中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (6): 1440-1452 DOI: 10.7536/PC210846 Previous Articles   

• Review •

Low-Symmetry Two-Dimensional ReS2 and its Heterostructures:Chemical Vapor Deposition Synthesis and Properties

Hui Zhang, Shanshan Wang(), Jinshan Yu   

  1. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology,Changsha 410073, China
  • Received: Revised: Online: Published:
  • Contact: Shanshan Wang
  • Supported by:
    National Natural Science Foundation of China(52172032); National Natural Science Foundation of China(21805305); State Administration of Science, Technology and Industry for National Defense(WDZC20195500503); China Postdoctoral Science Foundation(2020M680231); National University of Defense Technology(ZK18-01-03); National University of Defense Technology(ZZKY-YX-09-01)
Richhtml ( 46 ) PDF ( 1011 ) Cited
Export

EndNote

Ris

BibTeX

Two-dimensional (2D) rhenium disulfide (ReS2) is a layer-structured functional nanomaterial with atomic thickness and few lattice symmetry elements. The low symmetry of the crystal structure endows 2D ReS2 with rich anisotropic physical and chemical properties, giving it great potential in the fieldsof nanophotonics, tactile sensors, and anisotropic electronic devices. The applications of 2D ReS2 rely on high-quality synthesis and a deep understanding of its properties. This review firstly categorizes the chemical vapor deposition (CVD) methods of ReS2 into three groups based on the types of the metallic and non-metallic precursors applied in the growth, as well as the substrates. Different CVD strategies and the corresponding growth mechanisms are systematically summarized. Subsequently, the recent progress in the preparation of ReS2 in-plane and vertical 2D heterostructures is introduced. Approaches are divided into “one-step method” and “two-step method” based on the number of steps used in the CVD process. Finally, the anisotropic optical and electronic properties of 2D ReS2 are discussed. This review also puts forward an outlook on the challenges and opportunities of the synthesis and property investigation of 2D ReS2.

