中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (7): 1188-1200 DOI: 10.7536/PC200716 Previous Articles   Next Articles

• Review •

Catalytic Decomposition of Gaseous Ozone at Room Temperature

Lianxin Li1, Ranran Cao1, Pengyi Zhang1,2,*()   

  1. 1 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
    2 Beijing Key Laboratory for Indoor Air Quality Evaluation and Control, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Contact: Pengyi Zhang
  • About author:
    * Corresponding anthor e-mail:
Richhtml ( 64 ) PDF ( 1029 ) Cited
Export

EndNote

Ris

BibTeX

Ozone pollution is a serious problem now prevailing in China. Ozone and its secondary pollutants generated indoor severely threaten human health. The catalytic decomposition of ozone at room temperature is an effective way to prevent the pollution. This review firstly summarizes the catalytic activity of carbon, zeolite, noble metal, transitional metal oxides and other materials; then focuses on manganese oxides, compares the activity of manganese oxides with different crystal structures and elaborates the research progress in mechanisms of ozone decomposition on manganese oxides. Currently, the major challenge in this field is the catalyst deactivation caused by water vapor. The comprehensive understanding in mechanisms of ozone decomposition and catalyst deactivation is the essential key to synthesize efficient catalysts.

Contents

1 Introduction

2 Catalysts for ozone decomposition

2.1 Carbon

2.2 Noble metal

2.3 Transitional metal oxides

2.4 Other materials

3 Manganese oxides for ozone decomposition

3.1 α-MnO 2

3.2 γ-MnO 2, ε-MnO 2, ramsdellite and todorokite

3.3 δ-MnO 2

3.4 Amorphous and low-valent manganese oxides

4 Mechanisms of catalytic decomposition of ozone on manganese oxides

4.1 Mechanisms of ozone decomposition

4.2 Mechanisms of catalyst deactivation

4.3 Regeneration and heat treatment of catalyst

5 Conclusion and outlook

Table 1 The synthetic methods and the catalytic performance of α-MnO 2
Table 2 The synthetic methods and the catalytic performance of MnO2 with other tunnel structures
Table 3 The synthetic methods and catalytic performance of δ-MnO 2
Table 4 The synthetic methods and catalytic performance of amorphous and low-valent manganese oxides
Fig. 1 The mechanism of ozone decomposition involving acid sites and oxygen vacancies[81]. Copyright 2018, Elsevier
Fig. 2 The mechanism of catalyst deactivation during ozone decomposition on manganese oxides based on the stable oxygen intermediates[73]. Copyright 2019, ACS Publications
Fig. 3 The mechanism of catalyst deactivation during ozone decomposition on manganese oxides based on Mn-OH[78]. Copyright 2017, ACS Publications
Table 5 The regeneration effect of manganese oxides for ozone decomposition
[1]
Wojtowicz J A. Kirk-Othmer Encyclopedia of Chemical Technology. 4th Edition. New York: John Wiley & Sons, 1996.40.
[2]
Parson E A. Protecting the Ozone Layer: Science and Strategy. New York: Oxford Univ. Press, 2003.
[3]
Liu H, Liu S, Xue B R, Lv Z, Meng Z H, Yang X F, Xue T, Yu Q, He K B. Atmos. Environ., 2018, 173:223.

doi: 10.1016/j.atmosenv.2017.11.014
[4]
Zhang J J, Wei Y J, Fang Z F. Front. Immunol., 2019, 10:2518.

doi: 10.3389/fimmu.2019.02518
[5]
Amoatey P, Takdastan A, Sicard P, Hopke P K, Baawain M, Omidvarborna H, Allahyari S, Esmaeilzadeh Ade Marco A, Khanaibadi Y O. Hum. Ecol. Risk Assess.: Int. J., 2019, 25(5):1336.

doi: 10.1080/10807039.2018.1492872
[6]
Huang J, Song Y, Chu M T, Dong W, Miller M R, Loh M, Xu J H, Yang D, Chi R, Yang X, Wu S W, Guo X B, Deng F R. Environ. Int., 2019, 131:105021.

doi: S0160-4120(19)31430-8 pmid: 31349208
[7]
Malley C S, Henze D K, Kuylenstierna J C I, Vallack H W, Davila Y, Anenberg S C, Turner M C, Ashmore M R. Environ. Heal. Perspect., 2017, 125(8):087021.

