中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (12): 2245-2258 DOI: 10.7536/PC201140 Previous Articles   Next Articles

• Review •

Manganese Dioxides for Catalytic Decomposition of Formaldehyde in Indoor Air

Xiaoshan Zeng, Chuanjia Shan, Mingdi Sun, Taohong He, Shaopeng Rong()   

  1. School of Environmental and Biological Engineering, Nanjing University of Science and Technology,Nanjing 210094, China
  • Received: Revised: Online: Published:
  • Contact: Shaopeng Rong
  • Supported by:
    the National Natural Science Foundation of China(21906084); the National Undergraduate Training Program for Innovation and Entrepreneurship(202010288026Z); the Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(19K08ESPCT); the Fundamental Research Funds for the Central Universities(30919011210)
Richhtml ( 192 ) Cited

Formaldehyde (HCHO), as a primary pollutant in indoor air, has attracted much attention due to its wide sources, long release period and carcinogenic characteristics. Due to its high catalytic activity at low temperature, low toxicity and low-cost, MnO2 has been employed in catalytic decomposition of HCHO. Herein, the research progress of catalytic decomposition of HCHO by MnO2 is reviewed from three aspects: MnO2 supported noble metals, structural regulation of MnO2, and composite of MnO2 with other non-noble metal materials. The effects of structural regulation strategies such as supported noble metals, crystal structure and morphology, interlayer/tunnel cations, surface defects, atom doping and other composite materials on the catalytic performance of MnO2 for HCHO were discussed. Moreover, the differences of HCHO catalytic decomposition mechanism between noble metal and non-noble metal are compared. Ultimately, the problems and challenges faced by the purification of the indoor HCHO are analyzed and the research directions for the decomposition of HCHO by MnO2 are also proposed.

Contents:

