中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 2150-2162 DOI: 10.7536/PC210420 Previous Articles   

• Review •

Formation Mechanism and Resource Recovery Perspectives of Aqueous Phase from Hydrothermal Liquefaction of Biomass

Yongdong Xu, Zhidan Liu()   

  1. Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
  • Received: Revised: Online: Published:
  • Contact: Zhidan Liu
  • Supported by:
    National Natural Science Foundation of China(U1562107); National Natural Science Foundation of China(51861125103)
Richhtml ( 42 ) PDF ( 683 ) Cited
Export

EndNote

Ris

BibTeX

The conversion of biomass into biocrude oil by hydrothermal liquefaction (HTL) is a potential way to produce renewable liquid fuels. However, the aqueous phase (HTL-AP) by-products have high yields, complex compositions and high environmental risk which limit the green development of hydrothermal liquefaction technology. Based on the relevant research of our research group in recent 10 years (2012-2021), this paper summarizes the formation mechanism, characteristics and resource recovery path of HTL-AP. The factors affecting the formation of HTL-AP were introduced, and the ways of compound transformation and element migration in different hydrothermal reaction variables were summarized. The approaches and research progress of aqueous biotransformation, including aerobic microbial degradation, microalgae culture, anaerobic treatment and microbial electrochemistry, were reviewed. The physical methods such as membrane separation and adsorption were introduced to separate aqueous substances and obtain high-value components. The potential of using HTL-AP to prepare agricultural fungicides was discussed. Finally, the treatment principle and research direction are prospected in order to provide reference for the treatment and resource recovery of HTL-AP.

Contents

1 Introduction

2 Formation mechanism of HTL-AP

2.1 Hydrothermal reaction conditions

2.2 Raw material conversion path

2.3 Element migration path

3 Physical and chemical methods

3.1 Separation of organic elements

3.2 Separation of inorganic elements

3.3 Mixed component utilization

4 Biological treatment method

4.1 Cytotoxicity

4.2 Aerobic biological treatment

4.3 Microalgae treatment

4.4 Anaerobic fermentation

4.5 Microbial electrochemistry

5 Challenges and prospects of HTL-AP resource recovery

5.1 Challenges of HTL-AP resource recovery

5.2 Prospects of HTL-AP resource recovery

6 Conclusion

Fig. 1 Hydrothermal liquefaction reaction process and two product separation paths
Fig. 2 Main components of HTL-AP of mixed feedstocks of model compounds at different temperatures
Table 1 Typical characteristics of HTL-AP from HTL of various feedstock[22,33,34]
Fig.3 Carbon and nitrogen distribution during HTL of manures[32]. (a) Carbon and nitrogen balance during HTL of manures; (b) Organic groups in the aqueous phase from HTL of livestock manures identified by GC-MS analysis. Copyright 2018, ACS Society
Table 2 Microalgae cultivation of HTL-AP from HTL of diverse biomass[33]
Fig.4 Anaerobic fermentation of HTL-AP after adsorption[76]. (a) zeolite adsorption and anaerobic digestion; (b) Gas chromatography-mass spectrometer (GC-MS) chromatograms for zeolite-adsorbed and raw HTL-AP. Copyright 2018, Elsevier
Fig.5 Taxonomic classification of microbial community in biohythane and biomethane systems for HTL-AP treatment[80]. At the phylum (A, C) and family (B, D) levels through Illumina Miseq sequencing. Copyright 2016, Springer
Fig.6 MEC system used for HTL-AP treatment[84]. Copyright 2018, Elsevier
Table 3 Comparison of the state of technology of different HTL-AP treatment approaches.
Technology Category Approaches Advantages Challenges
Biotechnology Algae Cultivation Nutrients are reused
Biomass generation
Mild treatment conditions
Low COD removal efficiency
Needs economic evaluation
Large dilution ratio demand
Risk of heavy meatal accumulation
Aerobic Biodegradation Biomass generation
Mild treatment conditions
Large dilution ratio demand
High aeration energy consumption
Anaerobic Fermentation Energettically positive
Low operating cost
Large capacity
Long processing cycle
Large dilution ratio requirement
Microbial Electrochemical Technology Energettically positive
High removal rate of
toxic substances
Low sludge production
Long processing cycle
Small capacity
Physicochemical Technology Chemical Sedimentation High separation efficiency of
inorganic substances
Needs additional chemicals
High sludge production
Low removal rate of organic substances
Membrane Separation Concentrate the aqueous phase
Separation of organic and
inorganic substances
Difficult to obtain specific substances
Limited efficiency of small molecule organic substances
Adsorption-desorption Obtain specific substances Low treatment efficiency
Needs economic evaluatio
Complex process
Gasification Efficient removal of
organic substances
Fast conversion process
High energy demand
High pressure and temperature
Limited removal rate of inorganic substances
Recycle for HTL Water conservation
Concentrate the aqueous phase
No additional treatment
technology required
May restrain the oil production rate
High energy requirement
Prominent Pathway Bactericidal Insecticide High value-added utilization Needs evaluation of biosafety, economy and effectiveness
Unstable bactericidal properties
[1]
Zhou Y J, Kerkhoven E J, Nielsen J. Nat. Energy, 2018, 3(11): 925.