doi: 10.1289/EHP1390
[8]
Li K, Jacob D J, Liao H, Shen L, Zhang Q, Bates K H. PNAS, 2019, 116(2):422.

doi: 10.1073/pnas.1812168116
[9]
Ma Z Q, Xu J, Quan W J, Zhang Z Y, Lin W L, Xu X B. Atmos. Chem. Phys., 2016, 16(6):3969.

doi: 10.5194/acp-16-3969-2016
[10]
China National Environmental Monitoring Centre. National Urban Air Quality Report(2018.08).
(中国环境监测总站. 2018年8月全国城市空气质量报告),(2018-11-16). [2020-7-3]. http://www.cnemc.cn/jcbg/kqzlzkbg/201811/t20181116_674139.shtml.
[11]
China National Environmental Monitoring Centre. National Urban Air Quality Report(2019.07).
(中国环境监测总站. 2019年7月全国城市空气质量报告). http://www.cnemc.cn/jcbg/kqzlzkbg/201912/t20191217_751489.shtml.
[12]
China National Environmental Monitoring Centre. National Urban Air Quality Report(2019.08).
(中国环境监测总站. 2019年8月全国城市空气质量报告). http://www.cnemc.cn/jcbg/kqzlzkbg/201912/t20191217_751490.shtml.
[13]
Stephens B, Gall E T, Siegel J A. Environ. Sci. Technol., 2012, 46(2):929.

doi: 10.1021/es2028795 pmid: 22146069
[14]
Guo C, Gao Z, Shen J L. Build. Environ., 2019, 158:302.

doi: 10.1016/j.buildenv.2019.05.024
[15]
Yang Z. Master Dissertation of Nanjing University, 2019.
( 杨喆. 南京大学硕士论文, 2019.)
[16]
Vaida V, Rasele G. J. Environ. Eng. Landsc. Manage., 2007, ⅩⅤ( 2):61.
[17]
Weisel C, Weschler C J, Mohan K, Vallarino J, Spengler J D. Environ. Sci. Technol., 2013, 47(9):4711.

doi: 10.1021/es3046795
[18]
Bhangar S, Cowlin S C, Singer B C, Sextro R G, Nazaroff W W. Environ. Sci. Technol., 2008, 42(11):3938.

pmid: 18589948
[19]
Cheng Y H, Lin C C, Hsu S C. Build. Environ., 2015, 87:274.

doi: 10.1016/j.buildenv.2014.12.025
[20]
Xiong J Y, He Z C, Tang X C, Misztal P K, Goldstein A H. Environ. Sci. Technol., 2019, 53(14):8262.

doi: 10.1021/acs.est.9b02302
[21]
Coleman B K, Lunden M M, Destaillats H, Nazaroff W W. Atmos. Environ., 2008, 42(35):8234.

doi: 10.1016/j.atmosenv.2008.07.031
[22]
Hubbard H F, Coleman B K, Sarwar G, Corsi R L. Indoor Air, 2005, 15(6):432.

pmid: 16268833
[23]
Jones A P. Atmos. Environ., 1999, 33(28):4535.

doi: 10.1016/S1352-2310(99)00272-1
[24]
Lin C C, Chao C Y, Liu M Y. J. Ind. Eng. Chem., 2010, 16(1):140.

doi: 10.1016/j.jiec.2010.01.005
[25]
Hellén H, Kuronen P, Hakola H. Atmos. Environ., 2012, 57:35.

doi: 10.1016/j.atmosenv.2012.04.019
[26]
Subrahmanyam C, Bulushev D A, Kiwi-Minsker L. Appl. Catal. B: Environ., 2005, 61(1/2):98.

doi: 10.1016/j.apcatb.2005.04.013
[27]
Álvarez P M, Masa F J, Jaramillo J, Beltrán F J, Gómez-Serrano V. Ind. Eng. Chem. Res., 2008, 47(8):2545.

doi: 10.1021/ie071360z
[28]
Ondarts M, Outin J, Reinert L, Gonze E, Duclaux L. Eur. Phys. J. Spec. Top., 2015, 224(9):1995.

doi: 10.1140/epjst/e2015-02516-6
[29]
Yang S, Nie J Q, Wei F, Yang X D. Environ. Sci. Technol., 2016, 50(17):9592.

doi: 10.1021/acs.est.6b02563
[30]
Yu Q W, Pan H, Zhao M, Liu Z M, Wang J L, Chen Y Q, Gong M C. J. Hazard. Mater., 2009, 172(2/3):631.