1 Introduction

2 Structure and properties of manganese dioxides

3 Research progress on catalytic decomposition of HCHO by manganese dioxides

3.1 Catalytic decomposition of HCHO by manganese dioxide supported noble metals

3.2 Catalytic decomposition of HCHO by non-noble metal manganese dioxides

4 Mechanism of catalytic decomposition

4.1 Catalytic decomposition mechanism of HCHO by noble metals

4.2 Catalytic decomposition mechanism of HCHO by manganese dioxides

5 Conclusion and outlook

Fig.1 Manganese oxides with different crystal structures[10]
Fig.2 Catalytic decomposition of HCHO over manganese dioxide supported noble metals[16-30]
Fig.3 The morphology (a) and HCHO decomposition performance (b) of Pt/MnO2[16]
Fig.4 Preparation diagram of Au/α-MnO2 and its catalytic performance for HCHO decomposition[25]
Table 1 Catalytic performance of non-noble metal MnO2 in the decomposition of formaldehyde[18,41⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~74]
Classification Catalyst Reaction condition T50%
(℃)
T100%
(℃)
HCHO conversion
at room temperature (%)
ref
MnO2 with
different crystal structures
α-MnO2 HCHO=170 ppm, GHSV=100 L/(g h) 85 125 - 41
β-MnO2 135 200 -
γ-MnO2 125 150 -
δ-MnO2 65 80 -
α-MnO2 ~83 100 0
β-MnO2 HCHO=80 ppm, GHSV=60 L/(g h ) ~144 165 0 42
γ-MnO2 ~102 120 0
δ-MnO2 ~65 70 ~10
cryptomelane-type nanorods HCHO=100 ppm, GHSV=60 L/(g·h) ~80 160 - 43
α-MnO2-310 35 60 ~40
α-MnO2-110 HCHO=100 ppm, GHSV=90 L/(g·h) 100 130 ~8 44
α-MnO2-100 125 100 ~2
cryptomelane type MnO2 110 140 -
pyrolusite type MnO2 HCHO=400 ppm, GHSV=18 L/(g·h) 155 180 - 45
todorokite type MnO2 145 160 -
K-OMS-2 nanoparticles HCHO=460 ppm, GHSV=20 L/(g h) 90 >100 12 46
OMS-2 nanorods HCHO=100 ppm, GHSV=24 L/(g h) 70 80 - 47
3D-MnO2 95 130 -
α-MnO2 nanorods HCHO=400 ppm, GHSV=30 L/(g h) 100 140 - 48
β-MnO2 nanorods 150 180 -
α-MnO2 200 248(90%) -
β-MnO2 218 232(90%) -
γ-MnO2 HCHO=1400 ppm, GHSV=100 L/(g h) 120 155 - 49
δ-MnO2 118 165 -
ε-MnO2 HCHO=100 ppm, GHSV=30 L/(g h) 99 141(90%) ~5 50
MnO2 with
different morphologies
honeycomb KxMnO2
nanospheres
HCHO=100 ppm, GHSV=42 L/(g h) ~75 85 - 51
GHSV=30 L/(g h)
hollow KxMnO2 nanospheres HCHO=15 ppm, GHSV=360 L/(g h) ~55 80 - 52
BSW-120 83 100 - 53
OMS-2-m <50 110 -
MnO2 with
different interlayer cations
K1/HMO HCHO=150 ppm, GHSV=120 L/(g h) ~103 120 - 54
Isolated-MnO2 HCHO=200 ppm, GHSV=120 L/(g h) 107 131(90%) - 55
Localized-MnO2 76 98(90%) -
Heteroatom doped MnO2 Ce-doped OMS-2 HCHO=500 ppm, GHSV=30 L/(g h) ~145 160 - 18
2%V-OMS-2 HCHO=400 ppm, GHSV=30 L/(g h) - 140 - 56
40% MnO2/NCNTs HCHO=100 ppm, GHSV=30 L/(g h) <30 100 92 (30 ℃) 57
Ce-MnO2(1∶10) HCHO=190 ppm, GHSV=90 L/(g h) ~70 100 - 58
N-MnO2 HCHO=180 ppm, GHSV=60 L/(g h) 52 80 - 59
W-MnO2 HCHO=245 ppb, GHSV=600 L/(g h) 5 (60%) 30 (~90%) 90 (30 ℃) 60
Composite of
MnO2 and
metal oxides
MP-MnOx-CeO2 HCHO=580 ppm, GHSV=21 L/(g h) ~80 ~100 - 61
MnO2(1.5)-CeO2 HCHO=20 ppm, GHSV=120 L/(g h) ~30 60 ~30 62
MnOx-CeO2 (CeMn50) HCHO=580 ppm, GHSV=30 L/(g h) ~100 ~120 0 63
RP-MnOx-SnO2 HCHO=400 ppm, GHSV=30 L/(g h) ~150 ~180 - 64
CP-MnxCo3-xO4 CoMn(3/1) HCHO=80 ppm, GHSV=40 L/(g h) ~65 75 0 65
MnOx-Co3O4-CeO2 HCHO=200 ppm, GHSV=36 L/(g h) ~60 100 - 66
Cox-M n 3 - xO4 nanosheets HCHO=50 ppm, GHSV=120 L/(g h) ~70 100 0 67
Pal-support Cu-Mn oxide HCHO=1500 ppm, GHSV=60 L/(g h) ~180 ~220 - 68
Ag/Fe0.1-MnOx HCHO=400 ppm, GHSV=30 L/(g h) ~40 ~80 ~30 69
Other composites Au0.5Pt0.5/MnO2/cotton HCHO=460 ppm, GHSV=20 L/(g h) ~60 ~120 ~5 70
8.86 wt% MnO2/cellulose HCHO=100 ppm, GHSV=600 L/(g h) ~90 ~140 - 71
SiO2-MnOx (40%-W-200) HCHO=120 ppm, GHSV=30 L/(g h) 107 ~130 0 72
Graphene-MnOx HCHO=100 ppm, GHSV=30 L/(g h) ~45 65 <20 73
GLC-MnO2 HCHO=400 ppb, GHSV=600 L/(g h) - - 92 74
Fig.5 Three kinds of oxygen species on the surface MnO2[42]
Fig.6 Surface energy and formation energy of oxygen vacancy over α-MnO2 with different exposed facets[44]
Fig.7 (a) 3D-MnO2 preparation process; (b) schematic diagram of ice crystal growth during freezing;(c) digital photos of 3D-MnO2 framework standing on the setaria viridis; (d) catalytic oxidation performance of HCHO[78]
Fig.8 (a) Schematic diagram and (b) HCHO removal efficiency of birnessite with different interlayer ions[79]
Fig.9 (a) Schematic diagram of W-doped MnO2;(b) the HCHO conversion of W-MnO2[60]
Fig.10 Schematic growing process of MnOx on the surface of AC[86]
Fig.11 HCHO purification performance of MnO2/PET prepared by different impregnation time[89]
Fig.12 Decomposition steps of HCHO on Pt-based catalysts and Pt-based catalysts added with alkali metals[33]
Fig.13 Schematic diagram of MvK mechanism
Fig.14 In-situ DRIFTS spectra of MnO2 in catalytic decomposition of HCHO[96]
Fig.15 Reaction pathway of HCHO on manganese dioxide at room temperature
[1]
2020国民家居环保报告. [2020-8-03]
[2]
Atkinson R, Arey J. Atmos. Environ., 2003, 37: 197.

