中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (5): 627-641 DOI: 10.7536/PC190917 Previous Articles   Next Articles

• Review •

Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere

Yujue Wang1, Min Hu1,2,**(), Xiao Li1, Nan Xu1   

  1. 1.State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
    2.Beijing Innovation Center for Engineering Sciences and Advanced Technology, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
  • Contact: Min Hu
  • About author:
    ** e-mail:
  • Supported by:
    National Natural Science Foundation of China(91844301); National Natural Science Foundation of China(91544214); National Research Program for Key Issues in Air Pollution Control(DQGG0103); China Postdoctoral Science Foundation(2019M650354)
Richhtml ( 109 ) PDF ( 2331 ) Cited
Export

EndNote

Ris

BibTeX

Particulate brown carbon(BrC) has strong wavelength dependence with absorption increasing sharply from visible to UV ranges and has attracted much attention due to its significant climate effects. The composition, sources, evolution and optical properties of BrC remain highly uncertain, which contributes significantly to the uncertainty in estimating aerosol radiation forcing by climate models. The chemical compositions, sources and formation pathways of particulate BrC in the atmosphere are summarized in this review, which focuses on the relationship between molecular-level compositions, secondary formation mechanisms and light absorption properties. Particulate BrC are classfied into several major compound categories, including methanol soluble organic carbon(MSOC), water soluble fractions WSOC(Water Soluble Organic Carbon) and HULIS-C(Carbon Component of HUmic-like Substances). Nitroaromatic compounds(NACs) and N-heterocyclic compounds are major BrC chromophores. The sources of BrC include primary emissions from inefficient combustion, especially biomass burning, and secondary formation via the oxidation of volatile organic compounds(VOCs) in gas and particle phases. Secondary formation pathways include oxidation of aromatics and reactions between carbonyls and ammonia/amines. Oxidation of anthropogenic aromatic hydrocarbons in the presence of NOx produces BrC dominated by nitrogen-containing organic compounds(e.g. NACs). Reactions between carbonyls and ammonia/amines generate BrC dominated by N-heterocyclic compounds and oligomers. Precursors and reaction conditions are important factors influencing the compositions and light absorption of secondary BrC. The chromophores would go through decomposition and BrC light absorption would change rapidly during transport in the atmosphere, which is usually named photobleaching. Molecular-level identification of BrC chromophores and further understanding on the secondary formation mechanisms and atmospheric evolution of BrC are required in future studies.

Contents

1 Introduction

2 Measurements of BrC

3 Chemical composition of BrC

3.1 Major compound categories

3.2 Molecular compositions

4 Sources of BrC

4.1 Source apportionment

4.2 Biomass burning emissions

5 Secondary formation pathways of BrC

5.1 BrC from oxidation of anthropogenic aromatic precursors

5.2 BrC from reactions between carbonyls and ammonia/amines

5.3 Atmospheric aging of BrC

6 Conclusion and outlook

Fig. 1 Classification and molecular composition of carbonaceous aerosol components[4]
Fig. 2 The observed concentrations of carbon component of HUmic-LIke Substances(HULIS-C), water soluble organic carbon(WSOC) and their ratios in different atmospheric environments[46, 48~76].The concentrations in Asia correspond to the right axis and others correspond to the left axis. Gray, green and blue backgrounds demote the urban site, rural/suburban site and clean site, respectively. The clean site include mountain/highland site, marine and Arctic sites. The markers “sp”, “su”, “a”, “w” and “y” in parentheses represent the studies conducted in spring, summer, autumn, winter or yearly round, respectively. The site names marked by “*” are reported in this study
Table 1 List of nitrogen-containing organic compounds contributing to the light absorption by particulate BrC
Formula Sources ref Formula Sources ref
Oxidation of
aromatic VOCs
Biomass burning MG+AS a Biomass burning MG+AS a
C5H4N2O5 21 C13H13NO3 84
C6H3N3O7 21 C13H13NO4 86
C6H4N2O5 21 C15H23N3O2 91
C6H4N2O6 21, 92 C16H9NO3 84
C6H5NO2 21 C17H11N 86
C6H5NO3 17, 21, 85, 87, 90, 92 C18H27NO5 84
C6H5NO4 17, 84, 85, 87, 90, 92 C21H11N 84, 86
C6H5NO5 84~86, 92 C21H13N 84
C6H6N2O6 21 C22H34N2O6 84
C7H4N2O6 21 C23H13N 84
C7H4N2O7 21 C23H31NO4 84
C7H5NO6 21 C27H39NO2 84
C7H6N2O6 21, 92 C48H66N4O4 84
C7H7NO2 21 C6H7NO2 88
C7H7NO3 17, 21, 85, 87, 90~92 C6H8N2 88
C7H7NO4 17, 21, 84~87, 90~92 C6H8N2O 88
C7H7NO5 21, 84, 85, 87, 92 C6H9NO3 88
C7H8N2O7 21 C7H10N2O 88
C7H9NO5 21 C8H10N2O 88
C8H7NO4 17, 84, 86, 92 C8H11NO 88
C8H8N2O5 21 C8H11NO3 88
C8H9NO4 85~87, 92 C8H12N2O 88
C8H9NO5 17, 84~87, 92 C8H7NO2 88
C8H13NO8 21 C9H11N3 88
C9H9NO4 17, 85, 87, 92 C9H11N3O 88
C10H7NO4 92 C9H11NO3 88
C5H4N2O3 85 C9H12N2O 88
C5H5NO4 85 C9H9NO3 88
C6H4N2O5 85, 90 C10H11NO2 88
C6H6N2O3 85 C10H13N3O 88
C7H5NO5 85, 91, 92 C10H14N2O4 88
C7H6N2O5 85 C11H14N2O3 88
C8H5NO4 85 C11H14N2O4 88
C8H7NO3 84, 87 C11H15NO6 88
C8H8N2O5 85 C11H17N3O3 88
C8H9NO3 85, 91 C12H14N2O3 88
C9H11NO4 85, 86, 88 C12H14N2O4 88
C9H7NO3 84 C12H15N3O3 88
C9H7NO4 84, 85 C12H16N2O4 88
C9H9NO5 85 C12H16N2O5 88
C10H10N2O7 85 C13H16N2O2 88
C10H11NO4 85 C13H17N3O3 88
C10H11NO5 85, 86 C13H18N2O6 88
C10H13NO4 86 C14H16N2O2 88
C10H7NO3 84~86, 92 C14H17N3O3 88
C10H7NO5 85 C15H17N3O3 88
C10H8N2O3 85 C15H19NO6 88
C10H9NO5 85 C15H21N3O6 88
C11H11NO4 85 C15H21NO7 88
C11H13NO4 86 C17H19NO5 88
C11H13NO5 86 C17H20N2O6 88
C11H9NO3 84 C17H20N2O7 88
C12H11NO3 84 C18H23N3O5 88
Fig. 3 Secondary formation pathways of nitroaromatic compounds in gas and particle phases[24, 25, 111~114]
Fig. 4 Proposed reaction pathways for the formation of imidazole and other N-heterocyclic compounds in the glyoxal/ammonium sulfate system[128,129,130]
Fig. 5 The research framework of brown carbon
[1]
Andreae M O, Gelencsér A. Atmos. Chem. Phys., 2006,6:3131. http://www.atmos-chem-phys.net/6/3131/2006/