doi: 10.1016/j.jhazmat.2009.07.040
[31]
Tao L G, Zhang Z Q, Chen P J, Zhao G F, Liu Y, Lu Y. Appl. Surf. Sci., 2019, 481:802.

doi: 10.1016/j.apsusc.2019.03.134
[32]
Yu Q W, Zhao M, Liu Z M, Zhang X Y, Zheng L M, Chen Y Q, Gong M C. Chin. J. Catal., 2009, 30(1):1.

doi: 10.1016/S1872-2067(08)60082-0
[33]
Ren C J, Zhou L N, Shang H Y, Chen Y Q. Chin. J. Catal., 2014, 35(11):1883.

doi: 10.1016/S1872-2067(14)60176-5
[34]
Kameya T, Urano K. J. Environ. Eng., 2002, 128(3):286.

doi: 10.1061/(ASCE)0733-9372(2002)128:3(286)
[35]
Chang C L, Lin T S. React. Kinetics Catal. Lett., 2005, 86(1):91.
[36]
Zhang P Y, Zhang B, Shi R. Front. Environ. Sci. Eng. China, 2009, 3(3):281.

doi: 10.1007/s11783-009-0032-5
[37]
Lejeune A, Cabrol A, Lebullenger R, Denicourt-Nowicki A, Roucoux A, Szymczyk A, Couvert A, Biard P F. ACS Sustainable Chem. Eng., 2020, 8(7):2854.

doi: 10.1021/acssuschemeng.9b06950
[38]
Dhandapani B, Oyama S T. Appl. Catal. A, 1997, 11(2):129.
[39]
Nikolov P, Genov K, Konova P, Milenova K, Batakliev T, Georgiev V, Kumar N, Sarker D K, Pishev D, Rakovsky S. J. Hazard. Mater., 2010, 184(1/3):16.

doi: 10.1016/j.jhazmat.2010.07.056
[40]
Li X T, Ma J Z, Zhang C B, Zhang R D, He H. J. Environ. Sci., 2019, 80:159.

doi: 10.1016/j.jes.2018.12.008
[41]
Li X T, Ma J Z, He H. Environ. Sci. Technol., 2020, 54(18):11566.

doi: 10.1021/acs.est.0c02510
[42]
Mathew T, Suzuki K, Ikuta Y, Nagai Y, Takahashi N, Shinjoh H. Angew. Chem. Int. Ed., 2011, 50(32):7381.

doi: 10.1002/anie.v50.32
[43]
Patzsch J, Bloh J Z. Catal. Today, 2018, 300:2.

doi: 10.1016/j.cattod.2017.07.010
[44]
Gong S Y, Wu X F, Zhang J L, Han N, Chen Y F. CrystEngComm, 2018, 20(22):3096.

doi: 10.1039/C8CE00203G
[45]
Gong S Y, Wang A Q, Wang Y, Liu H D, Han N, Chen Y F. ACS Appl. Nano Mater., 2020, 3(1):597.

doi: 10.1021/acsanm.9b02143
[46]
Gong S Y, Xie Z, Li W M, Wu X F, Han N, Chen Y F. Appl. Catal. B: Environ., 2019, 241:578.

doi: 10.1016/j.apcatb.2018.09.041
[47]
Gong S Y, Chen J Y, Wu X F, Han N, Chen Y F. Catal. Commun., 2018, 106:25.

doi: 10.1016/j.catcom.2017.12.003
[48]
Valdés H, Alejandro S, Zaror C A. J. Hazard. Mater., 2012, (227/228):34.
[49]
Brodu N, Manero M H, Andriantsiferana C, Pic J S, Valdés H. Chem. Eng. J., 2013, 231:281.

doi: 10.1016/j.cej.2013.07.002
[50]
Brodu N, Manero M H, Andriantsiferana C, Pic J S, Valdés H. Can. J. Chem. Eng., 2018, 96(9):1911.

doi: 10.1002/cjce.v96.9
[51]
Valdés H, Ulloa F J, Solar V A, Cepeda M S, Azzolina-Jury F, Thibault-Starzyk F. Microporous Mesoporous Mater., 2020, 294:109912.

doi: 10.1016/j.micromeso.2019.109912
[52]
Wang H, Rassu P, Wang X, Li H W, Wang X R, Wang X Q, Feng X, Yin A X, Li P F, Jin X, Chen S L, Ma X J, Wang B. Angew. Chem. Int. Ed., 2018, 57(50):16416.