doi: 10.1038/s41560-018-0197-x
[2]
Li L Y, Sun W M, Hu W, Sun Y K. J. Build. Eng., 2021, 37: 102136.
[3]
Zafar M W, Sinha A, Ahmed Z, Qin Q D, Zaidi S A H. Renew. Sustain. Energy Rev., 2021, 142: 110868.
[4]
Tian C Y, Li B M, Liu Z D, Zhang Y H, Lu H F. Renew. Sustain. Energy Rev., 2014, 38: 933.

doi: 10.1016/j.rser.2014.07.030
[5]
Huang H J, Yuan X Z. Bioresour. Technol., 2016, 200: 991.

doi: 10.1016/j.biortech.2015.10.099
[6]
Pham M, Schideman L, Scott J, Rajagopalan N, Plewa M J. Environ. Sci. Technol., 2013, 47(4): 2131.

doi: 10.1021/es304532c pmid: 23305492
[7]
Chen W T, Zhang Y H, Lee T H, Wu Z W, Si B C, Lee C F F, Lin A, Sharma B K. Nat. Sustain., 2018, 1(11): 702.

doi: 10.1038/s41893-018-0172-3
[8]
Elliott D C, Hart T R, Schmidt A J, Neuenschwander G G, Rotness L J, Olarte M V, Zacher A H, Albrecht K O, Hallen R T, Holladay J E. Algal Res., 2013, 2(4): 445.

doi: 10.1016/j.algal.2013.08.005
[9]
Elliott D C, Schmidt A J, Hart T R, Billing J M. Biomass Convers. Biorefinery, 2017, 7(4): 455.

doi: 10.1007/s13399-017-0264-8
[10]
Li H, Liu Z D, Zhang Y H, Li B M, Lu H F, Duan N, Liu M S, Zhu Z B, Si B C. Bioresour. Technol., 2014, 154: 322.

doi: 10.1016/j.biortech.2013.12.074
[11]
Zhu Z B, Liu Z D, Zhang Y H, Xing X H, Li B M, Duan N, Lu H F, Li H, Si B C, He Y H. J. Bioprocess Eng. Biorefinery, 2014, 3(3): 219.

doi: 10.1166/jbeb.2014.1097
[12]
Leng L J, Leng S Q, Chen J, Yuan X Z, Li J, Li K, Wang Y P, Zhou W G. Bioresour. Technol., 2018, 259: 156.

doi: 10.1016/j.biortech.2018.03.019
[13]
Leng L J, Li J, Wen Z Y, Zhou W G. Bioresour. Technol., 2018, 256: 529.

doi: 10.1016/j.biortech.2018.01.121
[14]
Neyens E, Baeyens J. J. Hazard. Mater., 2003, 981-3: 51.
[15]
Lu J W, Zhang J R, Zhu Z B, Zhang Y H, Zhao Y, Li R R, Watson J, Li B M, Liu Z D. Energy Convers. Manag., 2017, 134: 340.

doi: 10.1016/j.enconman.2016.12.052
[16]
RemÓn J, Santomauro F, Chuck C J, Matharu A S, Clark J H. Green Chem., 2018, 20(19): 4507.

