中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (5): 530-538 DOI: 10.7536/PC170118 Previous Articles   Next Articles

• Review •

Organosulfates in PM2.5

Dewen Han1, Xintong Wang2, Fashuai Ju1, Yangjun Wang1, Jialiang Feng1, Wu Wang1*   

  1. 1. Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;
    2. KangHeng Health Testing Technology CO., LTD, Tieling 112008, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21377078,41675123),the Jinhua Technology Bureau's Funds (No.2013-3-001) and the Jinhua EPB's Funds (No.YG2014-FW673-ZFCG046).
PDF ( 1232 ) Cited
Export

EndNote

Ris

BibTeX

Organosulfates which have been discovered in secondary organic aerosols are important constituents of PM2.5 in the atmosphere. Formed through anthropogenic activities and biogenic emissions, they have negative impacts on not only human health but also global climate change. Based on major precursors in different atmospheric environments, i.e., biogenic volatile organic compounds isoprene and α-/β-pinene in forest (clean area), anthropogenic polycyclic aromatic hydrocarbons in urban (polluted area), and biogenic and anthropogenic mixed sources carbonyls in areas affected by both vegetation and human activities, we elaborated systematically the categories and structures of organosulfates and their photooxidation formation pathway under various atmospheric conditions with different atmospheric oxidants in the presence of SO2/H2SO4. Then, relevant literatures have been reviewed as much as possible and the concentration levels in PM2.5 in reported areas worldwide aresummarized. Moreover, up-to-date analytical techniques are described, as well as their benefits and drawbacks. Finally, impact factors of organosulfates formation are discussed. At the end of context, several issues are proposed which need to be addressed urgently, and future research directions in organosulfates are also prospected.
Contents
1 Introduction
2 The categories and formation mechanisms of OS
2.1 Forest (clean area)
2.2 Urban (polluted area)
2.3 Mixture areas affected by both vegetation and human activities
3 The concentration levels of OS
4 Analytical techniques
5 Impact factors
6 Conclusion

CLC Number: 

