中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (12): 1880-1890 DOI: 10.7536/PC160438 Previous Articles   

• Review and comments •

Formation of Nitrogenous Pollutants during Biomass Thermo-Chemical Conversion

Zhan Hao1,2, Zhang Xiaohong1,2, Yin Xiuli1, Wu Chuangzhi1*   

  1. 1. Key Laboratory of Renewable Energy, CAS, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51676195).
PDF ( 321 ) Cited
Export

EndNote

Ris

BibTeX

To investigate the formation of nitrogenous pollutants (NPs) during biomass thermo-chemical conversion (pyrolysis and gasification) is significant for the control of air pollution as these NPs are an important factor for the formation of PM2.5. Research progress on the formation mechanism and influence factors of NPs during two processes are reviewed. Consistent conclusions from the literature can be summarized as follows:1) NPs formed from two processes resemble in their formation paths but differ in their types & components. Either NH3 or HCN is confirmed to be main NPs for pyrolysis while NH3 is dominant for gasification. 2) Comparing the influence factors, it is demonstrated that the increase of any factor such as the heating rate, the content of fuel nitrogen and the concentration of steam involved will enhance the formation of NPs for two processes. Meanwhile, the effect of temperature on the selectivity of NPs towards two processes are similar as well as higher temperature is inclined to decrease the amount of NPs. 3) Comparing the results of nitrogen distribution, it is found that the percentage of NPs in gaseous phase are approximately 50% for pyrolysis and as much as 90% for gasification. Therefore, to control the formation of NPs in gaseous phase is effective to reduce the pollutants during biomass thermo-chemical conversion. Meanwhile, based on the current conclusions obtained, the deficiencies of formation mechanism are summarized as well as the prospective developments are proposed for further research.

Contents
1 Introduction
2 Formation paths of NPs during biomass thermo-chemical conversion
2.1 Formation paths of NPs during pyrolysis process
2.2 Formation paths of NPs during gasification process
3 Effect of nitrogen occurrence characteristics in fuels
3.1 Effect of nitrogen structure
3.2 Effect of nitrogen content
4 Effect of thermal conditions
4.1 Effect of heating rate
4.2 Effect of temperature
5 Effect of reaction atmosphere
6 Effect of other conditions
6.1 Effect of the physicochemical properties of fuels
6.2 Effect of the catalytic performance of additives
7 Nitrogen distribution during two processes
8 Conclusion

CLC Number: 