Contents

1 Introduction

2 CVD growth of 2D ReS2 and its heterostructures

2.1 CVD growth of 2D ReS2

2.2 CVD growth of ReS2-based heterostructures

3 Properties of 2D ReS2

3.1 Vibrational and optical properties

3.2 Electrical properties

4 Summary and Prospect

Fig. 1 (a)Schematic illustration showing the crystal structure of mono-layer Re S 2 [13], Copyright 2016, American Chemical Society. (b)Schematic illustration showing the distorted coordination manner of 1T’-ReS2 and the valence electron structure of the Re element[14], Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 2 Schematic diagram of the basic steps in a typical CVD process[26], Copyright 2021, Springer Nature
Fig. 3 (a)Schematic showing the CVD growth of monolayer ReS2 using NH4ReO4 as the rhenium mental precursor;(b, c)SEM and Z-contrast STEM image of Re S 2 [17], Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.(d)Schematic for the CVD growth of monolayer ReS2 when Re is applied as the rhenium mental precursor;(e)Optical microscopy image of ReS2;(f)HRTEM image of ReS2;(g)Crystal structure diagram and the corresponding simulation model of Re S 2 [31], Copyright 2015, John Wiley and Sons.(h)Schematic diagram of Te-assisted CVD growth of ReS2;(i)OM image of ReS2 transferred to the SiO2/Si substrate;(j, k)SAED and HRTEM images of Re S 2 [32], Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.(l)Schematic for the CVD growth of monolayer ReS2 using ReO3 as the rhenium mental precursor;(m, n)OM and AFM images of 2D ReS2 grown on the mica substrate[16], Copyright 2016, Royal Society of Chemistry
Fig. 4 (a)Schematic illustration of the CVD setup;(b)images of ReS2 films grown on the flexible glass;(c)Raman spectra of ReS2 detected at seven different locations corresponding to the labels of the inset[40]. Copyright 2017, IOP Publishing
Fig. 5 (a)Schematic diagram of CVD preparation process;(b)Microscopic image of ReS2 film, scale bar is 200 μm, the inset is an optical image;(c)AFM image of ReS2 film, scale bar is 0.5 μm[44], Copyright 2019, IOP Publishing;(d,e)OM images of truncated triangle and hexagonal ReS2 grains;(f,g)AFM images of truncated triangular and hexagonal ReS2 grains[13], Copyright 2016, American Chemical Society.(h,i)SEM images of single-layer ReS2 grown on Au with different crystal faces;(j)Raman spectra of ReS2 grown on Au and SiO2/Si substrates[45], Copyright 2021, Wiley-VCH GmbH
Fig. 6 (a)Schematic diagram of ReS2/WS2 vertical heterostructures;(b,c)SEM and OM images of ReS2/WS2 vertical heterostructures. Scale bar: 40 μm (b), 5 μm (c);(d,e)Raman mapping images corresponding to the E2g peaks of ReS2 and WS 2 [60], Copyright 2016, Springer Nature;(f)Schematic diagram of 2H-WS2/1T’-ReS2 lateral heterostructures synthesized by one-pot CVD method and the atomic model of the growth process;(g,h)SEM and HRTEM images of WS2/ReS2 lateral heterostructures[61] Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 7 (a)Schematic diagram of two-step synthesis of 1T'-ReS2-ReSe2 in-plane heterostructures;(b-d)OM, SEM, AFM images of ReS2-ReSe2 in-plane heterostructures[62], Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.(e)Schematic diagram of two-step CVD growth of ReS2/WS2 vertical heterostructures;(f)Optical image of as-grown ReS2/WS2 vertical heterostructures;(g)Raman mappings showing the integration of the WS2 signal at 358 cm-1 and the ReS2 signal at 163 cm-1, respectively. Scale bar: 10 μm[63],Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.(h)Schematic illustration of the synthesis process for the graphene/ReS2 vertical heterostructure;(i-j)SEM and AFM images of graphene/ReS2 vertical heterostructure[64],Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 8 (a)Raman spectra of ReS2 with different thicknesses[65], Copyright 2015, American Chemical Society;(b)polarized Raman spectra of monolayer ReS2;(c)angle-resolved Raman intensities of modes Ⅲ (green) and Ⅴ (purple) presented in a polar plot[19], Copyright 2015 American Chemical Society.(d)DFT calculated electronic band structure of bulk (orange solid curves) and monolayer (purple dashed curves) ReS2;(e)Diagram of MoS2 and ReS2 interlayer coupling energy[72], Copyright 2014, Springer Nature.(f)Relative resistance changes of the device along two axes as a function of strain。Inset is the OM image of the device[73], Copyright 2019, American Chemical Society;(g)transfer curves of anisotropic ReS2 FETs along two axes. Inset is the OM image of the device;(h)normalized field-effect mobility along the different crystal orientations of ReS2, the inset is the OM image of the device[74], Copyright 2015,Springer Nature
[1]
Avsar A, Ochoa H, Guinea F, Özyilmaz B, van Wees B J, Vera-Marun I J. Rev. Mod. Phys., 2020, 92(2): 021003.

doi: 10.1103/RevModPhys.92.021003
[2]
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. Rev. Mod. Phys., 2009, 81(1): 109.

doi: 10.1103/RevModPhys.81.109
[3]
Kotov V N, Uchoa B, Pereira V M, Guinea F, Castro Neto A H. Rev. Mod. Phys., 2012, 84(3): 1067.

doi: 10.1103/RevModPhys.84.1067
[4]
Wang H T, Yuan H T, Sae Hong S, Li Y B, Cui Y. Chem. Soc. Rev., 2015, 44(9): 2664.

doi: 10.1039/C4CS00287C
[5]
Tedstone A A, Lewis D J, O’Brien P. Chem. Mater., 2016, 28(7): 1965.

doi: 10.1021/acs.chemmater.6b00430
[6]
Duan X D, Wang C, Pan A L, Yu R Q, Duan X F. Chem. Soc. Rev., 2015, 44(24): 8859.

doi: 10.1039/C5CS00507H
[7]
Cai Z Y, Liu B L, Zou X L, Cheng H M. Chem. Rev., 2018, 118(13): 6091.

doi: 10.1021/acs.chemrev.7b00536
[8]
Ji Q Q, Zhang Y, Zhang Y F, Liu Z F. Chem. Soc. Rev., 2015, 44(9): 2587.

doi: 10.1039/C4CS00258J
[9]
Li H N, Li Y, Aljarb A, Shi Y M, Li L J. Chem. Rev., 2018, 118(13): 6134.

doi: 10.1021/acs.chemrev.7b00212
[10]
Gong C H, Zhang Y X, Chen W, Chu J W, Lei T Y, Pu J R, Dai L P, Wu C Y, Cheng Y H, Zhai T Y, Li L, Xiong J. Adv. Sci., 2017, 4(12): 1700231.