[1] Surratt J D, Gomez-Gonzalez Y, Chan A W H, Vermeylen R, Shahgholi M, Kleindienst T E, Edney E O, Offenberg J H, Lewandowski M, Jaoui M, Maenhaut W, Claeys M, Flagan R C, Seinfeld J H. J. Phys. Chem. A, 2008, 112:8345.
[2] Stone E A, Yang L, Yu L E, Rupakheti M. Atmos. Environ., 2012, 47:323.
[3] Zhou S, Wenger J C. Atmos. Environ., 2013, 75:103.
[4] Yan P, Zhang R J, Huan N, Zhou X J, Zhang Y M, Zhou H G, Zhang L M. Atmos. Environ., 2012, 60:121.
[5] Yang L, Zhou X, Wang Z, Zhou Y, Cheng S, Xu P, Gao X, Nie W, Wang X, Wang W. Atmos. Environ., 2012, 55:506.
[6] Shang J, Passananti M, Dupart Y, Ciuraru R, Tinel L, Rossignol S, Perrier S, Zhu T, George C. Environ. Sci. Technol. Lett., 2016, 3:67.
[7] Passananti M, Kong L D, Shang J, Dupart Y, Perrier S, Chen J, Donaldson D J, George C. Angew. Chem. Int. Ed., 2016, 55:1.
[8] Lukács H, Gelencsér A, Hoffer A, Kiss G, Horváth K, Hartyáni Z. Atmos. Chem. Phys., 2009, 9:231.
[9] Guenther A B, Jiang X, Heald C L, Sakulyanontvittaya T, Duhl T, Emmons L K, Wang X. Geosci. Model Dev., 2012, 5:1471.
[10] Wang X K, Rossignol S, Ma Y, Yao L, Wang M Y, Chen J M, George C, Wang L. Atmos. Chem. Phys., 2016, 16:2285.
[11] Kramer A J, Rattanavaraha W, Zhang Z F, Gold A, Surratt J D, Lin Y H. Atmos. Environ., 2016, 130:211.
[12] Lin Y H, Zhang H, Pye H O T, Zhang Z, Marth W J, Park S, Arashiro M, Cui T, Budisulistiorini S H, Sexton K G, Vizuete W, Xie Y, Luecken D J, Piletic I R, Edney E O, Bartolotti L J, Gold A, Surratt J D. Proc. Natl. Acad. Sci. U. S. A., 2013, 110:6718.
[13] Darer A I, Filipiak N C C, O'Connor A E, Elrod M J. Environ. Sci. Technol., 2011, 45:1895.
[14] Leng C B, Duncan Kish J, Kelley J, Mach M, Hiltner J, Zhang Y H, Liu Y. J. Phys. Chem. A, 2013, 117:10359.
[15] Whalley L K, Stone D, George I J, Mertes S, van Pinxteren D, Tilgner A, Herrmann H, Evans M J, Heard D E. Atmos. Chem. Phys., 2015, 15:3289.
[16] Nozière B, Ekström S, Alsberg T, Holmström S. Geophys. Res. Lett., 2010, 37(5):1944.
[17] Kuznietsova I. Doctoral Dissertation of Technical University of Warsaw, 2012.
[18] Barnes I, Rudzinski K J. Nato Science for Peace & Security, 2012.
[19] Szmigielski R. Atmos. Environ., 2016, 130:14.
[20] Wang W, Wu M H, Li L, Zhang T, Liu X D, Feng J L, Li H J, Wang Y J, Sheng G Y, Claeys Ma, Fu J. Atmospheric Chemistry and Physics, 2008, 8:7507.
[21] He Q F, Ding X, Wang X M, Yu J Z, Fu X X, Liu T Y, Zhang Z, Xue J, Chen D H, Zhong L J, Donahue N M. Environ. Sci. Technol., 2014, 48:9236.
[22] Iinuma Y, Müller C, Berndt T, B ge O, Claeys M, Herrmann H. Environ. Sci. Technol., 2007, 41:6678.
[23] Iinuma Y, B ge O, Kahnt A, Herrmann H. Phys. Chem. Chem. Phys., 2009, 11:7985.
[24] Kautzman K E, Surratt J D, Chan M N, Chan A W H, Hersey S P, Chhabra P S, Dalleska N F, Wennberg P O, Flagan R C, Seinfeld J H. J. Phys. Chem. A, 2010, 114:913.
[25] Staudt S, Kundu S, Lehmler H J, He X R, Cui T Q, Lin Y H, Kristensen K, Glasius M, Zhang X L, Weber R J, Surratt J D, Stone E A. Atmos. Environ., 2014, 94:366.
[26] Calvert J G, Atkinson R, Becker K H, Kamens R M, Seinfeld J H, Wallington T J, Yarwood G. The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons. NY:Oxford University Press, 2002.
[27] Riva M, Tomaz S, Cui T Q, Lin Y H, Perraudin E, Gold A, Stone E A, Villenave E, Surratt J D. Environ. Sci. Technol., 2015, 49:6654.
[28] Lee J Y, Lane D A. Atmos. Environ., 2009, 43 (32):4886.
[29] Kleindienst T E, Jaoui M, Lewandowski M, Offenberg J H, Docherty K S. Atmos. Chem. Phys., 2012, 12 (18):8711.
[30] Kuang B Y, Lin P, Hu M, Yu J Z. Atmos. Environ., 2016, 130:23.
[31] Fu T M, Jacob D J, Wittrock F, Burrows J P, Vrekoussis M, Henze D K. J. Geophys. Res., 2008, 113(D15):2156.
[32] Galloway M M, Chhabra P S, Chan A W H, Surratt J D, Flagan R C, Seinfeld J H, Keutsch F N. Atmos. Chem. Phys., 2009, 9:3331.
[33] Perri M J, Lim Y B, Seitzinger S P, Turpin B J. Atmos. Environ., 2010, 44:2658.
[34] Stone E A, Hedman C J, Sheesley R J, Shafer M M, Schauer J J. Atmos. Environ., 2009, 43:4205.
[35] Hawkins L N, Russell L M, Covert D S, Quinn P K, Bates T S. J. Geophys. Res., 2010, 115(D13):2156.
[36] Ma Y, Xu X K, Song W H, Geng F H, Wang L. Atmos. Environ., 2014, 85:152.
[37] Chan M N, Surratt J D, Claeys M, Edgerton E S, Tanner R L, Shaw S L, Zheng M, Knipping E M, Eddingsaas N C, Wennberg P O, Seinfeld J H. Environ. Sci. Technol., 2010, 44:4590.