doi: 10.1039/C8GC02182A
[17]
Toor S S, Rosendahl L, Rudolf A. Energy, 2011, 36(5): 2328.

doi: 10.1016/j.energy.2011.03.013
[18]
Anastasakis K, Ross A B. Bioresour. Technol., 2011, 102(7): 4876.

doi: 10.1016/j.biortech.2011.01.031
[19]
Zhu Z B, Liu Z D, Zhang Y H, Li B M, Lu H F, Duan N, Si B C, Shen R X, Lu J W. Bioresour. Technol., 2016, 199: 220.

doi: 10.1016/j.biortech.2015.08.043
[20]
Zhu Z B, Si B C, Lu J W, Watson J, Zhang Y H, Liu Z D. Bioresour. Technol., 2017, 243: 9.

doi: 10.1016/j.biortech.2017.06.085
[21]
Xu Y D, Lu J W, Wang Y Y, Yuan C B, Liu Z D. J. Hazard. Mater., 2022, 423: 12761.
[22]
Usman M, Chen H H, Chen K F, Ren S, Clark J H, Fan J J, Luo G, Zhang S C. Green Chem., 2019, 21(7): 1553.

doi: 10.1039/C8GC03957G
[23]
Tian C, Liu Z, Zhang Y, Li B, Cao W, Lu H, Duan N, Zhang L, Zhang T. Bioresource Technology, 2015, 184: 336.

doi: 10.1016/j.biortech.2014.10.093
[24]
Ching T W, Haritos V, Tanksale A. Carbohydr. Polym., 2017, 157: 1794.

doi: 10.1016/j.carbpol.2016.11.066
[25]
Nakasu P Y S, Ienczak L J, Costa A C, Rabelo S C. Fuel, 2016, 185: 73.

doi: 10.1016/j.fuel.2016.07.069
[26]
Kang S M, Li X L, Fan J, Chang J. Renew. Sustain. Energy Rev., 2013, 27: 546.

doi: 10.1016/j.rser.2013.07.013
[27]
Lu J W, Liu Z D, Zhang Y H, Savage P E. ACS Sustainable Chem. Eng., 2018, 6(11): 14501.

doi: 10.1021/acssuschemeng.8b03156
[28]
Zhang C, Tang X H, Sheng L L, Yang X Y. Green Chem., 2016, 18(8): 2542.

doi: 10.1039/C5GC02953H
[29]
Yang W, Li X, Li Z, Tong C, Feng L. Bioresource Technology, 2015, 196: 99.

doi: 10.1016/j.biortech.2015.07.020
[30]
Madsen R B, Biller P, Jensen M M, Becker J, Iversen B B, Glasius M. Energy Fuels, 2016, 30(12): 10470.

doi: 10.1021/acs.energyfuels.6b02007
[31]
Yu G, Zhang Y H, Schideman L, Funk T, Wang Z C. Energy Environ. Sci., 2011, 4(11): 4587.

doi: 10.1039/c1ee01541a
[32]
Lu J W, Li H G, Zhang Y H, Liu Z D. ACS Sustainable Chem. Eng., 2018, 6(10): 13570.

doi: 10.1021/acssuschemeng.8b03810
[33]
Gu Y X, Zhang X S, Deal B, Han L J. Bioresour. Technol., 2019, 278: 329.

doi: 10.1016/j.biortech.2019.01.127
[34]
Gu Y X, Zhang X S, Deal B, Han L J, Zheng J L, Ben H X. Green Chem., 2019, 21(21): 6030.

doi: 10.1039/C9GC90097G
[35]
Xu D H, Lin G K, Liu L, Wang Y, Jing Z F, Wang S Z. Energy, 2018, 159: 686.

doi: 10.1016/j.energy.2018.06.191
[36]
Kobayashi Y, Tsuchiya T. Carbohydr. Res., 1997, 298(4): 261.

doi: 10.1016/S0008-6215(96)00318-7
[37]
Rao U, Posmanik R, Hatch L E, Tester J W, Walker S L, Barsanti K C, Jassby D. Bioresour. Technol., 2018, 267: 408.

doi: 10.1016/j.biortech.2018.07.064
[39]
Chen K F, Lyu H, Hao S L, Luo G, Zhang S C, Chen J M. Bioresour. Technol., 2015, 182: 160.