doi: 10.5194/acp-6-3131-2006
[2]
Laskin A, Laskin J, Nizkorodov S A. Chem. Rev., 2015,115:4335. https://pubs.acs.org/doi/10.1021/cr5006167

doi: 10.1021/cr5006167
[3]
Moise T, Flores J M, Rudich Y. Chem. Rev., 2015,115:4400. https://pubs.acs.org/doi/10.1021/cr5005259

doi: 10.1021/cr5005259
[4]
Poschl U. Anal. Bioanal. Chem., 2003,375:30. http://link.springer.com/10.1007/s00216-002-1611-5

doi: 10.1007/s00216-002-1611-5
[5]
Alexander D T, Crozier P A, Anderson J R. Science, 2008,321:833. https://www.sciencemag.org/lookup/doi/10.1126/science.1155296

doi: 10.1126/science.1155296
[6]
Jo D S, Park R J, Lee S, Kim S W, Zhang X. Atmos. Chem. Phys., 2016,16:3413. https://www.atmos-chem-phys.net/16/3413/2016/

doi: 10.5194/acp-16-3413-2016
[7]
Feng Y, Ramanathan V, Kotamarthi V R. Atmos. Chem. Phys., 2013,13:8607. http://dx.doi.org/10.5194/acp-13-8607-2013

doi: 10.5194/acp-13-8607-2013
[8]
Wang X, Heald C L, Liu J, Weber R J, Campuzano-Jost P, Jimenez J L, Schwarz J P, Perring A E. Atmos. Chem. Phys., 2018,18:635. https://www.atmos-chem-phys.net/18/635/2018/

doi: 10.5194/acp-18-635-2018
[9]
Zhang Y, Forrister H, Liu J, Dibb J, Anderson B, Schwarz J P, Perring A E, Jimenez J L, Campuzano-Jost P, Wang Y, Nenes A, Weber R J. Nature Geosci., 2017,10:486. http://www.nature.com/articles/ngeo2960

doi: 10.1038/ngeo2960
[10]
Liu J, Scheuer E, Dibb J, Ziemba L D, Thornhill K L, Anderson B E, Wisthaler A, Mikoviny T, Devi J J, Bergin M, Weber R J. Geophys. Res. Lett., 2014,41:2191. http://doi.wiley.com/10.1002/2013GL058976

doi: 10.1002/2013GL058976
[11]
Park R J, Kim M J, Jeong J I, Youn D, Kim S. Atmos. Environ., 2010,44:1414. https://linkinghub.elsevier.com/retrieve/pii/S1352231010001019

doi: 10.1016/j.atmosenv.2010.01.042
[12]
Gustafsson O, Krusa M, Zencak Z, Sheesley R J, Granat L, Engstrom E, Praveen P S, Rao P S, Leck C, Rodhe H. Science, 2009,323:495. https://www.sciencemag.org/lookup/doi/10.1126/science.1164857

doi: 10.1126/science.1164857
[13]
Menon S, Hansen J, Nazarenko L, Luo Y. Science, 2002,297:2250. https://www.sciencemag.org/lookup/doi/10.1126/science.1075159

doi: 10.1126/science.1075159
[14]
Ramanathan V, Crutzen P J, Kiehl J T, Rosenfeld D. Science, 2001,294:2119. https://www.sciencemag.org/lookup/doi/10.1126/science.1064034

doi: 10.1126/science.1064034
[15]
Ramanathan V, Ramana M V, Roberts G, Kim D, Corrigan C, Chung C, Winker D. Nature, 2007,448:575. https://doi.org/10.1038/nature06019

doi: 10.1038/nature06019
[16]
Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl J T, Washington W M, Fu Q, Sikka D R, Wild M. Proc. Natl. Acad. Sci. U. S. A., 2005,102:5326. http://www.pnas.org/cgi/doi/10.1073/pnas.0500656102

doi: 10.1073/pnas.0500656102
[17]
Bluvshtein N, Lin P, Flores J M, Segev L, Mazar Y, Tas E, Snider G, Weagle C, Brown S S, Laskin A, Rudich Y. J. Geophys. Res. [Atmos.], 2017,122:5441.
[18]
Liu J, Scheuer E, Dibb J, Diskin G S, Ziemba L D, Thornhill K L, Anderson B E, Wisthaler A, Mikoviny T, Devi J J, Bergin M, Perring A E, Markovic M Z, Schwarz J P, Campuzano-Jost P, Day D A, Jimenez J L, Weber R J. Atmos. Chem. Phys., 2015,15:7841. https://www.atmos-chem-phys.net/15/7841/2015/

doi: 10.5194/acp-15-7841-2015
[19]
Washenfelder R A, Attwood A R, Brock C A, Guo H, Xu L, Weber R J, Ng N L, Allen H M, Ayres B R, Baumann K, Cohen R C, Draper D C, Duffey K C, Edgerton E, Fry J L, Hu W W, Jimenez J L, Palm B B, Romer P, Stone E A, Wooldridge P J, Brown S S. Geophys. Res. Lett., 2015,42:653. http://doi.wiley.com/10.1002/2014GL062444

