中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 50-62 DOI: 10.7536/PC181221 Previous Articles   Next Articles

• Review •

Structures and Progress of Carbon Clusters

Yangrong Yao, Suyuan Xie**()   

  1. Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received: Revised: Online: Published:
  • Contact: Suyuan Xie
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(21721001); The work was supported by the National Natural Science Foundation of China(51572231)
Richhtml ( 42 ) PDF ( 974 ) Cited
Export

EndNote

Ris

BibTeX

Carbon clusters, a new type of carbon material, have attracted great attentions in scientific community due to the unique structures and superior performances since its discovery in the 1980s. Carbon clusters have a wide range of categories ranging from single carbon atom in the gas phase to fullerenes, carbon nanotubes, carbon nanocones, graphenes, etc. It is of great significance to study the structures and progress of carbon clusters and solve the mystery of the formation mechanism for exploring new structures and applications of carbon cluster materials. In this paper, we review the structures and progress of carbon clusters and summary the synthesis, characterization and current state of progress of carbon clusters.

Fig.1 The mass spectra of carbon clusters[2]
Fig.2 Schematic diagram of laser vaporization system[3]
Fig.3 Schematic diagram of arc-discharge system[18]
Fig.4 Schematic diagram of glow discharge system[19, 20]
Fig.5 微波等离子体法装置示意图[21, 22]
Fig.6 (a) The glass combustion generator and (b) configuration of the burner[24]
Fig.7 One-dimensional supramolecular chain of sulfurdoped buckybowls/C60[33]
Fig.8 Crystallographic structures of co-crystals between DPC and fullerenes.(a) 2DPC{C60}, (b) 2DPC{C70}, (c) 2DPC{C90}, (d) 2DPC{α-PC71BM}, (e) 2DPC{β1-PC71BM}, (f) 2DPC{PCP}, (g) 2DPC{PCAE}, (h) 2DPC{Cs-C71H2-Ⅰ}, (i) 2DPC{Cs-C71H2-Ⅱ}, (j) 2DPC{C65H6}, (k) 2DPC{C60HPh}, (l) 2DPC{C60HCH3}, (m) 2DPC{C2v-C71H2-Ⅲ}, (n) 2DPC{Sc3N@C80}, (o) 2DPC{(C59N)2}.Reprinted with permission[89].Copyright 2019 Springer Nature Publishing AG
Fig.9 Schematic diagram for the formation of C20 by C1/C2 mechanism[34]
Fig.10 The distribution of chlorinated carbon clusters ranging from C18 to C34 and their corresponding mass spectra: (A) C18Cl10; (B) C22Cl12; (C) C23Cl10; (D)C24Cl12; (E) C25Cl10; (F) C26Cl12; (G)C28Cl12; (H) C30Cl12H2; (I) C32Cl12H2; (J) C34Cl12H2[37]
Fig.11 Pentagon-fused fullerenes captured by in-situ chlorination. (a) D5h(271)-C50Cl10; (b) C2v(540)-C54Cl8; (c) Cs(864)-C56Cl12; (d) C2v(913)-C56Cl10; (e) D2(916)-C56Cl12; (f) Cs(1804)-C60Cl12; (g) C2v(1809)-C60Cl8; (h) C3v(1911)-C64Cl4; (i) Cs(4169)-C66Cl6; (j) Cs(4169)-C66Cl10; (k) C2v(4348)-C66Cl10; (l) C1(hept)-C68Cl6; (m) C2(8064)-C70Cl10; (n) C2v(11188)-C72Cl4; (o) C1(14049)-C74Cl10; (p) C1(23863)-C78(OOCH2C6H5)Cl7
Fig.12 The progress from D5h(8149)-C70 to D3h(14246)-C74[53]
Fig.13 Two orientations of the crystal of C2v(2)-C78Cl6(C5Cl6)
Fig.14 Progress from fullerenes to carbon nanotubes
[1]
Shaik S, Danovich D, Wu W, Su P, Rzepa H S, Hiberty P C . Nat. Chem., 2012,4:195.
