中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (10): 2040-2053 Previous Articles   Next Articles

• Review •

Natural Origins, Formation Mechanisms, and Fate of Environmental Perchlorate

Fang Qile, Chen Baoliang*   

  1. Department of Environmental Science, Zhejiang University, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
  • Received: Revised: Online: Published:
PDF ( 1055 ) Cited
Export

EndNote

Ris

BibTeX

Perchlorate (ClO4-) as an emerging trace pollutant, has caused a great concern about its environmental pollution problems. The natural origin of ClO4- as well as its formation mechanisms is a new research focus. In order to establish new environmental quality standards and safety concentration limits of ClO4-, it is quite important to recognize its natural origins, background concentrations, transport and fate in various environmental media, but few researches were reported in China. In this paper, the background concentration levels of ClO4- in tropospheric and stratospheric aerosol, atmospheric wet deposition (rain and snow), groundwater, seawater, soil and minerals are summarized. The data for ClO4- concentrations in the aerosol were very limited, such as 0.5-5 ppt in the stratospheric aerosol, <1.8 ng/m3 (Japan) and~5.0 ng/m3 (China) in the tropospheric aerosol. The ClO4- concentrations in rain were ND-24 400 ng/L for more than 1 600 samples, and 1-18 ng/L in Arctic snow. The ClO4- concentrations in groundwater were widely investigated in USA, and recently, some data were reported for China, Germany and India, which were mainly pooled in 10-1-102 μg/L for more than 2 100 samples. The reported ClO4- concentrations in sea water were 0.16-6.11 μg/L. As a dominant natural origin, the atmospheric reaction mechanisms (i.e., ozone oxidations, photochemical reactions, and lightning effects) and precursors of ClO4- are highlighted. It is believed that the species of ClO2-/ ClO2 is a critical precursor for the formation of natural ClO4- at the atmosphere. The transport, fate, and biogeochemical cycling of natural ClO4- in the environments are described in details. The isotope tracer approaches for identification of natural source of ClO4- are briefly introduced. The research trends and currently existing problems are prospected. Contents 1 Introduction
2 The natural origins and background concentrations of ClO4-
2.1 Aerosol
2.2 Atmospheric wet deposition
2.3 Groundwater
2.4 Sea water
2.5 Soil (minerals)
3 The precursors and formation mechanisms of natural ClO4-
3.1 Precursors and oxidants
3.2 Reaction mechanisms
4 The transport and fate of natural ClO4-
5 The isotope tracer approaches for identification of natural source of ClO4-
6 Perspectives

CLC Number: 

