposition
3.1 Thermal decomposition of (NH4)2MoS4
3.2 Sulfurization of metal Mo or MoO3-x thin films
3.3 Gas-phase synthesis of sulfur-based precursors
3.4 Direct sulfurization of molybdenum foils
3.5 Synthesis of 2D layered heterostructures
4 Application of 2D molybdenum disulfide in electric devices
4.1 Field effect transistors based on 2D MoS2
4.2 Photodetectors based on 2D MoS2
4.3 Flexible electronic devices
4.4 2D layered heterostructures devices
5 Conclusion

CLC Number: 

[1] Wilson J A, Yoffe A D. Adv. Phys., 1969, 18: 193.
[2] Novoselov K S, Jiang D, Schedin F, Booth T J, KhotkevichV V, Morozov S V, Geim A K. Proc.Natl.Acad.Sci., 2005, 102: 10451.
[3] Kuc A, Zibouche N, Heine T. Phys. Rev. B, 2011, 83: 245213.
[4] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F. Nano Lett., 2010, 10: 1271.
[5] Xu X, Yao W, Xiao D, Heinz T F. Nat. Phys., 2014, 10: 343.
[6] Xiao D, Liu G B, Feng W, Xu X, Yao W. Phys. Rev. Lett., 2012, 108: 196802.
[7] Novoselov K S, Geim A K, Morozov S V, Jiang D. Science, 2004, 306: 666.
[8] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nat. Nanotechnol., 2011, 6: 147.
[9] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. Nat. Nanotechnol., 2013, 8: 497.
[10] Pu J, Yomogida Y, Liu K K, Li L J, Iwasa Y, Takenobu T. Nano Lett., 2012, 12: 4013.
[11] Gao M R, Xu Y F, Jiang J,Yu S H. Chem. Soc. Rev., 2013, 42: 2986.
[12] Wang Q H, Kalantar-Zadeh K, Kis A, Colean J N, Strano M S. Nat. Nanotechnol., 2012, 7: 699.
[13] Mak K F, Lee C, Hone J, Shan J, Heinz T F. Phys. Rev. Lett., 2010, 105: 136805.
[14] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Nano Lett., 2011, 11: 5111.
[15] Hui Y Y, Liu X, Jie W, Chan N Y, Hao J, Hsu Y T, Li L J, Guo W, Lau S P. ACS Nano, 2013, 7: 7126.
[16] Mouri S, Miyauchi Y, Matsuda K. Nano Lett., 2013, 13: 5944.
[17] Verble J L, Wieting T J. Phys. Rev. Lett., 1970, 25: 362.
[18] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A. Adv. Funct. Mater., 2012, 22: 1385.
[19] Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S. ACS Nano, 2010, 4: 2695.
[20] Zhu C R, Wang G, Liu B L, Marie X, Qiao X F, Zhang X, Wu X X, Fan H, Tan P H, Amand T, Urbaszek B. Phys. Rev. B, 2013, 88: 121301.
[21] Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X, Kis A, Luo T, Walker A R H, Xing H G. ACS Nano, 2014, 8: 986.
[22] Benameur M M, Radisavljevic B, Heron J S, Sahoo S, Berger H, Kis A. Nanotechnology, 2011, 22: 125706.
[23] Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Gieveson E, M, Theuwissen K, Mccomb D W, Nellist P D, Nicolosi V. Science, 2011, 331: 568.
[24] Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J. Nano Lett., 2012, 12: 1538.
[25] George A S, Mutlu Z, Ionescu R, Wu R J, Jeong J S, Bay H H, Chai Y, Mkhoyan K A, Ozkan M, Ozkan C S. Adv. Funct. Mater., 2014, 24: 7461.
[26] Yang J, Gu Y, Lee E, Lee H, Park S H, Cho M H, Kim Y H, Kim Y H, Kim H. Nanoscale, 2015, 7: 9311.
[27] Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J. Small, 2012, 8: 966.
[28] Lee Y, Lee J, Bark H, Oh I K, Ryu G H, Lee Z, Kim H, Cho J H, Ahn J H, Lee C. Nanoscale, 2014, 6: 2821.