doi: 10.1002/anie.201810268
[53]
Dhandapani B, Oyama S T. Chem. Lett., 1995, 24(6):413.

doi: 10.1246/cl.1995.413
[54]
Li W, Gibbs G V, Oyama S T. J. Am. Chem. Soc., 1998, 120(35):9041.

doi: 10.1021/ja981441+
[55]
Li W, Oyama S T. J. Am. Chem. Soc., 1998, 120(35):9047.

doi: 10.1021/ja9814422
[56]
Radhakrishnan R, Oyama S T. J. Catal., 2001, 199(2):282.

doi: 10.1006/jcat.2001.3167
[57]
Radhakrishnan R, Oyama S T, Chen J G G, Asakura K. J. Phys. Chem. B, 2001, 105(19):4245.

doi: 10.1021/jp003246z
[58]
Heisig C, Zhang W, Oyama S T. Appl. Catal. B, 1997, 14(1/2):117.

doi: 10.1016/S0926-3373(97)00017-9
[59]
Jiang C J, Zhang P Y, Zhang B, Li J G, Wang M X. Ozone: Sci. Eng., 2013, 35(4):308.

doi: 10.1080/01919512.2013.795854
[60]
Wang M X, Zhang P Y, Li J G, Jiang C J. Chin. J. Catal., 2014, 35(3):335.

doi: 10.1016/S1872-2067(12)60756-6
[61]
Besenhard J O. Handbook of Battery Materials. Germany: Wiley-VCH, 1999.
[62]
Jia J B, Zhang P Y, Chen L. Appl. Catal. B: Environ., 2016, 189:210.

doi: 10.1016/j.apcatb.2016.02.055
[63]
Jia J B, Zhang P Y, Chen L. Catal. Sci. Technol., 2016, 6(15):5841.

doi: 10.1039/C6CY00301J
[64]
Yang Y J, Jia J B, Liu Y, Zhang P Y. Appl. Catal. A: Gen., 2018, 562:132.

doi: 10.1016/j.apcata.2018.06.006
[65]
Yang Y J, Zhang P Y, Jia J B. Appl. Surf. Sci., 2019, 484:45.

doi: 10.1016/j.apsusc.2019.04.084
[66]
Wang C X, Ma J Z, Liu F D, He H, Zhang R D. J. Phys. Chem. C, 2015, 119(40):23119.

doi: 10.1021/acs.jpcc.5b08095
[67]
Ma J, Wang C, He H. Appl. Catal. B, 2017, 201:503.

doi: 10.1016/j.apcatb.2016.08.050
[68]
Yang L, Ma J Z, Li X T, Zhang C B, He H. Ind. Eng. Chem. Res., 2020, 59(1):118.

doi: 10.1021/acs.iecr.9b05967
[69]
Peng B, Bao W J, Wei L L, Zhang R D, Wang Z J, Wang Z C, Wei Y. Petroleum Sci., 2019, 16(4):912.

doi: 10.1007/s12182-019-0335-5
[70]
Yang L, Ma J, Li X, He G, Zhang C, He H. J. Environ. S., 2020, 87:60.
[71]
Zhu G X, Zhu J G, Jiang W J, Zhang Z J, Wang J, Zhu Y F, Zhang Q F. Appl. Catal. B: Environ., 2017, 209:729.

doi: 10.1016/j.apcatb.2017.02.068
[72]
Zhu G X, Zhu J G, Li W L, Yao W Q, Zong R L, Zhu Y F, Zhang Q F. Environ. Sci. Technol., 2018, 52(15):8684.

doi: 10.1021/acs.est.8b01594
[73]
Hong W, Zhu T L, Sun Y, Wang H N, Li X, Shen F X. Environ. Sci. Technol., 2019, 53(22):13332.

doi: 10.1021/acs.est.9b03689 pmid: 31642660
[74]
Jia J B, Yang W J, Zhang P Y, Zhang J Y. Appl. Catal. A: Gen., 2017, 546:79.

doi: 10.1016/j.apcata.2017.08.013
[75]
Li X T, Ma J Z, Yang L, He G Z, Zhang C B, Zhang R D, He H. Environ. Sci. Technol., 2018, 52(21):12685.

doi: 10.1021/acs.est.8b04294
[76]
Chen X, Zhao Z L, Liu S, Huang J X, Xie J, Zhou Y, Pan Z Y, Lu H F. J. Rare Earths, 2020, 38(2):175.