doi: 10.1002/2014GL062444
[20]
Liu J, Lin P, Laskin A, Laskin J, Kathmann S M, Wise M, Caylor R, Imholt F, Selimovic V, Shilling J E. Atmos. Chem. Phys., 2016,16:12815. https://www.atmos-chem-phys.net/16/12815/2016/

doi: 10.5194/acp-16-12815-2016
[21]
Lin P, Liu J, Shilling J E, Kathmann S M, Laskin J, Laskin A. Phys. Chem. Chem. Phys., 2015,17:23312. http://xlink.rsc.org/?DOI=C5CP02563J

doi: 10.1039/C5CP02563J
[22]
Gelencsér A, Hoffer A, Kiss G, Tombácz E, Kurdi R, Bencze L. J. Atmos. Chem., 2003,45:25. http://www.springerlink.com/content/l461j77052476248/

doi: 10.1023/A:1024060428172
[23]
Graber E R, Rudich Y. Atmos. Chem. Phys., 2006,6:729. http://www.atmos-chem-phys.net/6/729/2006/

doi: 10.5194/acp-6-729-2006
[24]
Vidovic K, Lasic Jurkovic D, Sala M, Kroflic A, Grgic I. Environ. Sci. Technol., 2018,52:9722. https://pubs.acs.org/doi/10.1021/acs.est.8b01161

doi: 10.1021/acs.est.8b01161
[25]
Frka S, Sala M, Kroflic A, Hus M, Cusak A, Grgic I. Environ. Sci. Technol., 2016,50:5526. https://pubs.acs.org/doi/10.1021/acs.est.6b00823

doi: 10.1021/acs.est.6b00823
[26]
Zhao R, Lee A K Y, Huang L, Li X, Yang F, Abbatt J P D. Atmos. Chem. Phys., 2015,15:6087. https://www.atmos-chem-phys.net/15/6087/2015/

doi: 10.5194/acp-15-6087-2015
[27]
Forrister H, Liu J, Scheuer E, Dibb J, Ziemba L, Thornhill K L, Anderson B, Diskin G, Perring A E, Schwarz J P, Campuzano-Jost P, Day D A, Palm B B, Jimenez J L, Nenes A, Weber R J. Geophys. Res. Lett., 2015,42:4623. https://onlinelibrary.wiley.com/toc/19448007/42/11

doi: 10.1002/grl.v42.11
[28]
Wong J P S, Nenes A, Weber R J. Environ. Sci. Technol., 2017,51:8414. https://pubs.acs.org/doi/10.1021/acs.est.7b01739

doi: 10.1021/acs.est.7b01739
[29]
Sengupta D, Samburova V, Bhattarai C, Kirillova E, Mazzoleni L, Iaukea-Lum M, Watts A, Moosmüller H, Khlystov A. Atmos. Chem. Phys., 2018,18:10849. https://www.atmos-chem-phys.net/18/10849/2018/

doi: 10.5194/acp-18-10849-2018
[30]
Wu G M, Cong Z Y, Kang S C, Kawamura K, Fu P Q, Zhang Y L, Wan X, Gao S P, Liu B. Adv. Climate Change Res., 2016,7:82. https://linkinghub.elsevier.com/retrieve/pii/S1674927816300302

doi: 10.1016/j.accre.2016.06.002
[31]
Yan J, Wang X, Gong P, Wang C, Cong Z. Sci. Total Environ., 2018,634:1475. https://linkinghub.elsevier.com/retrieve/pii/S0048969718312476

doi: 10.1016/j.scitotenv.2018.04.083
[32]
Hansen A D A, Rosen H, Novakov T. Sci. Total Environ., 1984,36:191. https://linkinghub.elsevier.com/retrieve/pii/0048969784902651

doi: 10.1016/0048-9697(84)90265-1
[33]
Liu S, Aiken A C, Gorkowski K, Dubey M K, Cappa C D, Williams L R, Herndon S C, Massoli P, Fortner E C, Chhabra P S, Brooks W A, Onasch T B, Jayne J T, Worsnop D R, China S, Sharma N, Mazzoleni C, Xu L, Ng N L, Liu D, Allan J D, Lee J D, Fleming Z L, Mohr C, Zotter P, Szidat S, Prevot A S H. Nat. Commun., 2015,6:8435. https://doi.org/10.1038/ncomms9435

doi: 10.1038/ncomms9435
[34]
Lack D A, Langridge J M, Bahreini R, Cappa C D, Middlebrook A M, Schwarz J P. Proc. Natl. Acad. Sci. U. S. A., 2012,109:14802. http://www.pnas.org/cgi/doi/10.1073/pnas.1206575109

doi: 10.1073/pnas.1206575109
[35]
Lack D A, Bahreini R, Langridge J M, Gilman J B, Middlebrook A M. Atmos. Chem. Phys., 2013,13:2415. http://dx.doi.org/10.5194/acp-13-2415-2013

doi: 10.5194/acp-13-2415-2013
[36]
Saleh R, Hennigan C J, McMeeking G R, Chuang W K, Robinson E S, Coe H, Donahue N M, Robinson A L. Atmos. Chem. Phys., 2013,13:7683. http://dx.doi.org/10.5194/acp-13-7683-2013

doi: 10.5194/acp-13-7683-2013
[37]
Lack D A, Langridge J M. Atmos. Chem. Phys., 2013,13:10535. http://dx.doi.org/10.5194/acp-13-10535-2013

doi: 10.5194/acp-13-10535-2013
[38]
Yang M, Howell S G, Zhuang J, Huebert B J. Atmos. Chem. Phys., 2009,9:2035. https://www.atmos-chem-phys.net/9/2035/2009/

doi: 10.5194/acp-9-2035-2009
[39]
Varga B, Kiss G, Ganszky I, Gelencser A, Krivacsy Z. Talanta, 2001,55:561. https://linkinghub.elsevier.com/retrieve/pii/S0039914001004465

doi: 10.1016/S0039-9140(01)00446-5
[40]
Lin P, Huang X F, He L Y, Yu J Z. J. Aerosol Sci., 2010,41:74. https://linkinghub.elsevier.com/retrieve/pii/S002185020900161X

doi: 10.1016/j.jaerosci.2009.09.001
[41]
Liu J, Bergin M, Guo H, King L, Kotra N, Edgerton E, Weber R J. Atmos. Chem. Phys., 2013,13:12389. http://dx.doi.org/10.5194/acp-13-12389-2013