[29] Lin Y C, Zhang W, Huang J K, Liu K K, Lee Y H, Liang C T, Chu C W, Li L J. Nanoscale, 2012, 4: 6637.
[30] Wang X, Feng H, Wu Y, Jiao L. J. Am. Chem. Soc., 2013, 135: 5304.
[31] Ji Q, Zhang Y, Zhang Y, Liu Z. Chem. Soc. Rev., 2015, 44: 2587.
[32] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W. Adv. Mater., 2012, 24: 2320.
[33] Lee Y H, Yu L, Wang H, Fang W, Ling X, Shi Y, Lin C T, Huang J K, Chang M T, Chang C S, Dresselhaus M, Palacios T, Li L J, Koog J. Nano Lett., 2013, 13: 1852.
[34] Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S,Yakobson B I, Ideobo J C, Ajayan P M, Lou J. Nat. Mater., 2013, 12: 754.
[35] Van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C. Nat. Mater., 2013, 12: 554.
[36] Tai G, Zeng T, Yu J, Zhou J, You Y, Wang X, Wu H, Sun X, Hu T, Guo W. Nanoscale, 2016, 8: 2234.
[37] Feng Q, Mao N, Wu J, Xu H, Wang C, Zhang J, Xie L. ACS Nano, 2015, 9: 7450.
[38] Feng Q, Zhu Y, Hong J, Zhang M, Duan W, Mao N, Wu J, Xu H, Dong F, Lin F, Jin C, Wang C, Zhang J, Xie L. Adv. Mater., 2014, 26: 2648.
[39] Wu S, Huang C, Aivazian G, Ross J S, Cobden D H, Xu X. ACS Nano, 2013, 7: 2768.
[40] Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q, Pan A, Jiang J, Yu R, Huang Y, Duan X. Nat. Nanotechnol., 2014, 9: 1024.
[41] Li H, Duan X, Wu X, Zhuang X, Zhou H, Zhang Q, Zhu X, Hu W, Ren P, Guo P, Ma L, Fan X, Wang X, Xu J, Pan A, Duan X. ACS Nano, 2014, 136: 3756.
[42] Huang C, Wu S, Sanchez A M, Peters J J P, Beanland R, Ross J S, Rivera P, Yao W, Cobden D H, Xu X. Nat. Mater., 2014, 13: 1096.
[43] Heo H, Sung J H, Jin G, Ahn J H, Kim K, Lee M J, Cha S, Choi H, Jo M H. Adv. Mater., 2015, 27: 3803.
[44] Yu J H, Lee H R, Hong S S, Kong D, Lee H W, Wang H, Xiong F, Wang S, Cui Y. Nano Lett., 2015, 15: 1031.
[45] Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J, Sinclair R, Wu J. Nano Lett., 2014, 14: 3185.
[46] Shi Y, Zhou W, Lu A Y, Fang W, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C, Kong J. Nano Lett., 2012, 12: 2784.
[47] Chang Y H, Lin C T, Chen T Y, Hsu C L, Lee Y H, Zhang W, Wei K H, Li L J. Adv. Mater., 2013, 25: 756.
[48] Liu L, Kumar S B, Ouyang Y, Guo J. IEEE Trans. Electron Devices, 2011, 58: 3042.
[49] Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J. Nature, 2015, 520: 656.
[50] Zhang Y, Ye J, Matsuhashi Y, Iwasa Y. Nano Lett., 2012, 12: 1136.
[51] Radisavljevic B, Whitwick M B, Kis A. ACS Nano, 2011, 5: 9934.
[52] Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T. Nano Lett., 2012, 12: 4674.
[53] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S. Nano Lett., 2012, 12: 3695.
[54] Tongay S, Zhou J, Ataca C, Liu J, Kang J S, Matthews T S, You L, Li J, Grossman J C, Wu J. Nano Lett., 2013, 13: 2831.
[55] Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P, Steiner M. Nano Lett., 2013, 13: 1416.
[56] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H. ACS Nano, 2011, 6: 74.