[1] Smeets E M W, Faaij A P C, Lewandowski I M, Turkenburg W C. Prog. Energy Combust. Sci., 2007, 33(1):56.
[2] McKendry P. Bioresour. Technol., 2002, 83(1):47.
[3] Balat M. Energy Sources Part A-Recovery Util. Environ. Eff., 2008, 30(7):620.
[4] Balat M. Energy Sources Part A-Recovery Util. Environ. Eff., 2008, 30(7):636.
[5] Winter F, Wartha C, Hofbauer H. Bioresour. Technol., 1999, 70(1):39.
[6] Huang R J, Zhang Y L, Bozzetti C, Ho K F, Cao J J, Han Y M, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z S, Szidat S, Baltensperger U, El Haddad I, Prevot A S H. Nature, 2014, 514(7521):218.
[7] Cao J J, Shen Z X, Chow J C, Watson J G, Lee S C, Tie X X, Ho K F, Wang G H, Han Y M. J. Air Waste Manage. Assoc., 2012, 62(10):1214.
[8] Liu H, Gibbs B M. Fuel, 2003, 82(13):1591.
[9] Vermeulen I, Block C, Vandecasteele C. Fuel, 2012, 94(1):75.
[10] Rogaume T, Koulidiati J, Richard F, Jabouille F, Torero J L. Int. J. Therm. Sci., 2006, 45(4):359.
[11] Abelha P, Gulyurtlu I, Cabrita I. Energy Fuels, 2008, 22(1):363.
[12] Yu Q Z, Brage C, Chen G X, Sjostrom K. Fuel, 2007, 86(40):611.
[13] Hansson K M, Samuelsson J, Amand L E, Tullin C. Fuel, 2003, 82(18):2163.
[14] Zhou J Q, Gao P, Dong C Q, Yang Y P. J. Fuel Chem. Techno., 2015, 43(12):1427.
[15] Hansson K M, Samuelsson J, Tullin C, Amand L E. Combust. Flame, 2004, 137(3):265.
[16] Li J, Liu Y W, Shi J Y, Wang Z Y, Hu L, Yang X, Wang C X. Thermochim. Acta, 2008, 467(1/2):20.
[17] Li J, Wang Z Y, Yang X, Hu L, Liu Y W, Wang C X. J. Anal. Appl. Pyrolysis, 2007, 80(1):247.
[18] Hao J F, Guo J Z, Ding L, Xie F W, Xia Q L, Xie J P. J. Therm. Anal. Calorim., 2014, 115(1):667.
[19] Tian K, Liu W J, Qian T T, Jiang H, Yu H Q. Environ. Sci. Technol., 2014, 48(18):10888.
[20] Becidan M, Skreiberg O, Hustad J E. Energy Fuels, 2007, 21(2):1173.
[21] De Jong W, Di Nola G, Venneker B C H, Spliethoff H, Wojtowicz M A. Fuel, 2007, 86(15):2367.
[22] Ren Q Q, Zhao C S, Wu X, Liang C, Chen X P, Shen J Z, Tang G Y, Wang Z. J. Anal. Appl. Pyrolysis, 2009, 85(1/2):447.
[23] Ren Q Q, Zhao C S, Wu X, Liang C, Chen X P, Shen J Z, Wang Z. Fuel, 2010, 89(5):1064.
[24] 任强强(Ren Q Q), 赵长遂(Zhao C S), 梁财(Liang C), 沈解忠(Shen J Z). 中国电机工程学报(Proceedings of the CSEE), 2008, 28(23):99.
[25] Ren Q Q. J. Therm. Anal. Calorim., 2014, 115(1):881.
[26] 高攀(Gao P), 孙志向(Sun Z X), 孔岩(Kong Y), 周建强(Zhou J Q), 董长青(Dong C Q), 杨勇平(Yang Y P). 太阳能学报(Acta Energiae Solaris Sinica), 2014, 35(12):2541.
[27] Ren Q Q, Zhao C S. Environ. Sci. Technol., 2012, 46(7):4236.
[28] Eigenmann F, Maciejewski A, Baiker A. Thermochim. Acta, 2006, 440(1):81.
[29] Tian F J, Yu J L, Mckenzie L J, Hayashi J I, Chiba T, Li C Z. Fuel, 2005, 84(4):371.
[30] Chen H F, Namioka T, Yoshikawa K. Appl. Energy, 2011, 88(12):5032.
[31] Ren Q Q. J. Therm. Anal. Calorim., 2013, 112(2):997.