doi: 10.1002/advs.201700231
[11]
Li X B, Chen C, Yang Y, Lei Z B, Xu H. Adv. Sci., 2020, 7(23): 2002320.

doi: 10.1002/advs.202002320
[12]
Zhang Q, Fu L. Chem, 2019, 5(3): 505.

doi: 10.1016/j.chempr.2018.11.004
[13]
Wu K D, Chen B, Yang S J, Wang G, Kong W, Cai H, Aoki T, Soignard E, Marie X, Yano A, Suslu A, Urbaszek B, Tongay S. Nano Lett., 2016, 16(9): 5888.

doi: 10.1021/acs.nanolett.6b02766
[14]
Li X B, Wang X, Hong J H, Liu D Y, Feng Q L, Lei Z B, Liu K H, Ding F, Xu H. Adv. Funct. Mater., 2019, 29(49): 1970335.

doi: 10.1002/adfm.201970335
[15]
Lin Y C, Komsa H P, Yeh C H, Björkman T, Liang Z Y, Ho C H, Huang Y S, Chiu P W, Krasheninnikov A V, Suenaga K. ACS Nano, 2015, 9(11): 11249.

doi: 10.1021/acsnano.5b04851
[16]
Li X B, Cui F F, Feng Q L, Wang G, Xu X S, Wu J X, Mao N N, Liang X, Zhang Z Y, Zhang J, Xu H. Nanoscale, 2016, 8(45): 18956.

doi: 10.1039/C6NR07233J
[17]
Keyshar K, Gong Y J, Ye G L, Brunetto G, Zhou W, Cole D P, Hackenberg K, He Y M, Machado L, Kabbani M, Hart A H C, Li B, Galvao D S, George A, Vajtai R, Tiwary C S, Ajayan P M. Adv. Mater., 2015, 27(31): 4640.

doi: 10.1002/adma.201501795
[18]
Arora A, Noky J, Drüppel M, Jariwala B, Deilmann T, Schneider R, Schmidt R, del Pozo-Zamudio O, Stiehm T, Bhattacharya A, Krüger P, Michaelis de Vasconcellos S, Rohlfing M, Bratschitsch R. Nano Lett., 2017, 17(5): 3202.

doi: 10.1021/acs.nanolett.7b00765
[19]
Chenet D A, Aslan O B, Huang P Y, Fan C, van der Zande A M, Heinz T F, Hone J C. Nano Lett., 2015, 15(9): 5667.

doi: 10.1021/acs.nanolett.5b00910
[20]
Sim S, Lee D, Trifonov A V, Kim T, Cha S, Sung J H, Cho S, Shim W, Jo M H, Choi H. Nat. Commun., 2018, 9: 351.

doi: 10.1038/s41467-017-02802-8
[21]
Li H, Wu J, Yin Z Y, Zhang H. Acc. Chem. Res., 2014, 47(4): 1067.

doi: 10.1021/ar4002312
[22]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

pmid: 15499015
[23]
Huo C X, Yan Z, Song X F, Zeng H B. Sci. Bull., 2015, 60(23): 1994.

doi: 10.1007/s11434-015-0936-3
[24]
Shi Y M, Li H N, Li L J. Chem. Soc. Rev., 2015, 44(9): 2744.

doi: 10.1039/C4CS00256C
[25]
Tong X, Liu K L, Zeng M Q, Fu L. InfoMat, 2019, 1(4): 460.

doi: 10.1002/inf2.12038
[26]
Sun L Z, Yuan G W, Gao L B, Yang J, Chhowalla M, Gharahcheshmeh M H, Gleason K K, Choi Y S, Hong B H, Liu Z F. Nat. Rev. Methods Primers, 2021, 1: 5.

doi: 10.1038/s43586-020-00005-y
[27]
Wu M H, Zhang Z B, Xu X Z, Zhang Z H, Duan Y R, Dong J C, Qiao R X, You S F, Wang L, Qi J J, Zou D X, Shang N Z, Yang Y B, Li H, Zhu L, Sun J L, Yu H J, Gao P, Bai X D, Jiang Y, Wang Z J, Ding F, Yu D P, Wang E G, Liu K H. Nature, 2020, 581(7809): 406.

doi: 10.1038/s41586-020-2298-5
[28]
Ling X, Lee Y H, Lin Y X, Fang W J, Yu L L, Dresselhaus M S, Kong J. Nano Lett., 2014, 14(2): 464.