doi: 10.1016/j.biortech.2015.01.124
Lyu H, Chen K F, Yang X, Younas R, Zhu X D, Luo G, Zhang S C, Chen J M. Sep. Purif. Technol., 2015, 147: 276.

doi: 10.1016/j.seppur.2015.04.032
[40]
Zhang X S, Scott J, Sharma B K, Rajagopalan N. Environ. Sci.: Water Res. Technol., 2018, 4(4): 520.
[41]
Shanmugam S R, Adhikari S, Shakya R. Bioresour. Technol., 2017, 230: 43.

doi: 10.1016/j.biortech.2017.01.031
[42]
Li Y L, Tarpeh W A, Nelson K L, Strathmannand T J. Environ. Sci. Technol. 2018, 52(21): 12717.

doi: 10.1021/acs.est.8b04035
[43]
Biller P, Madsen R B, Klemmer M, Becker J, Iversen B B, Glasius M. Bioresour. Technol., 2016, 220: 190.

doi: 10.1016/j.biortech.2016.08.053
[44]
Klemmer M, Madsen R B, Houlberg K, Mørup A J, Christensen P S, Becker J, Glasius M, Iversen B B. Ind. Eng. Chem. Res., 2016, 55(48): 12317.

doi: 10.1021/acs.iecr.6b03414
[45]
Chen H, He Z, Zhang B, Feng H, Kandasamy S, Wang B. Energy, 2019.
[46]
Zhu Z, Rosendahl L, Toor S S, Yu D H, Chen G Y. Appl. Energy, 2015, 137: 183.

doi: 10.1016/j.apenergy.2014.10.005
[47]
Yu J Q, Guo Q H, Gong Y, Ding L, Wang J J, Yu G S. Fuel Process. Technol., 2021, 214: 106723.
[48]
Watson J, Si B C, Li H, Liu Z D, Zhang Y H. Int. J. Hydrog. Energy, 2017, 42(32): 20503.

doi: 10.1016/j.ijhydene.2017.05.083
[49]
Zhang L H, Champagne P, (Charles) Xu C. Bioresour. Technol., 2011, 102(17): 8279.

doi: 10.1016/j.biortech.2011.06.051
[50]
Awasthi A K, Tan Q Y, Li J H. Trends Biotechnol., 2020, 38(11): 1196.

doi: 10.1016/j.tibtech.2020.03.002
[51]
Blank L M, Narancic T, Mampel J, Tiso T, O’Connor K. Curr. Opin. Biotechnol., 2020, 62: 212.

doi: 10.1016/j.copbio.2019.11.011
[52]
Zheng M X, Schideman L C, Tommaso G, Chen W T, Zhou Y, Nair K, Qian W Y, Zhang Y H, Wang K J. Energ Convers Manage. 2017, 141: 420.

doi: 10.1016/j.enconman.2016.10.034
[53]
Holkar C R, Jadhav A J, Pinjari D V, Mahamuni N M, Pandit A B. J. Environ. Manag., 2016, 182: 351.

doi: 10.1016/j.jenvman.2016.07.090
[54]
Saidulu D, Gupta B, Gupta A K, Ghosal P S. J. Environ. Chem. Eng., 2021, 9(4): 105282.
[55]
Jayakody L N, Johnson C W, Whitham J M, Giannone R J, Black B A, Cleveland N S, Klingeman D M, Michener W E, Olstad J L, Vardon D R, Brown R C, Brown S D, Hettich R L, Guss A M, Beckham G T. Energy Environ. Sci., 2018, 11(6): 1625.

doi: 10.1039/C8EE00460A
[57]
He Y C, Li X L, Xue X Y, Swita M S, Schmidt A J, Yang B. Bioresour. Technol., 2017, 224: 457.

doi: 10.1016/j.biortech.2016.10.059
[58]
Lin M N A L. Bioresource Technology, 2013.
Zhang J Z, Chen Y C, Fu L H, Guo E P, Wang B, Dai L, Si T. Curr. Opin. Biotechnol., 2021, 67: 88.