doi: 10.1016/S1352-2310(03)00391-1
[3]
Long L.Release and evaluation of volatile organic compounds from wood and its products. Science Press., 2012.(龙玲. 木材及其制品挥发性有机化合物释放及评价.科学出版社, 2012.).
[4]
Chi X, Shi Y Q, Yan J, Fu C H, Zhang B Y. Journal of Environment and Health., 2007, 24(2): 81.
( 迟欣, 石玉琴, 颜进, 付承红, 张本延. 环境与健康, 2007, 24(2): 81.)
[5]
International Agency for Research on Cancer. IARC Monogr. Eval. Carcinog. Risks Hum., 2006, 88: 1-478.
[6]
GB 50325- 2020, 2020.
[7]
GB/T 18883-2002, 2002.
[8]
Kenzie Mc R M. Miner. Soil Environ., 1989, 1: 439.
[9]
Brock S L, Duan N G, Tian Z R, Giraldo O, Zhou H, Suib S L. Chem. Mater., 1998, 10(10): 2619.

doi: 10.1021/cm980227h
[10]
Robinson D M, Go Y B, Mui M, Gardner G, Zhang Z J, Mastrogiovanni D, Garfunkel E, Li J, Greenblatt M, Dismukes G C. J. Am. Chem. Soc., 2013, 135(9): 3494.

doi: 10.1021/ja310286h pmid: 23391134
[11]
Ching S, Hughes S M, Gray T P, Welch E J. Microporous Mesoporous Mater., 2004, 76(1/3): 41.

doi: 10.1016/j.micromeso.2004.07.031
[12]
Sauer K, Yachandra V K. Proc. Natl. Acad. Sci. U. S. A., 2002, 99(13): 8631.

doi: 10.1073/pnas.132266199
[13]
Sekine Y, Nishimura A. Atmos. Environ., 2001, 35(11): 2001.

doi: 10.1016/S1352-2310(00)00465-9
[14]
Sekine Y. Atmos. Environ., 2002, 36(35): 5543.

doi: 10.1016/S1352-2310(02)00670-2
[15]
Ye J W, Yu Y, Fan J J, Cheng B, Yu J G, Ho W. Environ. Sci.: Nano, 2020, 7(12): 3655.
[16]
Yu X H, He J H, Wang D H, Hu Y C, Tian H, He Z C. J. Phys. Chem. C, 2012, 116(1): 851.

doi: 10.1021/jp208947e
[17]
Yu X H, He J H, Wang D H, Hu Y C, Tian H, Dong T X, He Z C. J. Nanoparticle Res., 2012, 14(11): 1260.

doi: 10.1007/s11051-012-1260-3
[18]
Wang R H, Li J H. Catal. Lett., 2009, 131(3/4): 500.

doi: 10.1007/s10562-009-9939-5
[19]
Liu L L, Tian H, He J H, Wang D H, Yang Q W. J. Environ. Sci., 2012, 24(6): 1117.

doi: 10.1016/S1001-0742(11)60879-6
[20]
Chen Y, He J H, Tian H, Wang D H, Yang Q W. J. Colloid Interface Sci., 2014, 428: 1.

doi: 10.1016/j.jcis.2014.04.028
[21]
Chen H Y, Tang M N, Rui Z B, Ji H B. Ind. Eng. Chem. Res., 2015, 54(36): 8900.

doi: 10.1021/acs.iecr.5b01970
[22]
Álvarez-Galván M C, de la Peña O’Shea V A, Fierro J L G, Arias P L. Catal. Commun., 2003, 4(5): 223.