[1] Kirk A B. Anal. Chim. Acta, 2006, 567: 4-12
[2] 秦娟(Qin J), 李琴(Li Q), 张金良(Zhang J L), 林海鹏(Lin H P), 于云江(Yu Y J), 史亚利(Shi Y L), 车飞(Che F), 王红梅(Wang H M). 环境与健康杂志(J. Environ. Health), 2010, 27(11): 970-973
[3] McDougal J N, Jones K L, Fatuyi B, Gray K J, Blount B C, Valentin-Blasini L, Fisher J W. J. Toxicol. Env. Heal. A, 2011, 74: 917-926
[4] Motzer W E. Environ. Forensics, 2001, 2: 301-311
[5] Coates J D, Achenbach L A. Nature Microbiology, 2004, 2: 569-580
[6] Kirk A B, Smith E E, Tian K, Anderson T A, Dasgupta P K. Environ. Sci. Technol., 2003, 37: 4979-4981
[7] Charnley G. Food Chem. Toxicol., 2008, 46: 2307-2315
[8] Srinivasan A, Viraraghavan T. Int. J. Environ. Res., 2009, 6: 1418-1442
[9] 蔡贤雷(Cai X L), 谢寅峰(Xie Y F), 刘伟龙(Liu W L), 邓伟(Deng W). 生态学报(Acta Ecologica Sinica), 2008, 28(11): 5592-5600
[10] 孙剑辉(Sun J H), 李成杰(Li C J), 刘浩(Liu H), 孙胜鹏(Sun S P), 范貌宏(Fan M H), 王国良(Wang G L). 环境工程学报(Chinese J. Environ. Engineering), 2008, 2(4): 461-465
[11] 姜苏(Jiang S), 李院生(Li Y S), 马红梅(Ma H M), 安春雷(An C L). 地球科学进展(Advances in Earth Science), 2010, 25(6): 617-623
[12] 方齐乐(Fang Q L), 陈宝梁(Chen B L). 环境科学学报(Acta Scientiae Circumstantiae), 2011, 31(8): 1569-1579
[13] Smith P N, Yu L, McMurry S T, Anderson T A. Environ. Pollut., 2004, 132: 121-127
[14] Krynitsky A J, Niemann R A, Nortrup D A. Anal. Chem., 2004, 76: 5518-5522
[15] Valentin-Blasini L, Mauldin J, Maple D, Blount B C. Anal. Chem., 2005, 77: 2475-2481
[16] Sanchez C A, Crump K S, Krieger R I, Khandaker N R, Gibbs J P. Environ. Sci. Technol., 2005, 39(24): 9391-9397
[17] Dyke J V, Ito K, Obitsu T, Hisamatsu Y, Dasgupta P K, Blount B C. Environ. Sci. Technol., 2007, 41: 88-92
[18] Zhang T, Wu Q, Sun H W, Rao J, Kannan K. Environ. Sci. Technol., 2010, 44: 6947-6953
[19] 刘勇建(Liu Y J), 牟世芬(Mou S F), 林爱武(Lin A W), 崔建华(Cui J H), 杜兵(Du B). 环境科学(Environ. Sci. ), 2004, 25(2): 51-55
[20] 张萍(Zhang P), 史亚利(Shi Y L), 蔡亚岐(Cai Y Q), 牟世芬(Mou S F). 分析测试学报(Journal of Instrumental Analysis), 2007, 2(5): 690-693
[21] 史亚利(Shi Y L), 高健民(Gao J M), 李鑫(Li X), 阮挺(Ruan T), 蔡亚岐(Cai Y Q). 环境化学(Environ. Chem. ), 2010, 29(3): 388-391
[22] Duncan P B, Morrison R D, Vavricka E. Environ. Forensics, 2005, 6: 205-215
[23] Wilkin R T, Fine D D, Burnett N G. Environ. Sci. Technol., 2007, 41: 3966-3971
[24] Susarla S, Collette T W, Garrison A W, Wolfe N L, Mccutcheon S C. Environ. Sci. Technol., 1999, 33(19): 3469-3472
[25] Dasgupta P K, Dyke J V, Kirk A B, Jackson W A. Environ. Sci. Technol., 2006, 40: 6608-6614
[26] Rajagopalan S, Anderson T A, Fahlquist L, Rainwater K A, Ridley M, Jackson W A. Environ. Sci. Technol., 2006, 40: 3156-3162
[27] Plummer L N, Bohlke J K, Doughten M W. Environ. Sci. Technol., 2006, 40: 1757-1763
[28] Dasgupta P K, Martinelango P K, Jackson W A, Anderson T A, Tian K, Tock R W, Rajagopalan S T. Environ. Sci. Technol., 2005, 39: 1569-1575