[38] Rattanavaraha W, Chu K, Budisulistiorini S H, Riva M, Lin Y H, Edgerton E S, Baumann K, Shaw S L, Guo H Y, King L, Weber R J, Neff M E, Stone E A, Offenberg J H, Zhang Z F, Gold A, Surratt J D. Atmos. Chem. Phys., 2016, 16:4897.
[39] Kristensen K, Glasius M. Atmos. Environ., 2011, 45:4546.
[40] Hansen A M K, Kristensen K, Nguyen Q T, Zare1 A, Cozzi F, Nøjgaard J K, Skov H, Brandt J, Christensen J H, Ström J, Tunved P, Krejci R, Glasius M. Atmos. Chem. Phys., 2014, 14:7807.
[41] Olson C N, Galloway M M, Yu G, Hedman C J, Lockett M R, Yoon T, Stone E A, Smith L M, Keutsch F N. Environ. Sci. Technol., 2011, 45:6468.
[42] Hettiyadura A P S, Jayarathne T, Baumann K, Stone E A. Atmos. Chem. Phys. Discuss., 2016, 17:1343.
[43] Surratt J D, Kroll J H, Kleindienst T E, Edney E O, Claeys M, Sorooshian A, Ng N L, Offenberg J H, Lewandowski M, Jaoui M, Flagan R C, Seinfeld J H. Environ. Sci. Technol., 2007, 41:517.
[44] Gómez-González Y, Surratt J D, Cuyckens F, Szmigielski R, Vermeylen R, Jaoui M, Lewandowski M, Offenberg J H, Kleindienst T E, Edney E O, Blockhuys F, Van Alsenoy C, Maenhaut W, Claeys M. Mass Spectrom., 2008, 43:371.
[45] Claeys M, Wang W, Vermeylen R, Kourtchev I, Chi X G, Farhat Y, Surratt J D, Gómez-González Y, Sciare J, Maenhaut W. Aerosol Sci., 2010, 41:13.
[46] Huang D D, Li Y J, Lee B P, Chan C K. Environ. Sci. Technol., 2015, 49:3672.
[47] Altieri K E, Turpin B J, Seitzinger S P. Atmos. Chem. Phys., 2009, 9:2533.
[48] Mazzoleni L R, Ehrmann B M, Shen X H, Marshall A G, Collett J L. Environ. Sci. Technol., 2010, 44:3690.
[49] 郭润泽(Guo R Z), 曹罡(Cao G). 哈尔滨工业大学硕士论文(Master Dissertation of Harbin Institute of Technology). 2013.
[50] Jayne J T, Leard D C, Zhang X F, Davidovits P, Smith K A, Kolb C E, Worsnop D R. Aerosol Sci. Technol., 2000, 33:49.
[51] Gard E, Mayer J E, Morrical B D, Dienes T, Fergenson D P, Prather K A. Anal. Chem., 1997, 69:4083.
[52] Ehn M, Junninen H, Petäjä T, Kurtén T, Kerminen V M, Schobesberger S, Manninen H E, Ortega I K, Vehkamäki H, Kulmala M, Worsnop D R. Atmos. Chem. Phys., 2010, 10:8513.
[53] Hatch L E, Creamean J M, Ault A P, Surratt J D, Chan M N, Seinfeld J H, Edgerton E S, Su Y, Prather K A. Environ. Sci. Technol., 2011, 45:5105.
[54] Hatch L E, Creamean J M, Ault A P, Surratt J D, Chan M N, Seinfeld J H, Edgerton E S, Su Y X, Prather K A. Environ. Sci. Technol., 2011, 45:8648.
[55] Eddingsaas N C, VanderVelde D G, Wennberg P O. J. Phys. Chem. A, 2010, 114:8106.
[56] Gaston C J, Riedel T P, Zhang Z, Gold A, Surratt J D, Thornton J A. Environ. Sci. Technol., 2014, 48:11178.
[57] Zhang H, Surratt J D, Lin Y H, Bapat J, Kamens R M. Atmos. Chem. Phys., 2011, 11:6411.
[58] Zhang H, Lin Y H, Zhang Z, Zhang X, Shaw S L, Knipping E M, Weber R J, Gold A, Richard K, Surratt J D. Environmental Chemistry, 2012, 9(3):247.
[59] Duporté G, Flaud P M, Geneste E, Augagneur S, Pangui E, Lamkaddam H, Gratien A, Doussin J F, Budzinski H, Villenave E, Perraudin E. J. Phys. Chem. A, 2016, 120:7909.
[60] Estillore A D, Hettiyadura A P S, Qin Z, Leckrone E, Wombacher B, Humphry T, Stone E A, Grassian V H. Environ. Sci. Technol., 2016, 50:4259.
[61] Carlton A G, Turpin B J. Atmos. Chem. Phys., 2013, 13:10203.
[1] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[2] Biwu Chu, Qingxin Ma, Fengkui Duan, Jinzhu Ma, Jingkun Jiang, Kebin He, Hong He. Atmospheric “Haze Chemistry”: Concept and Research Prospects [J]. Progress in Chemistry, 2020, 32(1): 1-4.
[3] Li Xiangzi, Wei Xianwen. Fabrication, Formation Mechanisms and Potential Applications of Magnetic Metal Nanotubes [J]. Progress in Chemistry, 2012, 24(11): 2143-2157.
[4] Ma Ye, Chen Jianmin, Wang Lin. Characteristics and Formation Mechanisms of Atmospheric Organosulfates [J]. Progress in Chemistry, 2012, 24(11): 2277-2286.
[5] Zhang Zhilei, Wang Zhining, Gao Xueli, Gao Congjie. Progress in Supported Phospholipid Bilayers [J]. Progress in Chemistry, 2012, 24(05): 852-862.
[6] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.
[7] Wang Cong, Liu Xiufeng**, Cui Ruili, Zhang Baoquan. Formation and Reparation of Defects in Zeolite Membranes [J]. Progress in Chemistry, 2008, 20(12): 1860-1867.
Viewed
Full text


Abstract

Organosulfates in PM2.5