[2]
Rohlfing E A, Cox D M, Kaldor A . J. Chem. Phys., 1984,81:3322.
[3]
Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E . Nature, 1985,318:162.
[4]
Zhang Q L, O’Brien S C, Heath J R, Liu Y, Curl R F, Kroto H W, Smalley R E . J. Phys. Chem., 1986,90:525.
[5]
Meijer G, Bethune D S . J. Chem. Phys., 1990,93:7800.
[6]
Hawkins J M, Meyer A, Loren S, Nunlist R . J. Am. Chem. Soc., 1991,113:9394.
[7]
Tycko R, Haddon R C, Dabbagh G, Glarum S H, Douglass D C, Mujsce A M . J. Phys. Chem., 1991,95:518.
[8]
Yannoni C S, Bernier P P, Bethune D S, Meijer G, Salem J R . J. Am. Chem. Soc., 1991,113:3190.
[9]
Ebbesen T W, Tabuchi J Tanigaki K, . Chem. Phys. Lett., 1992,191:336.
[10]
Smalley R E . Acc. Chem. Res., 1992,25:98.
[11]
Hunter J M, Fye J L, Roskamp E J, Jarrold M F . J. Phys. Chem., 1994,98:1810.
[12]
Goroff N S . Acc. Chem. Res., 1996,29:77.
[13]
Tan Y Z, Chen R T, Liao Z J, Li J, Zhu F, Lu X, Xie S Y, Li J, Huang R B, Zheng L S . Nat. Commun., 2011,2:420.
[14]
Dunk P W, Kaiser N K, Hendrickson C L, Quinn J P, Ewels C P, Nakanishi Y, Sasaki Y, Shinohara H, Marshall A G, Kroto H W . Nat. Commun., 2012,3:855.
[15]
Dunk P W, Mulet-Gas M, Nakanishi Y, Kaiser N K, Rodríguez-Fortea A, Shinohara H, Poblet J M, Marshall A G, Kroto H W . Nat. Commun., 2014,5:5844.
[16]
Xie S Y, Huang R B, Ding J, Yu L J, Wang Y H, Zheng L S . J. Phys. Chem.A, 2000,104:7161.
[17]
Krätschmer W, Lamb L D, Fostiropoulos K, Huffman D R . Nature, 1990,347:354.
[18]
Haufler R E, Conceicao J, Chibante L P F, Chai Y, Byrne N E, Flanagan S, Haley M M, O’Brien S C, Pan C, Xiao Z, Billups W E, Cinfolini M A, Hauge R H, Margrave J L, Wilson L J, Curl R F, Smalley R E . J. SPhys. Chem., 1990,94:8634.
[19]
Xie S Y, Huang R B, Chen L H, Huang W J, Zheng L S . Chem. Commun., 1998: 2045.
[20]
Xie S Y, Huang R B, Deng S L, Yu L J, Zheng L S . J. Phys. Chem.B, 2001,105:1734.
[21]
Xie S Y, Huang R B, Yu L J, Ding J, Zheng L S . Appl. Phys. Lett., 1999,75:2764.
[22]
Xie S Y, Deng S L, Huang R B, Yu L J, Zheng L S . Chem. Phys. Lett., 2001,343:458.
[23]
Howard J B, McKinnon J T, Makarovsky Y, Lafleur A L, Johnson M E . Nature, 1991,352:139.
[24]
Gao Z Y, Jiang W S, Sun D, Xie S Y, Huang R B, Zheng L S . Combust.Flame, 2010,157:966.
[25]
Weng Q H, He Q, Liu T, Huang H Y, Chen J H, Gao Z Y, Xie S Y, Lu X, Huang R B, Zheng L S . J. Am. Chem. Soc., 2010,132:15093.
[26]
Weng Q H, He Q, Sun D, Huang H Y, Xie S Y, Lu X, Huang R B, Zheng L S . J. Phys. Chem.C, 2011,115:11016.
[27]
Von Helden G, Gotts N G, Bowers M T . Nature, 1993,363:60.
[28]
Yang S H, Pettiette C L, Conceicao J, Cheshnovsky O, Smalley R E . Chem. Phys. Lett., 1987,139:233.
[29]
Xie S Y, Gao F, Lu X, Huang R B, Wang C R, Zhang X, Liu M L, Deng S L, Zheng L S . Science, 2004,304:699.
[30]
Wang C R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H . Nature, 2000,408:426.
[31]
Yamada M, Kurihara H, Suzuki M, Guo J D, Waelchli M, Olmstead M M, Balch A L, Nagase S, Maeda Y, Hasegawa T, Lu X, Akasaka T . J. Am. Chem. Soc., 2014,136:7611.
[32]
Olmstead M M, Costa D A, Maitra K, Noll B C, Phillips S L, van Calcar P M, Balch A L . J. Am. Chem. Soc., 1999,121:7090.