[29] Rao B, Anderson T A, Orris G, Rainwater K A, Rajagopalan S, Sandvig R M, Scanlon B R, Stonestrom D A, Walvoord M A, Jackson W A. Environ. Sci. Technol., 2007, 41: 4522-4528
[30] Furdui V, Tomassini F. Environ. Sci. Technol., 2010, 44: 588-592
[31] Jackson W A, Bohlke J K, Gu B, Hatzinger P B, Sturchio N C. Environ. Sci. Technol., 2010, 44: 4869-4876
[32] 蔡亚岐(Cai Y Q), 史亚利(Shi Y L), 张萍(Zhang P), 牟世芬(Mou S F), 江桂斌(Jiang G B). 化学进展(Progress in Chemistry), 2006, 18(11): 1554-1564
[33] 陈桂葵(Chen G K), 杨杰峰(Yang J F), 黎华寿(Li H S), 骆世明(Luo S M). 生态学报(Acta Ecologica Sinica), 2010, 30(15): 4144-4153
[34] 金军(Jin J), 常瀛月(Chang Y Y), 丁问微(Ding W W), 法经纬(Fa J W), 黄娟(Huang J), 王月(Wang Y), 李旭光(Li X G). 分析测试学报(Journal of Instrumental Analysis), 2010, 29(9): 974-977
[35] 谭敏卿(Tan M Q), 赵雪松(Zhao X S), 尤宏(You H), 王树涛(Wang S T),苏怀龙(Su H L). 环境科学与管理(Environmental Science and Management), 2011, 36(9): 45-48
[36] Becking L G M B, Haldane A D, Izard D. Nature, 1958, 4636: 645-647
[37] Greenhalgh R, Riley J P. Nature, 1960, 4743: 1107-1108
[38] Loach K W. Nature, 1962, 199: 754-755
[39] Beckurts H. Archiv der Pharmazie, 1886, 224: 333-337
[40] Ericksen G E. American Scientist, 1983, 71(4): 366-374
[41] EPA. Interim Drinking Water Health Advisory for Perchlorate, (2008-12).. http: //www. epa. gov/waterscience/
[42] Shi Y, Zhang N, Gao J, Li X, Cai Y. Atmos. Environ., 2011, 45: 1323-1327
[43] Jaeglé L, Yung Y L, Toon G C, Sen B, Blavier J F. Geophys. Res. Lett., 1996, 23(14): 1749-1752
[44] Murphy D M, Thomson D S. Geophys. Res. Lett., 2000, 27(19): 3217-3220
[45] Handa D, Okada K, Nakajima H, Arakaki T. Earozoru Kenkyu, 2010, 25(3): 269-273
[46] Barron L, Nesterenko P N, Paull B. Anal. Chim. Acta, 2006, 567: 127-134
[47] Parker D R, Seyfferth A L, Reese B K. Environ. Sci. Technol., 2008, 42: 1465-1471
[48] Rajagopalan S, Anderson T, Cox S, Harvey G, Cheng Q, Jackson W A. Environ. Sci. Technol., 2009, 43: 616-622
[49] Rao B, Mohan S, Neuber A, Jackson W A. Water Air Soil Poll., 2012, 223: 275-287
[50] California Department of Water Resources, 1957. Bulletin No. 66. State of California, Department of Water Resources, Division of Resources Planning, Sacramento, California.
[51] Bohlke J K, Hatzinger P B, Sturchio N C, Gu B, Abbene I, Mroczkowski S J. Environ. Sci. Technol., 2009, 43: 5619-5625
[52] Jackson W A, Anandam K, Lehman T, Rainwater K, Rajagopalan S, Ridley M, Tock R. Ground Water Monit. R., 2005, 25(1): 137-149
[53] Wu Q, Zhang T, Sun H, Kannan K. Arch. Environ Contam. Toxicol., 2010, 58: 543-550
[54] Scheytt T J, Freywald J, Ptacek C J. Grundwasser-Zeitschrift der Fachsektion Hydrogeologie., 2011, 16: 37-43
[55] Sturchio N C, Caffee M, Beloso A D, Heraty L J, Bohlke J K, Hatzinger P B, Jackson W A, Gu B, Heikoop J M, Dale M. Environ. Sci. Technol., 2009, 43: 6934-6938
[56] Fram M S, Belitz K. Environ. Sci. Technol., 2011, 45: 1271-1277