[32] Zhou J C, Masutani S M, Ishimura D M, Turn S Q, Kinoshita C M. Ind. Eng. Chem. Res., 2000, 39(3):626.
[33] Wilk V, Hofbauer H. Fuel, 2013, 106:793.
[34] Aznar M, Anselmo M S, Manya J J, Murillo M B. Energy Fuels, 2009, 23:3236.
[35] Tian F J, Yu J L, McKenzie L J, Hayashi J, Li C Z. Energy Fuels, 2007, 21(2):517.
[36] Paterson N, Zhuo Y, Dugwell D, Kandiyoti R. Energy Fuels, 2005, 19(3):1016.
[37] Leppalahti J, Koljonen T. Fuel Process. Technol., 1995, 43(1):1.
[38] Leppalahti J. Fuel, 1995, 74(9):1363.
[39] Hansson K M, Amand L E, Habermann A, Winter F. Fuel, 2003, 82(6):653.
[40] Yuan S, Zhou Z J, Li J, Chen X L, Wang F C. Energy Fuels, 2010, 24(11):6166.
[41] Li J, Wang Z Y, Yang X, Hu L, Liu Y W, Wang C X. Thermochim. Acta, 2006, 447(2):147.
[42] Ren Q Q, Zhao C S, Chen X P, Duan L B, Li Y J, Ma C Y. Proc. Combust. Inst., 2011, 33:1715.
[43] Zhang J, Tian Y, Cui Y N, Zuo W, Tan T. Bioresour. Technol., 2013, 132:57.
[44] Leichtnam J N, Schwartz D, Gadiou R. J. Anal. Appl. Pyrolysis, 2000, 55(2):255.
[45] Rodante F, Marrosu G, Catalani G. Thermochim. Acta, 1992, 194:197.
[46] Ren Q Q, Zhao C S. Environ. Sci. Technol., 2013, 47(15):8955.
[47] Ren Q Q, Zhao C S. Appl. Energy, 2013, 112:170.
[48] Yuan S, Chen X L, Li W F, Liu H F, Wang F C. Bioresour. Technol., 2011, 102(21):10124.
[49] Chen H F, Wang Y, Xu G W, Yoshikawa K. Energies, 2012, 5(12):5418.
[50] Turn S Q, Kinoshita C M, Ishimura D M, Zhou J C. Fuel, 1998, 77(3):135.
[51] Stubenberger G, Scharler R, Zahirovic S, Obernberger I. Fuel, 2008, 87(6):793.
[52] Tian F J, Li B Q, Chen Y, Li C Z. Fuel, 2002, 81(17):2203.
[53] Cao J P, Li L Y, Morishita K, Xiao X B, Zhao X Y, Wei X Y, Takarada T. Fuel, 2013, 104:1.
[54] Meesuk S, Cao J P, Sato K, Hoshino A, Utsumi K, Takarada T. J. Chem. Eng. Jpn., 2013, 46(8):556.
[55] Tian Y, Zhang J, Zuo W, Chen L, Cui Y N, Tan T. Environ. Sci. Technol., 2013, 47(7):3498.
[56] Zhu X D, Yang S J, Wang L, Liu Y C, Qian F, Yao W Q, Zhang S C, Chen J M. Environ. Pollut., 2016, 211:20.
[57] Wei L H, Wen L, Yang T H, Zhang N. Energy Fuels, 2015, 29(8):5088.
[58] Aljbour S H, Kawamoto K. Chemosphere, 2013, 90(4):1501.
[59] Ferrasse J H, Dumas C, Roche N. Chem. Eng. Technol., 2011, 34(1):103.
[60] Hernandez A B, Ferrasse J H, Roche N. Chem. Eng. Technol., 2013, 36(11):1985.
[61] Hongrapipat J, Pang S, Saw W L. Biomass Conv. Bioref., 2016, 6(1):105.
[62] Broer K M, Brown R C. Appl. Energy, 2015, 158:474.
[63] Vriesman P, Heginuz E, Sjostrom K. Fuel, 2000, 79(11):1371.
[64] Broer K M, Brown R C. Energy Fuels, 2016, 30(1):407.
[65] Jeremias M, Pohorely M, Bode P, Skoblia S, Beno Z, Svoboda K. Fuel, 2014, 117:917.
[66] Tian F J, Yu J L, McKenzie L J, Hayashi J, Li C Z. Fuel, 2006, 85(10/11):1411.
[67] Ren Q Q, Zhao C S, Wu X, Liang C, Chen X P, Shen J Z, Wang Z. J. Therm. Anal. Calorim., 2010, 99(1):301.
[68] Cao J P, Shi P, Zhao X Y, Wei X Y, Takarada T. Energy Fuels, 2014, 28(3):2041.