doi: 10.1016/S1566-7367(03)00037-2
[23]
O’shea V A D L P, Álvarez-Galván M C, Fierro J L G, Arias P L. Appl. Catal. B: Environ., 2005, 57(3): 191.

doi: 10.1016/j.apcatb.2004.11.001
[24]
Park S J, Bae I, Nam I S, Cho B K, Jung S M, Lee J H. Chem. Eng. J., 2012, 195-196: 392.
[25]
Chen J, Yan D X, Xu Z, Chen X, Chen X, Xu W J, Jia H P, Chen J,. Environ. Sci. Technol., 2018, 52(8): 4728.

doi: 10.1021/acs.est.7b06039 pmid: 29589742
[26]
Tang X F, Chen J L, Li Y G, Li Y, Shen W J. Chem. Eng. J., 2006, 118(1/2): 119.

doi: 10.1016/j.cej.2006.02.002
[27]
Li D D, Yang G L, Li P L, Wang J L, Zhang P Y. Catal. Today, 2016, 277: 257.

doi: 10.1016/j.cattod.2016.02.040
[28]
Lu S H, Wang X, Zhu Q Y, Chen C C, Zhou X F, Huang F L, Li K L, He L L, Liu Y X, Pang F J. RSC Adv., 2018, 8(26): 14221.

doi: 10.1039/C8RA01611A
[29]
Kharlamova T, Mamontov G, Salaev M, Zaikovskii V, Popova G, Sobolev V, Knyazev A, Vodyankina O. Appl. Catal. A: Gen., 2013, 467: 519.

doi: 10.1016/j.apcata.2013.08.017
[30]
Chen Y X, Gao J Y, Huang Z W, Zhou M J, Chen J X, Li C, Ma Z, Chen J M, Tang X F. Environ. Sci. Technol., 2017, 51(12): 7084.

doi: 10.1021/acs.est.7b00499
[31]
Chuang K T, Zhou B, Tong S M. Ind. Eng. Chem. Res., 1994, 33(7): 1680.

doi: 10.1021/ie00031a007
[32]
Zhang C B, He H, Tanaka K I. Appl. Catal. B: Environ., 2006, 651-2: 37.
[33]
Zhang C B, Liu F D, Zhai Y P, Ariga H, Yi N, Liu Y C, Asakura K, Flytzani-Stephanopoulos M, He H. Angew. Chem. Int. Ed., 2012, 51(38): 9628.

doi: 10.1002/anie.v51.38
[34]
Ye J W, Zhou M H, Le Y, Cheng B, Yu J G. Appl. Catal. B: Environ., 2020, 267: 118689.

doi: 10.1016/j.apcatb.2020.118689
[35]
Wang Y Y, Ye J W, Jiang C J, Le Y, Cheng B, Yu J G. Environ. Sci.: Nano, 2020, 7(1): 198.
[36]
Huang S Y, Cheng B, Yu J G, Jiang C J. ACS Sustainable Chem. Eng., 2018, 6(9): 12481.

doi: 10.1021/acssuschemeng.8b03139
[37]
Huang Z W, Gu X, Cao Q Q, Hu P P, Hao J M, Li J H, Tang X F. Angew. Chem. Int. Ed., 2012, 51(17): 4198.

doi: 10.1002/anie.201109065
[38]
Hu P P, Amghouz Z, Huang Z W, Xu F, Chen Y X, Tang X F. Environ. Sci. Technol., 2015, 49(4): 2384.

doi: 10.1021/es504570n
[39]
Hu P P, Huang Z W, Amghouz Z, Makkee M, Xu F, Kapteijn F, Dikhtiarenko A, Chen Y X, Gu X, Tang X F. Angew. Chem., 2014, 126(13): 3486.

doi: 10.1002/ange.201309248
[40]
Abdullah A Z, Bakar M Z A, Bhatia S. J. Hazard. Mater., 2006, 129(1/3): 39.

doi: 10.1016/j.jhazmat.2005.05.051
[41]
Zhang J H, Li Y B, Wang L, Zhang C B, He H. Catal. Sci. Technol., 2015, 5(4): 2305.

doi: 10.1039/C4CY01461H
[42]
Chen B B, Wu B, Yu L M, Crocker M, Shi C. ACS Catal., 2020, 10(11): 6176.