doi: 10.5194/acp-13-12389-2013
[42]
Weber R J, Orsini D, Daun Y, Lee Y N, Klotz P J, Brechtel F. Aerosol Sci. Tech., 2001,35:718. http://www.tandfonline.com/doi/abs/10.1080/02786820152546761

doi: 10.1080/02786820152546761
[43]
Hecobian A, Zhang X, Zheng M, Frank N, Edgerton E S, Weber R J. Atmos. Chem. Phys., 2010,10:5965. https://www.atmos-chem-phys.net/10/5965/2010/

doi: 10.5194/acp-10-5965-2010
[44]
Zhang X, Lin Y H, Surratt J D, Weber R J. Environ. Sci. Technol., 2013,47:3685. https://pubs.acs.org/doi/10.1021/es305047b

doi: 10.1021/es305047b
[45]
Hoffer A, Gelencsér A, Guyon P, Kiss G, Schmid O, Frank G P, Artaxo P, Andreae M O. Atmos. Chem. Phys., 2006,6:3563. http://www.atmos-chem-phys.net/6/3563/2006/

doi: 10.5194/acp-6-3563-2006
[46]
Mo Y, Li J, Jiang B, Su T, Geng X, Liu J, Jiang H, Shen C, Ding P, Zhong G, Cheng Z, Liao Y, Tian C, Chen Y, Zhang G. Environ. Pollut., 2018,239:322. https://linkinghub.elsevier.com/retrieve/pii/S0269749118300101

doi: 10.1016/j.envpol.2018.04.041
[47]
Zheng G, He K, Duan F, Cheng Y, Ma Y. Environ. Pollut., 2013,181:301. http://dx.doi.org/10.1016/j.envpol.2013.05.055

doi: 10.1016/j.envpol.2013.05.055
[48]
Nguyen Q T, Kristensen T B, Hansen A M K, Skov H, Bossi R, Massling A, Sørensen L L, Bilde M, Glasius M, Nøjgaard J K. J. Geophys. Res. [Atmos.], 2014,119:5011.
[49]
Kumar V, Goel A, Rajput P. Atmos. Environ., 2017,164:468. https://linkinghub.elsevier.com/retrieve/pii/S1352231017303886

doi: 10.1016/j.atmosenv.2017.06.008
[50]
Wang Y, Hu M, Lin P, Guo Q, Wu Z, Li M, Zeng L, Song Y, Zeng L, Wu Y, Guo S, Huang X, He L. Environ. Sci. Technol., 2017,51:5951. https://pubs.acs.org/doi/10.1021/acs.est.7b00248

doi: 10.1021/acs.est.7b00248
[51]
Feczko T, Puxbaum H, Kasper-Giebl A, Handler M, Limbeck A, Gelencser A, Pio C, Preunkert S, Legrand M. J. Geophys. Res.-Atmos., 2007, 112: D23S10.
[52]
Baduel C, Voisin D, Jaffrezo J L. Atmos. Chem. Phys., 2010,10:4085. https://www.atmos-chem-phys.net/10/4085/2010/

doi: 10.5194/acp-10-4085-2010
[53]
Chen Q, Ikemori F, Higo H, Asakawa D, Mochida M. Environ. Sci. Technol., 2016,50:1721. https://pubs.acs.org/doi/10.1021/acs.est.5b05277

doi: 10.1021/acs.est.5b05277
[54]
El Haddad I, Marchand N, Temime-Roussel B, Wortham H, Piot C, Besombes J L, Baduel C, Voisin D, Armengaud A, Jaffrezo J L. Atmos. Chem. Phys., 2011,11:2059. http://dx.doi.org/10.5194/acp-11-2059-2011

doi: 10.5194/acp-11-2059-2011
[55]
Emmenegger C, Reinhardt A, Hueglin C, Zenobi R, Kalberer M. Environ. Sci. Technol., 2007,41:2473. https://pubs.acs.org/doi/10.1021/es061095t

doi: 10.1021/es061095t
[56]
Fan X, Song J, Peng P a. Atmos. Res., 2016,172/173:8. https://linkinghub.elsevier.com/retrieve/pii/S0169809516000107

doi: 10.1016/j.atmosres.2015.12.024
[57]
Kiss G, Varga B, Galambos I, Ganszky I. J. Geophys. Res.-Atmos., 2002,107:8339.
[58]
Krivácsy Z, Gelencsér A, Kiss G, Mészáros E, Molnár Á, Hoffer A, Mészáros T, Sárvári Z, Temesi D, Varga B, Baltensperger U, Nyeki S, Weingartner E. J. Atmos. Chem., 2001,39:235. http://www.springerlink.com/content/k64276tl84134h43/

doi: 10.1023/A:1010637003083
[59]
Krivacsy Z, Kiss G, Ceburnis D, Jennings G, Maenhaut W, Salma I, Shooter D. Atmos. Res., 2008,87:1.
[60]
Kuang B Y, Lin P, Huang X H H, Yu J Z. Atmos. Chem. Phys., 2015,15:1995. https://www.atmos-chem-phys.net/15/1995/2015/

doi: 10.5194/acp-15-1995-2015
[61]
Limbeck A, Handler M, Neuberger B, Klatzer B, Puxbaum H. Anal. Chem., 2005,77:7288. https://pubs.acs.org/doi/10.1021/ac050953l

doi: 10.1021/ac050953l
[62]
Lin P, Engling G, Yu J Z. Atmos. Chem. Phys., 2010,10:6487. https://www.atmos-chem-phys.net/10/6487/2010/

doi: 10.5194/acp-10-6487-2010
[63]
Park S S, Son S C. Atmos. Res., 2017,185:73. https://linkinghub.elsevier.com/retrieve/pii/S0169809516305804

doi: 10.1016/j.atmosres.2016.11.005
[64]
Park S, Son S C, Lee S. Atmos. Res., 2018,213:370. https://linkinghub.elsevier.com/retrieve/pii/S0169809518301984

doi: 10.1016/j.atmosres.2018.06.017
[65]
Qiao T, Zhao M, Xiu G, Yu J. Atmos. Environ., 2015,123:306. https://linkinghub.elsevier.com/retrieve/pii/S1352231015002241

