中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (0203): 478-486 DOI: 10.7536/PC130755 Previous Articles   

• Review •

Pharmaceutical Coamorphous——A Newly Defined Single-Phase Amorphous Binary System

Guo Huihui1, Miao Nana1, Li Tengfei2, Hao Jun1, Gao Yuan2, Zhang Jianjun*1   

  1. 1. School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
    2. School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the Important National Science & Technology Specific Projects (No. 2011ZX09201-101-02) and Fundamental Research Funds for the Central Universities (No. JKP2011006)

PDF ( 3760 ) Cited
Export

EndNote

Ris

BibTeX

Pharmaceutical coamorphous, a kind of single-phase amorphous binary system, is formed between an active pharmaceutical ingredient (API1) and another solid small molecular compound (API2 or excipient). As a newly defined solid form, pharmaceutical coamorphous has been one new approach for drug research and development, due to its great potential in the improvement of solubility, dissolution, stability or even bioavailability. Several methods can be used for the preparation of coamorphous drugs, including quench-cooling, solvent evaporation and milling/cryo-milling. In this paper, the definition, preparation, physicochemical characterization and formation mechanism of pharmaceutical coamorphous are addressed. The comparison between coamorphous and solid dispersion or cocrystals is also presented.

Contents
1 Introduction
2 Overview of pharmaceutical coamorphous
2.1 Definition and classification of coamorphous
2.2 Comparison between coamorphous and solid dispersion
2.3 Relationship and differences of coamorphous and cocrystal
3 Formation mechanisms
3.1 Type of interaction
3.2 Flory-Huggins theory
4 Preparation of pharmaceutical coamorphous
4.1 Preparation methods
4.2 Factors affecting the formation of pharmaceutical coamorphous
5 Properties of pharmaceutical coamorphous
5.1 Identification
5.2 Stability
5.3 Solubility and dissolution
6 Outlooks

CLC Number: 

[1] Radtke M. New Drugs, 2001, 3: 62.
[2] Hu J, Johnston K P, Williams R O. Int. J. Pharm., 2004, 271: 145.
[3] 马坤(Ma K), 高静(Gao J), 马磊(Ma L). 中国药科大学学报(Journal of China Pharmaceutical University), 2012, 43(5): 475.
[4] 高缘(Gao Y), 祖卉(Zu H), 张建军(Zhang J J). 化学进展(Progress in Chemistry), 2010, 22(5): 829.
[5] Lara-ochoa F, Espinosa-pérez G. Supramol. Chem., 2007, 19: 553.
[6] Morissette S L, Almarsson O, Peterson M L, Remenar J F, Read M J, Lemmo A V, Ellis S, Cima M J, Gardner C R. Adv. Drug Deliver. Rev., 2004, 56: 275.
[7] Lu Q, Zografi G. Pharm. Res., 1998, 15: 1202.
[8] Löbmann K, Laitinen R, Grohganz H, Gordon K C, Strachan C, Rades T. Mol. Pharm., 2011, 8: 1919.
[9] Descamps M, Willart J F, Dudognon E, Caron V. Journal of Pharmaceutical Science, 2007, 96: 1398.
[10] Hoppu P, Jouppila K, Rantanen J, Schantz S, Juppo A M. J. Pharm. Pharmacol., 2007, 59: 373.
[11] Schilling S U, Bruce C D, Shah N H, Malick A W, McGinity J W. Int. J. Pharm., 2008, 361: 158.
[12] Masuda T, Yoshihashi Y, Yonemochi E, Fujii K, Uekusa H, Terada K. Int. J. Pharm., 2012, 422: 160.
[13] Gao Y, Liao J, Qi X, Zhang J. Int. J. Pharm., 2013, 450: 290.
[14] Ahuja N, Katare O P, Singh B. Eur. J. Pharm. Biopharm., 2007, 65: 26.
[15] Löbnmann K, Grohganz H, Laitinen R, Strachan C, Rades T. Eur. J. Pharm. Biopharm., 2013, 85: 873.
[16] Alles M, Chieng N, Rehder S, Rantanen J, Rades T, Aaltonen J. J. Control. Release, 2009, 136: 45.
[17] Löbmann K, Strachan C, Grohganz H, Rades T, Korhonen O, Laitinen R. Eur. J. Pharm. Biopharm., 2012, 81: 159.
[18] Leuner C, Dressman J. Eur. J. Pharm. Biopharm., 2000, 50: 47.
[19] Serajuddin A T M. J. Pharm. Sci., 1999, 88: 1058.
[20] Zheng W, Jain A, Papoutsakis D, Dannenfelser R M, Panicucci R, Garad S. Drug Dev. Ind. Pharm., 2012, 38: 235.
[21] Vasconcelos T, Sarmento B, Costa P. Drug Discov. Today, 2007, 12: 1068.
[22] Janssens S, Mooter G V. J. Pharm. Pharmacol., 2009, 61: 1571.
[23] Qian F, Huang J, Hussain M A. J. Pharm. Sci., 2010, 99: 2941.
[24] Löbmann K, Laitinen R, Grohganz H, Strachan C, Rades T, Gordon K C. Int. J. Pharm., 2013, 453: 80.
[25] Yamamura S, Gotoh H, Sakamoto Y, Momose Y. Eur. J. Pharm. Biopharm., 2000, 49: 259.
[26] Yamamura S, Gotoh H, Sakamoto Y, Momose Y. Int. J. Pharm., 2002, 241: 213.
[27] Dudognon E, Willart J F, Caron V, Capet F, Larsson T, Descamps M. Solid State Commun., 2006, 138: 68.
[28] Chieng N, Aaltonen J, Saville D, Rades T. Eur. J. Pharm. Biopharm., 2009, 71: 47.
[29] Forster A, Hempenstall J, Tucker, Rades T. Drug Dev. Ind. Pharm., 2001, 27: 549.
[30] Schneider H A. Macromol. Chem. Phys., 1988, 189: 1941.
[31] Nair R, Nyamweya N, Gönen S, Martínez-Miranda L J, Hoag S W. Int. J. Pharm., 2001, 225: 83.
[32] Gupta P, Thilagavathi R, Chakraborti A K, Bansal A K. Mol. Pharm., 2005, 2: 384.
[33] Shamblin S L, Huang E Y, Zografi G. J. Therm. Anal. Calorim., 1996, 47: 1567.
[34] Taylor L S, Zografi G. J. Pharm. Sci., 1998, 87: 1615.
[35] Duer M J. Solid-State NMR Spectroscopy Principles and Applications. Blackwell Science, 2002. 391.
[36] Schantz S, Hoppu P, Juppo A M. J. Pharm. Sci., 2009, 98: 1862.
[37] Yu L. Adv. Drug Deliver. Rev., 2001, 48: 27.

[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[4] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[5] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[6] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[7] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[8] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[9] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[10] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[11] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[12] Yongdong Xu, Zhidan Liu. Formation Mechanism and Resource Recovery Perspectives of Aqueous Phase from Hydrothermal Liquefaction of Biomass [J]. Progress in Chemistry, 2021, 33(11): 2150-2162.
[13] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[14] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.
[15] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.