doi: 10.1016/j.copbio.2021.01.010
[59]
Harmon V L, Wolfrum E, Knoshaug E P, Davis R, Laurens L M L, Pienkos P T, McGowen J. Algal Res., 2021, 55: 102249.
[60]
Li X D, Zhang Z Y, Xie Q, Wu D Y. Environ. Pollut., 2021, 276: 116713.
[61]
Zhou Y, Schideman L, Yu G, Zhang Y H. Energy Environ. Sci., 2013, 6(12): 3765.

doi: 10.1039/c3ee24241b
[62]
Li Z, Haifeng L, Zhang Y, Shanshan M, Baoming L, Zhidan L, Na D, Minsheng L, Buchun S, Jianwen L. Int. J. Agr. Biol. Eng., 2017, 10(2):194.
[63]
Zhang L, Lu H F, Zhang Y H, Li B M, Liu Z D, Duan N, Liu M S. J. Appl. Phycol., 2016, 28(2): 1031.

doi: 10.1007/s10811-015-0640-3
[64]
Jena U, Vaidyanathan N, Chinnasamy S, Das K C. Bioresour. Technol., 2011, 102(3): 3380.

doi: 10.1016/j.biortech.2010.09.111
[65]
Du Z Y, Hu B, Shi A M, Ma X C, Cheng Y L, Chen P, Liu Y H, Lin X Y, Ruan R. Bioresour. Technol., 2012, 126: 354.

doi: 10.1016/j.biortech.2012.09.062
[66]
Gardea-Torresdey J L, Becker-Hapak M K, Hosea J M, Darnall D W. Environ. Sci. Technol., 1990, 24(9): 1372.

doi: 10.1021/es00079a011
[67]
Leng L J, Zhang W J, Leng S Q, Chen J, Yang L H, Li H L, Jiang S J, Huang H J. Sci. Total Environ., 2020, 748: 142383.
[68]
Lim S J, Kim T H. J. Environ. Manag., 2018, 218: 148.

doi: 10.1016/j.jenvman.2018.04.054
[69]
Zhao Q X, Wang J T, OuYang S Y, Chen L G, Liu M, Li Y, Jiang F. J. Hazard. Mater., 2021, 415: 125691.
[70]
Wang X Y, Ding S X, Song W C, Li H W, Zhang Y H, Ren W N, Li M H, Lu J, Ding J C. Biochem. Eng. J., 2021, 169: 107983.
[71]
Godwin C M, Hietala D C, Lashaway A R, Narwani A, Savage P E, Cardinale B J. Bioresour. Technol., 2017, 224: 630.

doi: 10.1016/j.biortech.2016.11.105
[72]
Guo H Y, Zhao S F, Xia D P, Wang L, Lv J, Yu H F, Jiao X J. Bioresour. Technol., 2021, 332: 125072.
[73]
Pang H L, Wang L, He J G, Zhang P F, Yan Z S, Ma Y Q, Nan J. Bioresour. Technol., 2020, 318: 123953.
[74]
Tommaso G, Chen W T, Li P, Schideman L, Zhang Y H. Bioresour. Technol., 2015, 178: 139.

doi: 10.1016/j.biortech.2014.10.011
[75]
Chen H H, Wan J J, Chen K F, Luo G, Fan J J, Clark J, Zhang S C. Water Res., 2016, 106: 98.

doi: 10.1016/j.watres.2016.09.052
[76]
Li R R, Liu D L, Zhang Y F, Zhou P H, Tsang Y F, Liu Z D, Duan N, Zhang Y H. Sci. Total Environ., 2019, 651: 61.

doi: 10.1016/j.scitotenv.2018.09.175
[77]
Chen H H, Wan J J, Chen K F, Luo G, Fan J J, Clark J, Zhang S C. Water Res., 2016, 106: 98.

doi: 10.1016/j.watres.2016.09.052
[78]
Karki R, Chuenchart W, Surendra K C, Shrestha S de Raskin L, Sung S, Hashimoto A, Kumar Khanal S. Bioresour. Technol., 2021, 330: 125001.
[79]
Fernandez S, Srinivas K, Schmidt A J, Swita M S, Ahring B K. Bioresour. Technol., 2018, 247: 250.