doi: 10.1016/j.atmosenv.2015.03.010
[66]
Salma I, Ocskay R, Chi X, Maenhaut W. Atmos. Environ., 2007,41:4106. https://linkinghub.elsevier.com/retrieve/pii/S1352231007000799

doi: 10.1016/j.atmosenv.2007.01.027
[67]
Salma I, Ocskay R, Láng G G. Atmos. Chem. Phys., 2008,8:2243. https://www.atmos-chem-phys.net/8/2243/2008/

doi: 10.5194/acp-8-2243-2008
[68]
Salma I, Mészáros T, Maenhaut W, Vass E, Majer Z. Atmos. Chem. Phys., 2010,10:1315. https://www.atmos-chem-phys.net/10/1315/2010/

doi: 10.5194/acp-10-1315-2010
[69]
Samburova V, Szidat S, Hueglin C, Fisseha R, Baltensperger U, Zenobi R, Kalberer M. J. Geophys. Res. -Atmos., 2005,110:D23310. http://doi.wiley.com/10.1029/2005JD005783

doi: 10.1029/2005JD005783
[70]
Samburova V, Zenobi R, Kalberer M. Atmos. Chem. Phys., 2005,5:2163. http://www.atmos-chem-phys.net/5/2163/2005/

doi: 10.5194/acp-5-2163-2005
[71]
Samburova V, Didenko T, Kunenkov E, Emmenegger C, Zenobi R, Kalberer M. Atmos. Environ., 2007,41:4703. https://linkinghub.elsevier.com/retrieve/pii/S1352231007002890

doi: 10.1016/j.atmosenv.2007.03.033
[72]
Song J, He L, Peng P a, Zhao J, Ma S. Aerosol Sci. Tech., 2012,46:533. http://dx.doi.org/10.1080/02786826.2011.645956

doi: 10.1080/02786826.2011.645956
[73]
Song J, Zhu M, Wei S, Peng P a, Ren M. Atmospheric Pollution Research, 2019,10:313. https://linkinghub.elsevier.com/retrieve/pii/S1309104218301168

doi: 10.1016/j.apr.2018.09.003
[74]
Tan J, Xiang P, Zhou X, Duan J, Ma Y, He K, Cheng Y, Yu J, Querol X. Sci. Total Environ., 2016,573:1481. https://linkinghub.elsevier.com/retrieve/pii/S0048969716317168

doi: 10.1016/j.scitotenv.2016.08.025
[75]
Wu G, Wan X, Gao S, Fu P, Yin Y, Li G, Zhang G, Kang S, Ram K, Cong Z. Environ. Sci. Technol., 2018,52:7203. https://pubs.acs.org/doi/10.1021/acs.est.8b01251

doi: 10.1021/acs.est.8b01251
[76]
Zhao M, Qiao T, Li Y, Tang X, Xiu G, Yu J Z. Sci. Total Environ., 2016,571:18. https://linkinghub.elsevier.com/retrieve/pii/S0048969716315728

doi: 10.1016/j.scitotenv.2016.07.127
[77]
Cheng Y, He K B, Engling G, Weber R, Liu J M, Du Z Y, Dong S P. Sci. Total Environ., 2017,599/600:1047. https://linkinghub.elsevier.com/retrieve/pii/S0048969717311610

doi: 10.1016/j.scitotenv.2017.05.061
[78]
Cheng Y, He K B, Du Z Y, Engling G, Liu J M, Ma Y L, Zheng M, Weber R J. Atmos. Environ., 2016,127:355. https://linkinghub.elsevier.com/retrieve/pii/S1352231015306075

doi: 10.1016/j.atmosenv.2015.12.035
[79]
Park S, Yu G H, Lee S. Atmos. Res., 2018,203:16. https://linkinghub.elsevier.com/retrieve/pii/S016980951730892X

doi: 10.1016/j.atmosres.2017.12.002
[80]
Zhu C S, Cao J J, Huang R J, Shen Z X, Wang Q Y, Zhang N N. Sci. Total Environ., 2018,625:246. https://linkinghub.elsevier.com/retrieve/pii/S0048969717336094

doi: 10.1016/j.scitotenv.2017.12.183
[81]
Noziere B, Kalberer M, Claeys M, Allan J, D’Anna B, Decesari S, Finessi E, Glasius M, Grgic I, Hamilton J F, Hoffmann T, Iinuma Y, Jaoui M, Kahnt A, Kampf C J, Kourtchev I, Maenhaut W, Marsden N, Saarikoski S, Schnelle-Kreis J, Surratt J D, Szidat S, Szmigielski R, Wisthaler A. Chem. Rev., 2015,115:3919. https://pubs.acs.org/doi/10.1021/cr5003485

doi: 10.1021/cr5003485
[82]
Laskin J, Laskin A, Roach P J, Slysz G W, Anderson G A, Nizkorodov S A, Bones D L, Nguyen L Q. Anal. Chem., 2010,82:2048. https://pubs.acs.org/doi/10.1021/ac902801f

doi: 10.1021/ac902801f
[83]
Nizkorodov S A, Laskin J, Laskin A. Phys. Chem. Chem. Phys., 2011,13:3612. http://xlink.rsc.org/?DOI=c0cp02032j

doi: 10.1039/c0cp02032j
[84]
Lin P, Aiona P K, Li Y, Shiraiwa M, Laskin J, Nizkorodov S A, Laskin A. Environ. Sci. Technol., 2016,50:11815. https://pubs.acs.org/doi/10.1021/acs.est.6b03024

doi: 10.1021/acs.est.6b03024
[85]
Lin P, Bluvshtein N, Rudich Y, Nizkorodov S A, Laskin J, Laskin A. Environ. Sci. Technol., 2017,51:11561. https://pubs.acs.org/doi/10.1021/acs.est.7b02276

doi: 10.1021/acs.est.7b02276
[86]
Lin P, Fleming L T, Nizkorodov S A, Laskin J, Laskin A. Anal. Chem., 2018,90:12493. https://pubs.acs.org/doi/10.1021/acs.analchem.8b02177

doi: 10.1021/acs.analchem.8b02177
[87]
Desyaterik Y, Sun Y, Shen X, Lee T, Wang X, Wang T, Collett J L. J. Geophys. Res. [Atmos.], 2013,118:7389.
[88]
Lin P, Laskin J, Nizkorodov S A, Laskin A. Environ. Sci. Technol., 2015,49:14257. https://pubs.acs.org/doi/10.1021/acs.est.5b03608