doi: 10.1021/acscatal.0c00459
[43]
Zhou L, Zhang J, He J H, Hu Y C, Tian H. Mater. Res. Bull., 2011, 46(10): 1714.

doi: 10.1016/j.materresbull.2011.05.039
[44]
Rong S P, Zhang P Y, Liu F, Yang Y J. ACS Catal., 2018, 8(4): 3435.

doi: 10.1021/acscatal.8b00456
[45]
Chen T, Dou H Y, Li X L, Tang X F, Li J H, Hao J M. Microporous Mesoporous Mater., 2009, 122(1/3): 270.

doi: 10.1016/j.micromeso.2009.03.010
[46]
Tian H, He J H, Zhang X D, Zhou L, Wang D H. Microporous Mesoporous Mater., 2011, 138(1/3): 118.

doi: 10.1016/j.micromeso.2010.09.022
[47]
Tang X F, Huang X M, Shao J J, Liu J L, Li Y G, Shen W J. Chin. J. Catal., 2006, 27(2): 97.

doi: 10.1016/S1872-2067(06)60006-5
[48]
Bai B Y, Qiao Q, Li J H, Hao J M. Chin. J. Catal., 2016, 37(1): 27.

doi: 10.1016/S1872-2067(15)61026-9
[49]
Lin H Q, Chen D, Liu H B, Zou X H, Chen T H. Aerosol Air Qual. Res., 2017, 17(4): 1011.

doi: 10.4209/aaqr.2017.01.0013
[50]
Xu Y, Dhainaut J, Rochard G, Dacquin J P, Mamede A S, Giraudon J M, Lamonier J F, Zhang H, Royer S. Chem. Eng. J., 2020, 388: 124146.

doi: 10.1016/j.cej.2020.124146
[51]
Chen H M, He J H, Zhang C B, He H. J. Phys. Chem. C, 2007, 111(49): 18033.

doi: 10.1021/jp076113n
[52]
Tian H, He J H, Liu L L, Wang D H, Hao Z P, Ma C Y. Microporous Mesoporous Mater., 2012, 151: 397.

doi: 10.1016/j.micromeso.2011.10.003
[53]
Su J F, Cheng C L, Guo Y P, Xu H, Ke Q F. J. Hazard. Mater., 2019, 380: 120890.

doi: 10.1016/j.jhazmat.2019.120890
[54]
Xu F, Huang Z W, Hu P P, Chen Y X, Zheng L, Gao J Y, Tang X F. Chem. Commun., 2015, 51(48): 9888.

doi: 10.1039/C5CC02476E
[55]
Wang J L, Li J, Zhang P Y, Zhang G K. Appl. Catal. B: Environ., 2018, 224: 863.

doi: 10.1016/j.apcatb.2017.11.019
[56]
Tang X F, Li J H, Hao J M. Catal. Commun., 2010, 11(10): 871.

doi: 10.1016/j.catcom.2010.03.011
[57]
Peng S, Yang X X, Strong J, Sarkar B, Jiang Q, Peng F, Liu D F, Wang H L. J. Hazard. Mater., 2020, 396: 122750.

doi: 10.1016/j.jhazmat.2020.122750
[58]
Zhu L, Wang J L, Rong S P, Wang H Y, Zhang P Y. Appl. Catal. B: Environ., 2017, 211: 212.

doi: 10.1016/j.apcatb.2017.04.025
[59]
He T H, Zeng X S, Rong S P. J. Mater. Chem. A, 2020, 8(17): 8383.

doi: 10.1039/D0TA01346C
[60]
Liu F, Cao R R, Rong S P, Zhang P Y. Mater. Des., 2018, 149: 165.

doi: 10.1016/j.matdes.2018.04.014
[61]
Tang X F, Li Y G, Huang X M, Zhu H Q, Wang J G, Shen W J. Appl. Catal. B: Environ., 2006, 62(3/4): 265.

doi: 10.1016/j.apcatb.2005.08.004
[62]
Guan S N, Huang Q F, Ma J R, Li W Z, Ogunbiyi A T, Zhou Z A, Chen K, Zhang Q. Ind. Eng. Chem. Res., 2020, 59(2): 596.

doi: 10.1021/acs.iecr.9b05191
[63]
Liu X S, Lu J Q, Qian K, Huang W X, Luo M F. J. Rare Earths, 2009, 27(3): 418.