[33]
Liu Y M, Xia D, Li B W, Zhang Q Y, Sakurai T, Tan Y Z, Seki S, Xie S S, Y . Angew. Chem. Int. Ed. Engl., 2016,55:13047.
[34]
Wu X Z, Yao Y R, Chen M M, Tian H R, Xiao J, Xu Y Y, Lin M S, Abella L, Tian C B, Gao C L, Zhang Q, Xie S Y, Huang R B, Zheng L S . J. Am. Chem. Soc., 2016,138:9629.
[35]
Paquette L A . Proc. Natl. Acad. Sci. U. S.A., 1982,79:4495.
[36]
Ternansky R J, Balogh D W, Paquette L A . J. Am. Chem. Soc., 1982,104:4503.
[37]
Gao Z Y, Jiang W S, Sun D, Xie Y, Chen Z L, Yu L J, Xie S Y, Huang R B, Zheng L S . Talanta, 2010,81:48.
[38]
Kroto H W . Nature, 1987,329:529.
[39]
Stevenson S, Fowler P W, Heine T, Duchamp J C, Rice G, Glass T, Harich K, Hajdu E, Bible R, Dorn H C . Nature, 2000,408:427.
[40]
Tan Y Z, Li J, Zhu F, Han X, Jiang W S, Huang R B, Zheng Z, Qian Z Z, Chen R T, Liao Z J, Xie S Y, Lu X, Zheng L S . Nat. Chem., 2010,2:269.
[41]
Tan Y Z, Han X, Wu X, Meng Y Y, Zhu F, Qian Z Z, Liao Z J, Chen M H, Lu X, Xie S Y, Huang R B, Zheng L S . J. Am. Chem. Soc., 2008,130:15240.
[42]
Zhou T, Tan Y Z, Shan G J, Zou X M, Gao C L, Li X, Li K, Deng L L, Huang R B, Zheng L S, Xie S Y . Chem.-Eur. J., 2011,17:8529.
[43]
Tan Y Z, Liao Z J, Qian Z Z, Chen R T, Wu X, Liang H, Han X, Zhu F, Zhou S J, Zheng Z, Lu X, Xie S Y, Huang R B, Zheng L S . Nat. Mater., 2008,7:790.
[44]
Han X, Zhou S J, Tan Y Z, Wu X, Gao F, Liao Z J, Huang R B, Feng Y Q, Lu X, Xie S Y, Zheng L S . Angew. Chem. Int. Ed., 2008,47:5340.
[45]
Gao C L, Li X, Tan Y Z, Wu X Z, Zhang Q, Xie S Y, Huang R B . Angew. Chem. Int. Ed., 2014,53:7853.
[46]
Tan Y Z, Li J, Du M Y, Lin S C, Xie S Y, Lu X, Huang R B, Zheng L S . Chem. Sci., 2013,4:2967.
[47]
Tan Y Z, Zhou T, Bao J, Shan G J, Xie S Y, Huang R B, Zheng L S . J. Am. Chem. Soc., 2010,132:17102.
[48]
Gao C L, Abella L, Tan Y Z, Wu X Z, Rodríguez-Fortea A, Poblet J M, Xie S Y, Huang R B, Zheng L S . Inorg. Chem., 2016,55:6861.
[49]
Tan Y Z, Li J, Zhou T, Feng Y Q, Lin S C, Lu X, Zhan Z P, Xie S Y, Huang R B, Zheng L S . J. Am. Chem. Soc., 2010,132:12648.
[50]
Piskoti C, Yarger J, Zettl A . Nature, 1998,393:771.
[51]
Tan Y Z, Xie S Y, Huang R B, Zheng L S . Nat. Chem., 2009,1:450.
[52]
Haddon R C . Acc. Chem. Res., 1988,21:243.
[53]
Stone A J, Wales D J . Chem. Phys. Lett., 1986,128:501.
[54]
Gao C L, Abella L, Tian H R, Zhang X, Zhong Y Y, Tan Y Z, Wu X Z, Rodríguez-Fortea A, Poblet J M, Xie S Y, Huang R B, Zheng L S . Carbon, 2018,129:286.
[55]
Wang C R, Sugai T, Kai T, Tomiyama T, Shinohara H . Chem.Commun, 2000,557.
[56]
Hennrich F H, Michel R H, Fischer A, Richard-Schneider S, Gilb S, Kappes M M, Fuchs D, Bürk M, Kobayashi K, Nagase S . Angew. Chem. Int. Ed. Engl., 1996,35:1732.
[57]
Simeonov K S, Amsharov K Y, Jansen M . Chem.-Eur.J., 2009,15:1812.
[58]
Shustova N B, Kuvychko I V, Bolskar R D, Seppelt K, Strauss S H, Popov A A, Boltalina O V . J. Am. Chem. Soc., 2006,128:15793.
[59]
Kikuchi K, Nakahara N, Wakabayashi T, Suzuki S, Shiromaru H, Miyake Y, Saito K, Ikemoto I, Kainosho M, Achiba Y . Nature, 1992,357:142.
[60]
Ziegler K, Amsharov K Y, Halasz I, Jansen M . Z. Anorg. Allg. Chem., 2011,637:1463.
[61]