doi: 10.1021/acs.est.5b03608
[89]
Qin Y M, Tan H B, Li Y J, Li Z J, Schurman M I, Liu L, Wu C, Chan C K. Atmos. Chem. Phys., 2018,18:16409. https://www.atmos-chem-phys.net/18/16409/2018/

doi: 10.5194/acp-18-16409-2018
[90]
Mohr C, Lopez-Hilfiker F D, Zotter P, Prevot A S, Xu L, Ng N L, Herndon S C, Williams L R, Franklin J P, Zahniser M S, Worsnop D R, Knighton W B, Aiken A C, Gorkowski K J, Dubey M K, Allan J D, Thornton J A. Environ. Sci. Technol., 2013,47:6316.
[91]
Budisulistiorini S H, Riva M, Williams M, Chen J, Itoh M, Surratt J D, Kuwata M. Environ. Sci. Technol., 2017,51:4415. https://pubs.acs.org/doi/10.1021/acs.est.7b00397

doi: 10.1021/acs.est.7b00397
[92]
Xie M, Chen X, Hays M D, Lewandowski M, Offenberg J, Kleindienst T E, Holder A L. Environ. Sci. Technol., 2017,51:11607. https://pubs.acs.org/doi/10.1021/acs.est.7b03263

doi: 10.1021/acs.est.7b03263
[93]
Marrero-Ortiz W, Hu M, Du Z, Ji Y, Wang Y, Guo S, Lin Y, Gomez-Hermandez M, Peng J, Li Y, Secrest J, Levy Zamora M, Wang Y, An T, Zhang R. Environ. Sci. Technol., 2018,53:117. https://pubs.acs.org/doi/10.1021/acs.est.8b03995

doi: 10.1021/acs.est.8b03995
[94]
Lin P, Rincon A G, Kalberer M, Yu J Z. Environ. Sci. Technol., 2012,46:7454. https://pubs.acs.org/doi/10.1021/es300285d

doi: 10.1021/es300285d
[95]
Laskin A, Smith J S, Laskin J. Environ. Sci. Technol., 2009,43:3764. https://pubs.acs.org/doi/10.1021/es803456n

doi: 10.1021/es803456n
[96]
Liu J, Mo Y, Ding P, Li J, Shen C, Zhang G. Sci. Total Environ., 2018,633:1571. https://linkinghub.elsevier.com/retrieve/pii/S0048969718310532

doi: 10.1016/j.scitotenv.2018.03.293
[97]
Du Z, He K, Cheng Y, Duan F, Ma Y, Liu J, Zhang X, Zheng M, Weber R. Atmos. Environ., 2014,92:514. https://linkinghub.elsevier.com/retrieve/pii/S135223101400346X

doi: 10.1016/j.atmosenv.2014.04.060
[98]
Ma Y, Cheng Y, Qiu X, Cao G, Fang Y, Wang J, Zhu T, Yu J, Hu D. Atmos. Chem. Phys., 2018,18:5607. https://www.atmos-chem-phys.net/18/5607/2018/

doi: 10.5194/acp-18-5607-2018
[99]
Li X, Han J, Hopke P K, Hu J, Shu Q, Chang Q, Ying Q. Atmos. Chem. Phys., 2019,19:2327. https://www.atmos-chem-phys.net/19/2327/2019/

doi: 10.5194/acp-19-2327-2019
[100]
Moschos V, Kumar N K, Daellenbach K R, Baltensperger U, Prévôt A S H, El Haddad I. Environ. Sci. Tech. Let., 2018,5:302.
[101]
Aurell J, Gullett B K. Environ. Sci. Technol., 2013,47:8443.
[102]
Kirchstetter T W, Novakov T, Hobbs P V. J. Geophys. Res. [Atmos.], 2004,109:D21208.
[103]
Park S S, Yu J. Atmos. Environ., 2016,136:114. https://linkinghub.elsevier.com/retrieve/pii/S1352231016303053

doi: 10.1016/j.atmosenv.2016.04.022
[104]
Fan X, Wei S, Zhu M, Song J, Peng P a. Atmos. Chem. Phys., 2016,16:13321. https://www.atmos-chem-phys.net/16/13321/2016/

doi: 10.5194/acp-16-13321-2016
[105]
Chakrabarty R K, Gyawali M, Yatavelli R L N, Pandey A, Watts A C, Knue J, Chen L W A, Pattison R R, Tsibart A, Samburova V, Moosmüller H. Atmos. Chem. Phys., 2016,16:3033. https://www.atmos-chem-phys.net/16/3033/2016/

doi: 10.5194/acp-16-3033-2016
[106]
Wang Y, Hu M, Wang Y, Qin Y, Chen H, Zeng L, Lei J, Huang X, He L, Zhang R, Wu Z. Acta Chim. Sinica, 2016,74:356. http://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract345441.shtml

doi: 10.6023/A16010008
[107]
Huo Y, Li M, Jiang M, Qi W. Atmos. Environ., 2018,191:490. https://linkinghub.elsevier.com/retrieve/pii/S1352231018305594

doi: 10.1016/j.atmosenv.2018.08.038
[108]
Chen Y, Bond T C. Atmos. Chem. Phys., 2010,10:1773. https://www.atmos-chem-phys.net/10/1773/2010/

doi: 10.5194/acp-10-1773-2010
[109]
Updyke K M, Nguyen T B, Nizkorodov S A. Atmos. Environ., 2012,63:22. https://linkinghub.elsevier.com/retrieve/pii/S1352231012008710

doi: 10.1016/j.atmosenv.2012.09.012
[110]
Cheng Y, He K B, Zheng M, Duan F K, Du Z Y, Ma Y L, Tan J H, Yang F M, Liu J M, Zhang X L, Weber R J, Bergin M H, Russell A G. Atmos. Chem. Phys., 2011,11:11497. https://www.atmos-chem-phys.net/11/11497/2011/

doi: 10.5194/acp-11-11497-2011
[111]
Wang Y, Hu M, Wang Y, Zheng J, Shang D, Yang Y, Liu Y, Li X, Tang R, Zhu W, Du Z, Wu Y, Guo S, Wu Z, Lou S, Hallquist M, Yu J Z. Atmos. Chem. Phys., 2019,19:7649. https://www.atmos-chem-phys.net/19/7649/2019/