[57] 崔建华(Cui J H), 林爱武(Lin A W), 杜兵(Du B), 牟世芬(Mou S F). 现代科学仪器(Modern Scientific Instruments), 2004, 6: 51-52
[58] Kannan K, Praamsma M L, Oldi J F, Tatsuya K, Sinaha R K. Chemosphere, 2009, 76: 22-26
[59] Martinelango P K, Tian K, Dasgupta P K. Anal. Chim. Acta, 2006, 567: 100-107
[60] Her N, Jeong H, Kim J, Yoon Y. Arch. Environ. Contam. Toxicol., 2011, 64: 166-172
[61] Kounaves S P, Stroble S T, Anderson R M, Moore Q, Catling D C, Douglas S, Mckay C P, Ming D W, Smith P H, Tamppari L K, Zent A P. Environ. Sci. Technol., 2010, 44: 2360-2364
[62] Michalski G, Bohlke J K, Thiemens M. Geochimi. Cosmochim. Acta, 2004, 68(20): 4023-4038
[63] Urbansky E T, Brown S K, Magnuson M L, Kelty C A. Environ Pollut., 2001, 112: 299-302
[64] Orris G J, Harvey G J, Tsui D T, Eldrige J E. USGS, 2003, Open-File Report 03-314
[65] Hecht M H. Science, 2009, 325(64): 64-67
[66] Catling D C, Claire M W, Zahnle K J, Quinn R C, Clark B C, Hecht M H, Kounaves S. J. Geophys. Res., 2010, 115: art. no. E00E11
[67] 方贤达(Fang X D). 无机盐工业(Inorganic Chemicals Industry), 1983, 7: 22-27
[68] Gu B. Perchlorate: Environmental Occurrence, Interactions and Treatment. USA: Springer, 2006. 19
[69] Rao B, Anderson T A, Redder A, Jackson W A. Environ. Sci. Technol., 2010, 44: 2961-2967
[70] Kang N, Anderson T A, Jackson W A. Anal. Chim. Acta, 2006, 567: 48-56
[71] Cox R A, Hayman G D. Nature, 1988, 332(28): 796-800
[72] Vaida V, Solomon S, Richard E C, Ruhl E, Jefferson A. Nature, 1989, 342(23): 405-408
[73] Dunn R C, Anderson J L, Foote C S, Simon J D. J. Am. Chem. Soc., 1993, 115: 5307-5307
[74] Kang N, Jackson W A, Dasgupta P K, Anderson T A. Sci. Total Environ., 2008, 405: 301-309
[75] Kang N, Anderson T A, Rao B, Jackson W A. Environ. Chem., 2009, 6: 53-59
[76] 马金珠(Ma J Z), 刘永春(Liu Y C), 马庆鑫(Ma Q X), 刘畅(Liu C), 贺泓(He H). 环境化学(Environ. Chem. ), 2011, 30(1): 97-119
[77] Schuttlefield J D, Sambur J B, Gelwicks M, Eggleston C M, Parkinson B A. J. Am. Chem. Soc., 2011, 133: 17521-17523
[78] Galloway J N, Dentener F J, Capone D G, Boyer E W, Howarth R W, Seitzinger S P, Asner G P, Cleveland C C, Green P A, Holland E A, Karl D M, Michaels A F, Porter J H, Townsend A R, Vorosmarty C J. Biogeochemistry, 2004, 70: 153-226
[79] Rao B A, Wake C P, Anderson T, Jackson W A. Water Air Soil Pollut., 2012, 223: 181-188
[80] Parthiban S, Raghunandan B N, Sumathi R. Chem. Phys., 1995, 199: 183-193
[81] Graedel T E, Keene W C. Pure & Appl. Chem., 1996, 68(9): 1689-1697
[82] Winterton N. Green Chem., 2000, 2: 173-225
[83] McCormick M P, Thomason L W, Trepte C R. Nature, 1995, 373(2): 399-404
[84] Tabazadeh A, Turco R P. Science, 1993, 260(5111): 1082-1086
[85] Aken B V, Schnoor J L. Environ. Sci. Technol., 2002, 36: 2783-2788
[86] Keppler F, Eiden R, Niedan V, Pracht J, Schole H F. Nature, 2000, 403: 298-301
[87] Myneni S C B. Science, 2002, 295: 1039-1041