doi: 10.1016/S1002-0721(08)60263-X
[64]
Wen Y R, Tang X, Li J H, Hao J M, Wei L S, Tang X F. Catal. Commun., 2009, 10(8): 1157.

doi: 10.1016/j.catcom.2008.12.033
[65]
Shi C, Wang Y, Zhu A M, Chen B B, Au C. Catal. Commun., 2012, 28: 18.

doi: 10.1016/j.catcom.2012.08.003
[66]
Lu S H, Li K L, Huang F L, Chen C C, Sun B. Appl. Surf. Sci., 2017, 400: 277.

doi: 10.1016/j.apsusc.2016.12.207
[67]
Huang Y C, Ye K H, Li H B, Fan W J, Zhao F Y, Zhang Y M, Ji H B. Nano Res., 2016, 9(12): 3881.

doi: 10.1007/s12274-016-1257-9
[68]
Liu P, Wei G L, He H P, Liang X L, Chen H L, Xi Y F, Zhu J X. Appl. Surf. Sci., 2019, 464: 287.

doi: 10.1016/j.apsusc.2018.09.070
[69]
Li D D, Yang G L, Li P L, Wang J L, Zhang P Y. Catal. Today, 2016, 277: 257.

doi: 10.1016/j.cattod.2016.02.040
[70]
Yu X H, He J H, Wang D H, Hu Y C, Tian H, Dong T X, He Z C. J. Nanoparticle Res., 2013, 15(8): 1832.

doi: 10.1007/s11051-013-1832-x
[71]
Zhou L, He J H, Zhang J, He Z C, Hu Y C, Zhang C B, He H. J. Phys. Chem. C, 2011, 115(34): 16873.

doi: 10.1021/jp2050564
[72]
Averlant R, Royer S, Giraudon J M, Bellat J P, Bezverkhyy I, Weber G, Lamonier J F. ChemCatChem, 2014, 6(1): 152.

doi: 10.1002/cctc.v6.1
[73]
Lu L, Tian H, He J H, Yang Q W. J. Phys. Chem. C, 2016, 120(41): 23660.

doi: 10.1021/acs.jpcc.6b08312
[74]
Liu F, Rong S P, Zhang P Y, Gao L L. Appl. Catal. B: Environ., 2018, 235: 158.

doi: 10.1016/j.apcatb.2018.04.078
[75]
He T H, Shao D D, Zeng X S, Rong S P. Chemosphere, 2020, 261: 127778.

doi: 10.1016/j.chemosphere.2020.127778
[76]
Rong S P, Zhang P Y, Liu F. J. Phys.: Condens. Matter, 2020, 32(1): 015301.
[77]
Rong S P, Zhang P Y, Yang Y J, Zhu L, Wang J L, Liu F. ACS Catal., 2017, 7(2): 1057.

doi: 10.1021/acscatal.6b02833
[78]
Rong S P, He T H, Zhang P Y. Appl. Catal. B: Environ., 2020, 267: 118375.

doi: 10.1016/j.apcatb.2019.118375
[79]
Wang J L, Li D D, Li P L, Zhang P Y, Xu Q L, Yu J G. RSC Adv., 2015, 5(122): 100434.

doi: 10.1039/C5RA17018D
[80]
Fang R M, Feng Q Y, Huang H B, Ji J, He M, Zhan Y J, Liu B Y, Leung D Y C. Catal. Today, 2019, 327: 154.

doi: 10.1016/j.cattod.2018.05.019
[81]
Wang H B, Maiyalagan T, Wang X. ACS Catal., 2012, 2(5): 781.

doi: 10.1021/cs200652y
[82]
Wang J L, Li J G, Jiang C J, Zhou P, Zhang P Y, Yu J G. Appl. Catal. B: Environ., 2017, 204: 147.

doi: 10.1016/j.apcatb.2016.11.036
[83]
Wang J L, Zhang G K, Zhang P Y. J. Mater. Chem. A, 2017, 5(12): 5719.

doi: 10.1039/C6TA09793F
[84]
Zhang Y, Chen M X, Zhang Z X, Jiang Z, Shangguan W F, Einaga H. Catal. Today, 2019, 327: 323.