doi: 10.1021/nl4033704 pmid: 24475747
[29]
Yu Y F, Li C, Liu Y, Su L Q, Zhang Y, Cao L Y. Sci. Rep., 2013, 3: 1866.

doi: 10.1038/srep01866
[30]
Elías A L, Perea-López N, Castro-Beltrán A, Berkdemir A, Lv R, Feng S, Long A D, Hayashi T, Kim Y A, Endo M. ACS Nano, 2013, 7: 5235.

doi: 10.1021/nn400971k
[31]
He X X, Liu F C, Hu P, Fu W, Wang X L, Zeng Q S, Zhao W, Liu Z. Small, 2015, 11(40): 5423.

doi: 10.1002/smll.201501488
[32]
Cui F F, Wang C, Li X B, Wang G, Liu K Q, Yang Z, Feng Q L, Liang X, Zhang Z Y, Liu S Z, Lei Z B, Liu Z H, Xu H, Zhang J. Adv. Mater., 2016, 28(25): 5018.

doi: 10.1002/adma.201670175
[33]
Guo Z L, Wei A X, Zhao Y, Tao L L, Yang Y B, Zheng Z Q, Luo D X, Liu J, Li J B. Appl. Phys. Lett., 2019, 114(15): 153102.

doi: 10.1063/1.5087456
[34]
Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C, Wu D, Liu F C, Fu Q D, Zeng Q S, Hsu C H, Yang C L, Lu L, Yu T, Shen Z X, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G T, Liu Z. Nature, 2018, 556(7701): 355.

doi: 10.1038/s41586-018-0008-3
[35]
Zhou Y, Song E H, Zhou J D, Lin J H, Ma R G, Wang Y W, Qiu W J, Shen R X, Suenaga K, Liu Q, Wang J C, Liu Z, Liu J J. ACS Nano, 2018, 12: 4486.

doi: 10.1021/acsnano.8b00693 pmid: 29697961
[36]
Chen X Y, Lei B, Zhu Y, Zhou J D, Liu Z, Ji W, Zhou W. Nanoscale, 2020, 12(32): 17005.

doi: 10.1039/D0NR03530K
[37]
Wang S S, Yu Y, Zhang S Q, Zhang S S, Xu H, Zou X L, Zhang J. Matter, 2020, 3(6): 2108.

doi: 10.1016/j.matt.2020.09.015
[38]
Qin J K, Shao W Z, Li Y, Xu C Y, Ren D D, Song X G, Zhen L. RSC Adv., 2017, 7(39): 24188.

doi: 10.1039/C7RA01748K
[39]
Hafeez M, Gan L, Li H Q, Ma Y, Zhai T Y. Adv. Funct. Mater., 2016, 26(25): 4551.

doi: 10.1002/adfm.201601019
[40]
Kim Y, Kang B, Choi Y, Cho J H, Lee C G. 2D Mater., 2017, 4(2): 025057.
[41]
Kang K, Xie S E, Huang L J, Han Y M, Huang P Y, Mak K F, Kim C J, Muller D, Park J. Nature, 2015, 520(7549): 656.

doi: 10.1038/nature14417
[42]
Dathbun A, Kim Y, Kim S, Yoo Y, Kang M S, Lee C G, Cho J H. Nano Lett., 2017, 17(5): 2999.

doi: 10.1021/acs.nanolett.7b00315
[43]
Song I, Park C, Choi H C. RSC Adv., 2015, 5(10): 7495.

doi: 10.1039/C4RA11852A
[44]
Lim J, Jeon D, Lee S, Yu J S, Lee S,. Nanotechnology, 2020, 31(11): 115603.

doi: 10.1088/1361-6528/ab5b39
[45]
Li X B, Dai X Y, Tang D Q, Wang X, Hong J H, Chen C, Yang Y, Lu J B, Zhu J G, Lei Z B, Suenaga K, Ding F, Xu H. Adv. Funct. Mater., 2021, 31(28): 2102138.

doi: 10.1002/adfm.202102138
[46]
Lv J, Yang J J, Jiao S L, Huang P, Ma K J, Wang J Q, Xu X X, Liu L. ACS Appl. Mater. Interfaces, 2020, 12(38): 43311.

doi: 10.1021/acsami.0c12729
[47]
Schneider G F, Calado V E, Zandbergen H, Vandersypen L M K, Dekker C. Nano Lett., 2010, 10(5): 1912.

doi: 10.1021/nl1008037 pmid: 20402493
[48]
Park H J, Ryu G H, Lee Z. Appl. Microsc., 2015, 45(3): 107.