[88] Miller M F. Geochimi. Cosmochim. Acta, 2002, 66(11): 1881-1889
[89] Thiemens M H, Heidenreich J E. Science, 1983, 219: 1073-1075
[90] Bao H, Gu B. Environ. Sci. Technol., 2004, 38: 5073-5077
[91] Bohlke J K, Sturchio N C, Gu B, Horita J, Brown G M, Jackson W A, Batista J, Hatzinger P B. Anal. Chem., 2005, 77: 7838-7842
[92] Motzer W E, Mohr T K G, McCraven S, Stanin P. Environ. Forensics, 2006, 7: 89-100
[93] Blinov A, Massonet S, Sachsenhauser H, Stan-Sion C, Lazarev V, Beer J, Synal H A, Kaba M, Masarik J, Nolte E. Nucl. Instrum. Meth. B, 2000, 172: 537-544
[1] Yongdong Xu, Zhidan Liu. Formation Mechanism and Resource Recovery Perspectives of Aqueous Phase from Hydrothermal Liquefaction of Biomass [J]. Progress in Chemistry, 2021, 33(11): 2150-2162.
[2] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[3] Yangrong Yao, Suyuan Xie. Structures and Progress of Carbon Clusters [J]. Progress in Chemistry, 2019, 31(1): 50-62.
[4] Lijuan Jin, Baoliang Chen*. Natural Origins, Concentration Levels, and Formation Mechanisms of Organohalogens in the Environment [J]. Progress in Chemistry, 2017, 29(9): 1093-1114.
[5] Dewen Han, Xintong Wang, Fashuai Ju, Yangjun Wang, Jialiang Feng, Wu Wang. Organosulfates in PM2.5 [J]. Progress in Chemistry, 2017, 29(5): 530-538.
[6] Wang Jing, Fan Haowen, Zhang He, Chen Qun, Liu Yi, Ma Weihua. Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes [J]. Progress in Chemistry, 2016, 28(2/3): 284-295.
[7] Zhan Hao, Zhang Xiaohong, Yin Xiuli, Wu Chuangzhi. Formation of Nitrogenous Pollutants during Biomass Thermo-Chemical Conversion [J]. Progress in Chemistry, 2016, 28(12): 1880-1890.
[8] Guo Huihui, Miao Nana, Li Tengfei, Hao Jun, Gao Yuan, Zhang Jianjun. Pharmaceutical Coamorphous——A Newly Defined Single-Phase Amorphous Binary System [J]. Progress in Chemistry, 2014, 26(0203): 478-486.
[9] Zhu Xufei, Han Hua, Qi Weixing, Lu Chao, Jiang Longfei, Duan Wenqiang. Theoretical Foundation and Limitation of Two-Step Anodizing Technology [J]. Progress in Chemistry, 2012, 24(11): 2073-2086.
[10] Li Xiangzi, Wei Xianwen. Fabrication, Formation Mechanisms and Potential Applications of Magnetic Metal Nanotubes [J]. Progress in Chemistry, 2012, 24(11): 2143-2157.
[11] Ma Ye, Chen Jianmin, Wang Lin. Characteristics and Formation Mechanisms of Atmospheric Organosulfates [J]. Progress in Chemistry, 2012, 24(11): 2277-2286.
[12] Zhang Zhilei, Wang Zhining, Gao Xueli, Gao Congjie. Progress in Supported Phospholipid Bilayers [J]. Progress in Chemistry, 2012, 24(05): 852-862.
[13] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.
[14] Lei Jinhua Wang Honghua Li Dongliang Zhou Guangyuan. Development of Two-Staged Seeded Swelling Polymerization [J]. Progress in Chemistry, 2009, 21(6): 1287-1291.
[15] . Advances in the Mechanism of Secondary Fine Particulate Matters Formation [J]. Progress in Chemistry, 2009, 21(0203): 288-296.