doi: 10.1016/j.cattod.2018.04.027
[85]
Yang Y K, Zhang H, Jin S G. Adv. Mater. Res., 2011, 332-334: 1743.
[86]
Li J G, Zhang P Y, Wang J L, Wang M X. J. Phys. Chem. C, 2016, 120(42): 24121.

doi: 10.1021/acs.jpcc.6b07217
[87]
Wang J L, Zhang G K, Zhang P Y. Appl. Catal. B: Environ., 2018, 239: 77.

doi: 10.1016/j.apcatb.2018.08.008
[88]
Wang J L, Yunus R, Li J G, Li P L, Zhang P Y, Kim J. Appl. Surf. Sci., 2015, 357: 787.

doi: 10.1016/j.apsusc.2015.09.109
[89]
Rong S P, Zhang P Y, Wang J L, Liu F, Yang Y J, Yang G L, Liu S. Chem. Eng. J., 2016, 306: 1172.

doi: 10.1016/j.cej.2016.08.059
[90]
Zhou P, Yu J G, Nie L H, Jaroniec M. J. Mater. Chem. A, 2015, 3(19): 10432.

doi: 10.1039/C5TA00778J
[91]
Tan H Y, Wang J, Yu S Z, Zhou K B. Environ. Sci. Technol., 2015, 49(14): 8675.

doi: 10.1021/acs.est.5b01264
[92]
Qi L F, Cheng B, Yu J G, Ho W. J. Hazard. Mater., 2016, 301: 522.

doi: 10.1016/j.jhazmat.2015.09.026
[93]
Xu F Y, Le Y, Cheng B, Jiang C J. Appl. Surf. Sci., 2017, 426: 333.

doi: 10.1016/j.apsusc.2017.07.096
[94]
Sun D, Le Y, Jiang C J, Cheng B. Appl. Surf. Sci., 2018, 441: 429.

doi: 10.1016/j.apsusc.2018.02.001
[95]
Mars P, van Krevelen D W. Chem. Eng. Sci., 1954, 3: 41.

doi: 10.1016/S0009-2509(54)80005-4
[96]
Wang J L, Zhang P Y, Li J G, Jiang C J, Yunus R, Kim J. Environ. Sci. Technol., 2015, 49(20): 12372.

doi: 10.1021/acs.est.5b02085
[97]
Zhang H Y, Sui S H, Zheng X M, Cao R R, Zhang P Y. Appl. Catal. B: Environ., 2019, 257: 117878.

doi: 10.1016/j.apcatb.2019.117878
[98]
Li L X, Zhang P Y, Cao R R. Catal. Sci. Technol., 2020, 10(7): 2254.

doi: 10.1039/D0CY00196A
[1] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[2] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[3] Lianxin Li, Ranran Cao, Pengyi Zhang. Catalytic Decomposition of Gaseous Ozone at Room Temperature [J]. Progress in Chemistry, 2021, 33(7): 1188-1200.
[4] Xiaoshan Zeng, Chuanjia Shan, Mingdi Sun, Taohong He, Shaopeng Rong. Manganese Dioxides for Catalytic Decomposition of Formaldehyde in Indoor Air [J]. Progress in Chemistry, 2021, 33(12): 2245-2258.
[5] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[6] Zhe Liu, Xiaolan Zhang, Ting Cai, Jing Yua, Kunfeng Zhao, Dannong He. Catalytic Oxidation of Formaldehyde over Manganese-Based Catalysts and the Influence of Synergistic Effect [J]. Progress in Chemistry, 2019, 31(2/3): 311-321.
[7] Song Heyuan, Kang Meirong, Jin Ronghua, Jin Fuxiang, Chen Jing. Application of Ionic Liquids to the Carbonylation Reactions [J]. Progress in Chemistry, 2016, 28(9): 1313-1327.
[8] Li Mengli, Yang Xiaolong, Tang Liping, Xiong Xumao, Ren Sili, Hu Bin. Catalysts for Catalytic Decomposition of Nitrous Oxide [J]. Progress in Chemistry, 2012, (9): 1801-1817.
[9] . Catalytic Decomposition of PCDD/Fs from Flue Gas [J]. Progress in Chemistry, 2010, 22(09): 1836-1843.
[10]

Ma Tao|Wang Rui**

. Catalytic Decomposition of NOx [J]. Progress in Chemistry, 2008, 20(06): 798-810.
Viewed
Full text


Abstract