doi: 10.9729/AM.2015.45.3.107
[49]
Song Y X, Zhang C R, Li B, Ding G Q, Jiang D, Wang H M, Xie X M. Nanoscale Res. Lett., 2014, 9: 367.

doi: 10.1186/1556-276X-9-367
[50]
Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y, Duan X F. Nat. Rev. Mater., 2016, 1(9): 16042.

doi: 10.1038/natrevmats.2016.42
[51]
Withers F, del Pozo-Zamudio O, Mishchenko A, Rooney A P, Gholinia A, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Tartakovskii A I, Novoselov K S. Nat. Mater., 2015, 14(3): 301.

doi: 10.1038/nmat4205 pmid: 25643033
[52]
Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H. Science, 2016, 353(6298): 461.
[53]
Henck H, Ben Aziza Z, Pierucci D, Laourine F, Reale F, Palczynski P, Chaste J, Silly M G, Bertran F, Le Fèvre P, Lhuillier E, Wakamura T, Mattevi C, Rault J E, Calandra M, Ouerghi A. Phys. Rev. B, 2018, 97(15): 155421.

doi: 10.1103/PhysRevB.97.155421
[54]
Susarla S, Hachtel J A, Yang X T, Kutana A, Apte A, Jin Z H, Vajtai R, Idrobo J C, Lou J, Yakobson B I, Tiwary C S, Ajayan P M. Adv. Mater., 2018, 30(45): 1870344.

doi: 10.1002/adma.201870344
[55]
Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M. Nat. Mater., 2014, 13(12): 1135.

doi: 10.1038/nmat4091
[56]
Fu Q D, Wang X W, Zhou J D, Xia J, Zeng Q S, Lv D H, Zhu C, Wang X L, Shen Y, Li X M, Hua Y N, Liu F C, Shen Z X, Jin C H, Liu Z. Chem. Mater., 2018, 30(12): 4001.

doi: 10.1021/acs.chemmater.7b05117
[57]
Kobayashi Y, Yoshida S, Maruyama M, Mogi H, Murase K, Maniwa Y, Takeuchi O, Okada S, Shigekawa H, Miyata Y. ACS Nano, 2019, 13(7): 7527.

doi: 10.1021/acsnano.8b07991 pmid: 31149797
[58]
Bogaert K, Liu S, Chesin J, Titow D, Gradečak S, Garaj S. Nano Lett., 2016, 16(8): 5129.

doi: 10.1021/acs.nanolett.6b02057 pmid: 27438807
[59]
Zhang Y, Yin L, Chu J W, Shifa T A, Xia J, Wang F, Wen Y, Zhan X Y, Wang Z X, He J. Adv. Mater., 2018, 30(40): 1803665.

doi: 10.1002/adma.201803665
[60]
Zhang T, Jiang B, Xu Z, Mendes R G, Xiao Y, Chen L F, Fang L W, Gemming T, Chen S L, Rümmeli M H, Fu L. Nat. Commun., 2016, 7: 13911.

doi: 10.1038/ncomms13911 pmid: 27996005
[61]
Liu D Y, Hong J H, Li X B, Zhou X, Jin B, Cui Q N, Chen J P, Feng Q L, Xu C X, Zhai T Y, Suenaga K, Xu H. Adv. Funct. Mater., 2020, 30(16): 1910169.

doi: 10.1002/adfm.201910169
[62]
Liu D Y, Hong J H, Wang X, Li X B, Feng Q L, Tan C W, Zhai T Y, Ding F, Peng H L, Xu H. Adv. Funct. Mater., 2018, 28(47): 1804696.

doi: 10.1002/adfm.201804696
[63]
Chen B, Wu K D, Suslu A, Yang S J, Cai H, Yano A, Soignard E, Aoki T, March K, Shen Y X, Tongay S. Adv. Mater., 2017, 29(34): 1701201.

doi: 10.1002/adma.201701201
[64]
Seo J, Lee J, Jeong G, Park H. Small, 2018: 1804133.
[65]
Feng Y Q, Zhou W, Wang Y J, Zhou J, Liu E F, Fu Y J, Ni Z H, Wu X L, Yuan H T, Miao F, Wang B G, Wan X G, Xing D Y. Phys. Rev. B, 2015, 92(5): 054110.