doi: 10.1016/j.biortech.2017.09.030
[80]
Si B C, Li J M, Zhu Z B, Zhang Y H, Liu Z. Biotechnology for Biofuels, 2016, 9(1):254.

doi: 10.1186/s13068-016-0666-z
[81]
Chiranjeevi P, Patil S A. Biotechnol. Adv., 2020, 39: 107468.
[82]
He Y H, Liu Z D, Xing X H, Li B M, Zhang Y H, Shen R X, Zhu Z B, Duan N. Biochem. Eng. J., 2015, 94: 39.

doi: 10.1016/j.bej.2014.11.006
[83]
Shen R X, Liu Z D, He Y H, Zhang Y H, Lu J W, Zhu Z B, Si B C, Zhang C, Xing X H. Int. J. Hydrog. Energy, 2016, 41(7): 4132.

doi: 10.1016/j.ijhydene.2016.01.032
[84]
Shen R X, Jiang Y, Ge Z, Lu J W, Zhang Y H, Liu Z D, Ren Z J. Appl. Energy, 2018, 212: 509.

doi: 10.1016/j.apenergy.2017.12.065
[85]
Zhou Y, Schideman L, Yu G, Zhang Y H. Energy Environ. Sci., 2013, 6(12): 3765.

doi: 10.1039/c3ee24241b
[1] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[2] Yangrong Yao, Suyuan Xie. Structures and Progress of Carbon Clusters [J]. Progress in Chemistry, 2019, 31(1): 50-62.
[3] Lijuan Jin, Baoliang Chen*. Natural Origins, Concentration Levels, and Formation Mechanisms of Organohalogens in the Environment [J]. Progress in Chemistry, 2017, 29(9): 1093-1114.
[4] Dewen Han, Xintong Wang, Fashuai Ju, Yangjun Wang, Jialiang Feng, Wu Wang. Organosulfates in PM2.5 [J]. Progress in Chemistry, 2017, 29(5): 530-538.
[5] Wang Jing, Fan Haowen, Zhang He, Chen Qun, Liu Yi, Ma Weihua. Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes [J]. Progress in Chemistry, 2016, 28(2/3): 284-295.
[6] Zhan Hao, Zhang Xiaohong, Yin Xiuli, Wu Chuangzhi. Formation of Nitrogenous Pollutants during Biomass Thermo-Chemical Conversion [J]. Progress in Chemistry, 2016, 28(12): 1880-1890.
[7] Guo Huihui, Miao Nana, Li Tengfei, Hao Jun, Gao Yuan, Zhang Jianjun. Pharmaceutical Coamorphous——A Newly Defined Single-Phase Amorphous Binary System [J]. Progress in Chemistry, 2014, 26(0203): 478-486.
[8] Zhu Xufei, Han Hua, Qi Weixing, Lu Chao, Jiang Longfei, Duan Wenqiang. Theoretical Foundation and Limitation of Two-Step Anodizing Technology [J]. Progress in Chemistry, 2012, 24(11): 2073-2086.
[9] Li Xiangzi, Wei Xianwen. Fabrication, Formation Mechanisms and Potential Applications of Magnetic Metal Nanotubes [J]. Progress in Chemistry, 2012, 24(11): 2143-2157.
[10] Ma Ye, Chen Jianmin, Wang Lin. Characteristics and Formation Mechanisms of Atmospheric Organosulfates [J]. Progress in Chemistry, 2012, 24(11): 2277-2286.
[11] Fang Qile, Chen Baoliang*. Natural Origins, Formation Mechanisms, and Fate of Environmental Perchlorate [J]. Progress in Chemistry, 2012, (10): 2040-2053.
[12] Zhang Zhilei, Wang Zhining, Gao Xueli, Gao Congjie. Progress in Supported Phospholipid Bilayers [J]. Progress in Chemistry, 2012, 24(05): 852-862.
[13] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.
[14] Lei Jinhua Wang Honghua Li Dongliang Zhou Guangyuan. Development of Two-Staged Seeded Swelling Polymerization [J]. Progress in Chemistry, 2009, 21(6): 1287-1291.
[15] . Advances in the Mechanism of Secondary Fine Particulate Matters Formation [J]. Progress in Chemistry, 2009, 21(0203): 288-296.