[57] Choi W, Cho M Y, Konar A, Lee J H, Cha G B, Hong S C, Kim S, Kim J, Jena D, Joo J, Sunkook K. Adv. Mater., 2012, 24: 5832.
[58] Lopez-Sanchez O, Alarcon Llado E, Koman V, Fontcuberta I M A, Radeovic A, Kis A. ACS Nano, 2014, 8: 3042.
[59] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Science, 2008, 320: 1308.
[60] Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y, Li L J. Sci. Rep., 2014, 4: 3826
[61] Bertolazzi S, Brivio J, Kis A. ACS Nano, 2011, 5: 9703.
[62] Lee J, Panzer M J, He Y, Lodge T P, Frisbie C D. ACS Nano, 2007, 129: 4532.
[63] Pu J, Zhang Y, Wada Y, Wang J T W, Li L J, Iwasa Y, Takenobu T. Appl. Phys. Lett., 2013, 103: 023505.
[64] Yoon J, Park W, Bae G Y, Kim Y, Jang H S, Hyun Y, Lim S K, Kahng Y H, Hong W K, Lee B H, Ko H C. Small, 2013, 9: 3295.
[65] Chang H Y, Yang S, Lee J, Tao L, Hwang W S, Jena D, Lu N, Akinwande D. ACS Nano, 2013, 7: 5446.
[66] Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J, Watanabe K, Taniguchi T, Nuckolls C, Kim P, Hone J. ACS Nano, 2013, 7: 7931.
[67] Yu W J, Liu Y, Zhou H, Yin A, Li Z, Huang Y, Duan X. Nat. Nanotechnol., 2013, 8: 952.
[68] Cui X, Lee G H, Kim Y D, Arefe G, Zhang X, Lee C H, Ye F, Watanabe K, Taniguchi T, Kim P, Hone J. Nat. Nanotechnol., 2015, 10: 534.
[69] Lee C H, Lee G H, van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P. Nat. Nanotechnol., 2014, 9: 676.
[70] Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F. Nat. Nanotechnol., 2014, 9: 682.
[1] Hui Zhang, Shanshan Wang, Jinshan Yu. Low-Symmetry Two-Dimensional ReS2 and its Heterostructures:Chemical Vapor Deposition Synthesis and Properties [J]. Progress in Chemistry, 2022, 34(6): 1440-1452.
[2] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[3] Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu. Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(12): 2392-2403.
[4] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.
[5] Qingyang Xi, Jinsong Liu, Ziquan Li, Kongjun Zhu, Guoan Tai, Ruogu Song. Etching Methods and Application of Molybdenum Disulfide Film [J]. Progress in Chemistry, 2018, 30(6): 847-863.
[6] Honglei Wang, Wenzhen Lv, Xingxing Tang, Lingfeng Chen, Runfeng Chen, Wei Huang. Two-Dimensional Perovskites and Their Applications on Optoelectronic Devices [J]. Progress in Chemistry, 2017, 29(8): 859-869.
[7] Wenjie Zhu, Guoan Tai, Xufeng Wang, Qilin Gu, Zenghui Wu, Kongjun Zhu. Fabrication and Strain Sensing Properties of Two-Dimensional Atomic Crystal Materials [J]. Progress in Chemistry, 2017, 29(11): 1285-1296.
[8] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[9] You Yuncheng, Zeng Tian, Liu Jinsong, Hu Tingsong, Tai Guoan. Chemical Vapor Deposition and Application of Graphene-Like Tungsten Disulfide [J]. Progress in Chemistry, 2015, 27(11): 1578-1590.
[10] Huang Yanqin|Fan Quli|Huang Wei**. Water-Soluble Conjugated Polyelectrolytes [J]. Progress in Chemistry, 2008, 20(04): 574-585.
[11] Wang Shutao,Zhang Zude*. Preparation of Titanium Nitride by Chemical Vapor Deposition [J]. Progress in Chemistry, 2003, 15(05): 374-.
[12] Cui Xiaoli,Jiang Zhiyu**. Advances in Preparation of the Films of TiO2 [J]. Progress in Chemistry, 2002, 14(05): 325-.