doi: 10.5194/acp-19-7649-2019
[112]
Jenkin M E, Saunders S M, Wagner V, Pilling M J. Atmos. Chem. Phys., 2003,3:181. http://www.atmos-chem-phys.net/3/181/2003/

doi: 10.5194/acp-3-181-2003
[113]
Vione D, Maurino V, Minero C, Pelizzetti E. Chemosphere, 2001,45:893. https://linkinghub.elsevier.com/retrieve/pii/S0045653501000352

doi: 10.1016/S0045-6535(01)00035-2
[114]
Vione D, Maurino V, Minero C, Lucchiari M, Pelizzetti E. Chemosphere, 2004,56:1049. http://www.sciencedirect.com/science/article/pii/S0045653504003492

doi: 10.1016/j.chemosphere.2004.05.027
[115]
Sato K, Hatakeyama S, Imamura T. J. Phys. Chem. A, 2007,111:9796. https://pubs.acs.org/doi/10.1021/jp071419f

doi: 10.1021/jp071419f
[116]
Ji Y, Zhao J, Terazono H, Misawa K, Levitt N P, Li Y, Lin Y, Peng J, Wang Y, Duan L, Pan B, Zhang F, Feng X, An T, Marrero-Ortiz W, Secrest J, Zhang A L, Shibuya K, Molina M J, Zhang R. Proc. Natl. Acad. Sci. U.S. A., 2017,114:8169. http://www.pnas.org/lookup/doi/10.1073/pnas.1705463114

doi: 10.1073/pnas.1705463114
[117]
Olariu R I, Klotz B, Barnes I, Becker K H, Mocanu R. Atmos. Environ., 2002,36:3685. https://linkinghub.elsevier.com/retrieve/pii/S1352231002002029

doi: 10.1016/S1352-2310(02)00202-9
[118]
Harrison M A J, Barra S, Borghesi D, Vione D, Arsene C, Iulian Olariu R. Atmos. Environ., 2005,39:231. https://linkinghub.elsevier.com/retrieve/pii/S1352231004009252

doi: 10.1016/j.atmosenv.2004.09.044
[119]
Iinuma Y, Boge O, Grafe R, Herrmann H. Environ. Sci. Technol., 2010,44:8453. https://pubs.acs.org/doi/10.1021/es102938a

doi: 10.1021/es102938a
[120]
Claeys M, Vermeylen R, Yasmeen F, Gomez-Gonzalez Y, Chi X G, Maenhaut W, Meszaros T, Salma I. Environ. Chem., 2012,9:273. http://dx.doi.org/10.1071/EN11163

doi: 10.1071/EN11163
[121]
Finewax Z, de Gouw J A, Ziemann P J. Environ. Sci. Technol., 2018,52:1981. https://pubs.acs.org/doi/10.1021/acs.est.7b05864

doi: 10.1021/acs.est.7b05864
[122]
Lauraguais A, Coeur-Tourneur C, Cassez A, Deboudt K, Fourmentin M, Choël M. Atmos. Environ., 2014,86:155. https://linkinghub.elsevier.com/retrieve/pii/S1352231013009242

doi: 10.1016/j.atmosenv.2013.11.074
[123]
Yuan B, Liggio J, Wentzell J, Li S M, Stark H, Roberts J M, Gilman J, Lerner B, Warneke C, Li R, Leithead A, Osthoff H D, Wild R, Brown S S, de Gouw J A. Atmos. Chem. Phys., 2016,16:2139. https://www.atmos-chem-phys.net/16/2139/2016/

doi: 10.5194/acp-16-2139-2016
[124]
Nakayama T, Sato K, Matsumi Y, Imamura T, Yamazaki A, Uchiyama A. Atmos. Chem. Phys., 2013,13:531. http://dx.doi.org/10.5194/acp-13-531-2013

doi: 10.5194/acp-13-531-2013
[125]
Trainic M, Riziq A A, Lavi A, Rudich Y. J. Phys. Chem. A, 2012,116:5948. http://dx.doi.org/10.1021/jp2104837

doi: 10.1021/jp2104837
[126]
De Haan D O, Corrigan A L, Smith K W, Stroik D R, Turley J J, Lee F E, Tolbert M A, Jimenez J L, Cordova K E, Ferrell G R. Environ. Sci. Technol., 2009,43:2818. https://pubs.acs.org/doi/10.1021/es803534f

doi: 10.1021/es803534f
[127]
Ervens B, Turpin B J, Weber R J. Atmos. Chem. Phys., 2011,11:11069. https://www.atmos-chem-phys.net/11/11069/2011/

doi: 10.5194/acp-11-11069-2011
[128]
Kampf C J, Jakob R, Hoffmann T. Atmos. Chem. Phys., 2012,12:6323. http://dx.doi.org/10.5194/acp-12-6323-2012

doi: 10.5194/acp-12-6323-2012
[129]
Yu G, Bayer A R, Galloway M M, Korshavn K J, Fry C G, Keutsch F N. Environ. Sci. Technol., 2011,45:6336. https://pubs.acs.org/doi/10.1021/es200989n

doi: 10.1021/es200989n
[130]
Galloway M M, Chhabra P S, Chan A W H, Surratt J D, Flagan R C, Seinfeld J H, Keutsch F N. Atmos. Chem. Phys., 2009,9:3331. https://www.atmos-chem-phys.net/9/3331/2009/

doi: 10.5194/acp-9-3331-2009
[131]
Lee A K, Zhao R, Li R, Liggio J, Li S M, Abbatt J P. Environ. Sci. Technol., 2013,47:12819. https://pubs.acs.org/doi/10.1021/es402687w

doi: 10.1021/es402687w
[132]
De Haan D O, Hawkins L N, Kononenko J A, Turley J J, Corrigan A L, Tolbert M A, Jimenez J L. Environ. Sci. Technol., 2011,45:984. https://pubs.acs.org/doi/10.1021/es102933x

doi: 10.1021/es102933x
[133]
Nguyen T B, Laskin A, Laskin J, Nizkorodov S A. Faraday Discussions, 2013,165:473. http://dx.doi.org/10.1039/c3fd00036b