doi: 10.1103/PhysRevB.92.054110
[66]
Liu F C, Zheng S J, He X X, Chaturvedi A, He J F, Chow W L, Mion T R, Wang X L, Zhou J D, Fu Q D, Fan H J, Tay B K, Song L, He R H, Kloc C, Ajayan P M, Liu Z. Adv. Funct. Mater., 2016, 26(8): 1169.

doi: 10.1002/adfm.201504546
[67]
Meng X H, Zhou Y J, Chen K, Roberts R H, Wu W Z, Lin J F, Chen R T, Xu X C, Wang Y G. Adv. Opt. Mater., 2018, 6(14): 1800137.

doi: 10.1002/adom.201800137
[68]
Ho C H, Liao P C, Huang Y S, Yang T R, Tiong K K. J. Appl. Phys., 1997, 81(9): 6380.

doi: 10.1063/1.365357
[69]
Aslan O B, Chenet D A, van der Zande A M, Hone J C, Heinz T F. ACS Photonics, 2016, 3(1): 96.

doi: 10.1021/acsphotonics.5b00486
[70]
Liu F, Zhao X, Yan X Q, Xie J F, Hui W W, Xin X F, Liu Z B, Tian J G. J. Appl. Phys., 2019, 125(17): 173105.

doi: 10.1063/1.5093757
[71]
Wu J X, Mao N N, Xie L M, Xu H, Zhang J. Angew. Chem. Int. Ed., 2015, 54(8): 2366.

doi: 10.1002/anie.201410108
[72]
Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang Y S, Ho C H, Yan J Y, Ogletree D F, Aloni S, Ji J, Li S S, Li J B, Peeters F M, Wu J Q. Nat. Commun., 2014, 5: 3252.

doi: 10.1038/ncomms4252
[73]
An C H, Xu Z H, Shen W F, Zhang R J, Sun Z Y, Tang S J, Xiao Y F, Zhang D H, Sun D, Hu X D, Hu C G, Yang L, Liu J. ACS Nano, 2019, 13(3): 3310.

doi: 10.1021/acsnano.8b09161
[74]
Liu E F, Fu Y J, Wang Y J, Feng Y Q, Liu H M, Wan X G, Zhou W, Wang B G, Shao L B, Ho C H, Huang Y S, Cao Z Y, Wang L G, Li A D, Zeng J W, Song F Q, Wang X R, Shi Y, Yuan H T, Hwang H Y, Cui Y, Miao F, Xing D Y. Nat. Commun., 2015, 6: 6991.

doi: 10.1038/ncomms7991
[75]
Xiong Y, Chen H W, Zhang D W, Zhou P. Phys. Status Solidi RRL, 2019, 13(6): 1800658.

doi: 10.1002/pssr.201800658
[1] Lei Chen, Wen Zhao, Gangji Yi, Jianjun Zhou, Aihua Yua. Single-Ion Magnets Based on 3d Transition Metal [J]. Progress in Chemistry, 2019, 31(2/3): 337-350.
[2] Wenjie Zhu, Guoan Tai, Xufeng Wang, Qilin Gu, Zenghui Wu, Kongjun Zhu. Fabrication and Strain Sensing Properties of Two-Dimensional Atomic Crystal Materials [J]. Progress in Chemistry, 2017, 29(11): 1285-1296.
[3] Zeng Tian, You Yuncheng, Wang Xufeng, Hu Tingsong, Tai Guoan. Chemical Vapor Deposition and Device Application of Two-Dimensional Molybdenum Disulfide-Based Atomic Crystals [J]. Progress in Chemistry, 2016, 28(4): 459-470.
[4] You Yuncheng, Zeng Tian, Liu Jinsong, Hu Tingsong, Tai Guoan. Chemical Vapor Deposition and Application of Graphene-Like Tungsten Disulfide [J]. Progress in Chemistry, 2015, 27(11): 1578-1590.
[5] . 3d-4f Single Molecule-Magnets [J]. Progress in Chemistry, 2010, 22(09): 1709-1719.
[6] Xinbing Chen,Zhongwei An*. Recent Progress on TV-Liquid Crystal Materials [J]. Progress in Chemistry, 2006, 18(0203): 246-251.
[7] Wang Shutao,Zhang Zude*. Preparation of Titanium Nitride by Chemical Vapor Deposition [J]. Progress in Chemistry, 2003, 15(05): 374-.
[8] Cui Xiaoli,Jiang Zhiyu**. Advances in Preparation of the Films of TiO2 [J]. Progress in Chemistry, 2002, 14(05): 325-.