Tamm N B, Sidorov L N, Kemnitz E, Troyanov S I . Chem.-Eur.J., 2009,15:10486.
[62]
Yang S, Chen C, Wei T, Tamm N B, Kemnitz E, Troyanov S I . Chem.-Eur.J., 2012,18:2217.
[63]
Epple L, Amsharov K, Simeonov K, Dix I, Jansen M . Chem.Commun, 2008,5610.
[64]
Dennis T J S, Kai T, Asato K, Tomiyama T, Shinohara H, Yoshida T, Kobayashi Y, Ishiwatari H, Miyake Y, Kikuchi K, Achiba Y . J. Phys. Chem.A, 1999,103:8747.
[65]
John S. Dennis T, Shinohara H . Chem.Commun, 1998: 619.
[66]
Balch A L, Ginwalla A S, Lee J W, Noll B C, Olmstead M M . J. Am. Chem. Soc., 1994,116:2227.
[67]
Miyake Y, Minami T, Kikuchi K, Kainosho M, Achiba Y . Mol. Cryst. Liq.Cryst.A, 2000,340:553.
[68]
Wang Z, Yang H, Jiang A, Liu Z, Olmstead M M, Balch A L . Chem. Commun., 2010,46:5262.
[69]
Yang S, Wei T, Troyanov S I . Chem.-Eur.J., 2014,20:14198.
[70]
Troyanov S I, Tamm N B . Crystallography Reports, 2009,54:598.
[71]
Wang S, Yang S, Kemnitz E, Troyanov S I . Chem.-Asian J., 2016,11:77.
[72]
Troyanov S I Tamm N B, . Chem. Commun., 2009,6035.
[73]
Yang H, Beavers C M, Wang Z, Jiang A, Liu Z, Jin H, Mercado B Q, Olmstead M M, Balch A L . Angew. Chem., 2010,122:898.
[74]
Yang S, Wei T, Wang S, Ioffe I N, Kemnitz E, Troyanov S I . Chem.-Asian J., 2014,9:3102.
[75]
Tamm N B, Troyanov S I . Chem.-Asian J., 2015,10:1622.
[76]
Tamm N B, Troyanov S I . Inorg. Chem., 2015,54:10527.
[77]
Tamm N B, Yang S, Wei T, Troyanov S I . Inorg. Chem., 2015,54:2494.
[78]
Tamm N B, Sidorov L N, Kemnitz E, Troyanov S I . Angew. Chem., 2009,121:9266.
[79]
Yang H, Jin H, Che Y, Hong B, Liu Z, Gharamaleki J A, Olmstead M M, Balch A L . Chem.-Eur.J., 2012,18:2792.
[80]
Yang S, Wei T, Kemnitz E, Troyanov S I . Angew. Chem., 2012,124:8364.
[81]
Jin F, Yang S, Troyanov S I . Inorg. Chem., 2017,56:4780.
[82]
Wang S, Yang S, Kemnitz E, Troyanov S I . Chem. -Eur. J., 2016,22:5138.
[83]
Fritz M A, Kemnitz E, Troyanov S I . Chem. Commun., 2014,50:14577.
[84]
Wang S, Yang S, Kemnitz E, Troyanov S I . Angew. Chem. Int. Ed., 2016,55:3451.
[85]
Yang S, Wang S, Troyanov S I . Chem. -Eur. J., 2014,20:6875.
[86]
Yang S, Wei T, Kemnitz E, Troyanov S I . Chem. -Asian J., 2014,9:79.
[87]
Wang S, Yang S, Kemnitz E, Troyanov S I . Inorg. Chem., 2016,55:5741.
[88]
Iijima S . Nature, 1991,354:56.
[89]
Xu Y Y, Tian H R, Li S H, Chen Z C, Yao Y R, Wang S S, Zhang X, Zhu Z Z, Deng S L, Zhang Q Y, Yang S F, Xie S Y, Huang R B, Zheng L S . Nat. Commun., 2019,10:485.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[6] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[7] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[8] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[9] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[10] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[11] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[12] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[13] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[14] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[15] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
Viewed
Full text


Abstract

Structures and Progress of Carbon Clusters