[69] Cao J P, Shi P, Zhao X Y, Wei X Y, Takarada T. Fuel Process. Technol., 2014, 123:34.
[70] Pinto F, Lopes H, Andre R N, Gulyurtlu I, Cabrita I. Fuel, 2007, 86(14):2052.
[71] Pinto F, Andre R N, Franco C, Lopes H, Carolino C, Costa R, Gulyurtlu I. Fuel, 2010, 89(11):3340.
[1] Minqian Luo, Weili Heng, Juan Dai, Yuanfeng Wei, Yuan Gao, Jianjun Zhang. Crystallization of Amorphous Drugs and Inhibiting Strategies [J]. Progress in Chemistry, 2021, 33(11): 2116-2127.
[2] Yongdong Xu, Zhidan Liu. Formation Mechanism and Resource Recovery Perspectives of Aqueous Phase from Hydrothermal Liquefaction of Biomass [J]. Progress in Chemistry, 2021, 33(11): 2150-2162.
[3] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[4] Hongjuan Wang, Mi Shi, Lu Tian, Liang Zhao, Meiqin Zhang. Methods for Studying the Age Determination of Fingermarks [J]. Progress in Chemistry, 2019, 31(5): 654-666.
[5] Yangrong Yao, Suyuan Xie. Structures and Progress of Carbon Clusters [J]. Progress in Chemistry, 2019, 31(1): 50-62.
[6] Jiwei Lv, Xianquan Ao*, Qianlin Chen, Yan Xie, Yang Cao, Jifang Zhang. Disposable Catalysts for Coal Gasification [J]. Progress in Chemistry, 2018, 30(9): 1455-1462.
[7] Lijuan Jin, Baoliang Chen*. Natural Origins, Concentration Levels, and Formation Mechanisms of Organohalogens in the Environment [J]. Progress in Chemistry, 2017, 29(9): 1093-1114.
[8] Dewen Han, Xintong Wang, Fashuai Ju, Yangjun Wang, Jialiang Feng, Wu Wang. Organosulfates in PM2.5 [J]. Progress in Chemistry, 2017, 29(5): 530-538.
[9] Wang Jing, Fan Haowen, Zhang He, Chen Qun, Liu Yi, Ma Weihua. Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes [J]. Progress in Chemistry, 2016, 28(2/3): 284-295.
[10] Xie Lijuan, Shi Xiaoyan, Liu Fudong, Ruan Wenquan. Selective Catalytic Reduction of NOx from Diesel Engine with NH3 over Zeolites Catalysts with Chabazite [J]. Progress in Chemistry, 2016, 28(12): 1860-1869.
[11] Zhang Mingming, Fan Jianfen, Yu Yi, Yan Xiliang, Xu Jian. Studying on the Mechanisms of NH3/NH4+through Ammonium Transport Proteins [J]. Progress in Chemistry, 2015, 27(11): 1658-1664.
[12] Rao Lu, Jiang Yanxia, Zhang Binwei, You Lexing, Li Zhanhong, Sun Shigang. Electrocatalytic Oxidation of Ethanol [J]. Progress in Chemistry, 2014, 26(05): 727-736.
[13] Chen Yanping, Cheng Dang-guo, Chen Fengqiu, Zhan Xiaoli. NO Decomposition and Selective Catalytic Reduction of NO over Cu-ZSM-5 Zeolite [J]. Progress in Chemistry, 2014, 26(0203): 248-258.
[14] Guo Huihui, Miao Nana, Li Tengfei, Hao Jun, Gao Yuan, Zhang Jianjun. Pharmaceutical Coamorphous——A Newly Defined Single-Phase Amorphous Binary System [J]. Progress in Chemistry, 2014, 26(0203): 478-486.
[15] Liu Huamin, Ma Mingguo, Liu Yulan. Applications of Pretreatment in Biomass Thermo-Chemical Conversion Technology [J]. Progress in Chemistry, 2014, 26(01): 203-213.