doi: 10.1039/c3fd00036b
[134]
De Haan D O, Tolbert M A, Jimenez J L. Geophys. Res. Lett., 2009,36.
[135]
Bones D L, Henricksen D K, Mang S A, Gonsior M, Bateman A P, Nguyen T B, Cooper W J, Nizkorodov S A. J. Geophys. Res., 2010,115.
[136]
Aiona P K, Lee H J, Lin P, Heller F, Laskin A, Laskin J, Nizkorodov S A. Environ. Sci. Technol., 2017,51:11048. https://pubs.acs.org/doi/10.1021/acs.est.7b02293

doi: 10.1021/acs.est.7b02293
[137]
Montoya-Aguilera J, Horne J R, Hinks M L, Fleming L T, Perraud V, Lin P, Laskin A, Laskin J, Dabdub D, Nizkorodov S A. Atmos. Chem. Phys., 2017,17:11605. https://www.atmos-chem-phys.net/17/11605/2017/

doi: 10.5194/acp-17-11605-2017
[138]
Powelson M H, Espelien B M, Hawkins L N, Galloway M M De Haan D O. Environ. Sci. Technol., 2014,48:985. https://pubs.acs.org/doi/10.1021/es4038325

doi: 10.1021/es4038325
[139]
Jang M, Czoschke N M, Lee S, Kamens R M. Science, 2002,298:814. https://www.sciencemag.org/lookup/doi/10.1126/science.1075798

doi: 10.1126/science.1075798
[140]
Sedehi N, Takano H, Blasic V A, Sullivan K A, De Haan D O. Atmos. Environ., 2013,77:656. https://linkinghub.elsevier.com/retrieve/pii/S1352231013004433

doi: 10.1016/j.atmosenv.2013.05.070
[141]
Fan X, Yu X, Wang Y, Xiao X, Li F, Xie Y, Wei S, Song J, Peng P. Atmos. Environ., 2019,205:9. https://linkinghub.elsevier.com/retrieve/pii/S1352231019301372

doi: 10.1016/j.atmosenv.2019.02.039
[142]
Lee H J, Aiona P K, Laskin A, Laskin J, Nizkorodov S A. Environ. Sci. Technol., 2014,48:10217. https://pubs.acs.org/doi/10.1021/es502515r

doi: 10.1021/es502515r
[143]
Phillips S M, Bellcross A D, Smith G D. Environ. Sci. Technol., 2017,51:6782. https://pubs.acs.org/doi/10.1021/acs.est.7b01116

doi: 10.1021/acs.est.7b01116
[1] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[2] Yongdong Xu, Zhidan Liu. Formation Mechanism and Resource Recovery Perspectives of Aqueous Phase from Hydrothermal Liquefaction of Biomass [J]. Progress in Chemistry, 2021, 33(11): 2150-2162.
[3] Rugang Fu, Zheng Li, Lei Gao. Direct Synthesis of Organic Compounds Using Calcium Carbide as the Acetylene Source [J]. Progress in Chemistry, 2019, 31(9): 1303-1313.
[4] Xiangyang Zhu, Shan Ni, Qinling Bi, Liangrong Yang, Huifang Xing, Huizhou Liu. Preparation of Ferrite Magnetic Nano-Catalysts and Their Applications in the Field of Resources and Energy [J]. Progress in Chemistry, 2019, 31(2/3): 381-393.
[5] Jiao Lin, Chunwei Liu, Hongbin Cao, Li Li, Renjie Chen, Zhi Sun. Recovery of Spent Lithium Ion Batteries Based on High Temperature Chemical Conversion [J]. Progress in Chemistry, 2018, 30(9): 1445-1454.
[6] Yawei Wang, Ying Wang, Guibin Jiang. Analytical Methods, Environmental Pollutions and Toxicity of Short Chain Chlorinated Paraffins [J]. Progress in Chemistry, 2017, 29(9): 919-929.
[7] Weizhen Liu, Jiayi Zheng, Zhicheng Wu, Zhangbin Liu, Zhang Lin. The Application of Micro-Mechanism of Crystal Changes under the Surface/Interface Control in Treating Chromium-Containing Residues [J]. Progress in Chemistry, 2017, 29(9): 1053-1061.
[8] Xu Zhao*, Qi Zhang, Haihong Wu, Xiaocui Hao, Liang Wang, Xiping Huang. Extraction of Lithium from Salt Lake Brine [J]. Progress in Chemistry, 2017, 29(7): 796-808.
[9] Jie Ouyang, Guosheng Yang, Lingling Ma, Min Luo, Diandou Xu. Development and Application of Fingerprints of Radioactive Cesium-Plutonium-Uranium Isotopes as Tracers in Air Pollution [J]. Progress in Chemistry, 2017, 29(12): 1446-1461.
[10] Liu Guorui, Li Li, Sun Sufang, Jiang Xiaoxu, Wang Mei, Zheng Minghui. Sources, Analytical Methods and Environmental Characteristics of Polybrominated Biphenyls [J]. Progress in Chemistry, 2014, 26(08): 1434-1444.
[11] Fu Chao, Zhu Yutian, Shi Dean. Separation and Characterization of Block Copolymers by Liquid Chromatography at the Critical Condition [J]. Progress in Chemistry, 2014, 26(01): 140-151.
[12] Ling Shengjie, Shao Zhengzhong, Chen Xin. Application of Synchrotron FTIR Imaging for Cells [J]. Progress in Chemistry, 2014, 26(01): 178-192.
[13] Zhou Yuan, Li Lijuan, Wu Zhijian, Li Xiang. Exploitation and Comprehensive Utilization for Qinghai Salt Lakes [J]. Progress in Chemistry, 2013, 25(10): 1613-1624.
[14] Ling Shengjie, Huang Yufang*, Huang Lei, Shao Zhengzhong, Chen Xin*. Application of Synchrotron FTIR Microspectroscopy and Mapping in Analytical Chemistry [J]. Progress in Chemistry, 2013, 25(05): 821-831.
[15] Zhang Yuan, Qi Shihua* . Techniques of Stable Chlorine Isotope Analysis and Relevant Applications in Research of Organochlorine Pollutants [J]. Progress in Chemistry, 2012, 24(12): 2384-2390.