doi: 10.1016/j.jre.2019.01.010
[77]
Liu Y, Zhang P Y. Appl. Catal. A: Gen., 2017, 530:102.

doi: 10.1016/j.apcata.2016.11.028
[78]
Liu Y, Zhang P Y. J. Phys. Chem. C, 2017, 121(42):23488.

doi: 10.1021/acs.jpcc.7b07931
[79]
Hong W, Shao M P, Zhu T L, Wang H N, Sun Y, Shen F X, Li X. Appl. Catal. B: Environ., 2020, 274:119088.

doi: 10.1016/j.apcatb.2020.119088
[80]
Gopi T, Swetha G, Chandra Shekar S, Ramakrishna C, Saini B, Krishna R, Rao P V L. Catal. Commun., 2017, 92:51.

doi: 10.1016/j.catcom.2017.01.002
[81]
Liu Y, Yang W J, Zhang P Y, Zhang J Y. Appl. Surf. Sci., 2018, 442:640.

doi: 10.1016/j.apsusc.2018.02.204
[82]
Cao R R, Zhang P Y, Liu Y, Zheng X M. Appl. Surf. Sci., 2019, 495:143607.

doi: 10.1016/j.apsusc.2019.143607
[83]
Liu S L, Ji J, Yu Y, Huang H B. Catal. Sci. Technol., 2018, 8(16):4264.

doi: 10.1039/C8CY01111G
[84]
Ji J, Fang Y, He L S, Huang H B. Catal. Sci. Technol., 2019, 9(15):4036.

doi: 10.1039/C9CY00762H
[85]
Lian Z H, Ma J Z, He H. Catal. Commun., 2015, 59:156.

doi: 10.1016/j.catcom.2014.10.005
[86]
Li L X, Zhang P Y, Cao R R. Catal. Sci. Technol., 2020, 10(7):2254.

doi: 10.1039/D0CY00196A
[87]
Yu Y, Liu S L, Ji J, Huang H B. Catal. Sci. Technol., 2019, 9(18):5090.

doi: 10.1039/C9CY01426H
[88]
Ma J, Li X, Zhang C, Ma Q, He H. Appl. Catal. B, 2020,264.
[89]
Tatibouët J M, Valange S, Touati H. Appl. Catal. A: Gen., 2019, 569:126.

doi: 10.1016/j.apcata.2018.10.026
[90]
Einaga H, Harada M, Futamura S. Chem. Phys. Lett., 2005, 408(4/6):377.

doi: 10.1016/j.cplett.2005.04.061
[91]
Yang Y J, Shen D, Zhang P Y. Ozone: Sci. Eng., 2021, 43(2):195.

doi: 10.1080/01919512.2020.1772040
[1] Xiaoshan Zeng, Chuanjia Shan, Mingdi Sun, Taohong He, Shaopeng Rong. Manganese Dioxides for Catalytic Decomposition of Formaldehyde in Indoor Air [J]. Progress in Chemistry, 2021, 33(12): 2245-2258.
[2] Haichao Wang, Mingjin Tang, Zhaofeng Tan, Chao Peng, Keding Lu. Atmospheric Chemistry of Nitryl Chloride [J]. Progress in Chemistry, 2020, 32(10): 1535-1546.
[3] Biwu Chu, Qingxin Ma, Fengkui Duan, Jinzhu Ma, Jingkun Jiang, Kebin He, Hong He. Atmospheric “Haze Chemistry”: Concept and Research Prospects [J]. Progress in Chemistry, 2020, 32(1): 1-4.
[4] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.
[5] Zhu Jin, Lou Zimo, Wang Zhuoxing, Xu Xinhua. Preparation of Iron and Manganese Oxides/Carbon Composite Materials for Arsenic Removal from Aqueous Solution [J]. Progress in Chemistry, 2014, 26(09): 1551-1561.
[6] Li Mengli, Yang Xiaolong, Tang Liping, Xiong Xumao, Ren Sili, Hu Bin. Catalysts for Catalytic Decomposition of Nitrous Oxide [J]. Progress in Chemistry, 2012, (9): 1801-1817.
[7] . Reaction and Mechanism of Low-Temperature Selective Catalytic Reduction of NOx by NH3 over Manganese Oxide-based Catalysts [J]. Progress in Chemistry, 2010, 22(10): 1882-1900.
[8] . Catalytic Decomposition of PCDD/Fs from Flue Gas [J]. Progress in Chemistry, 2010, 22(09): 1836-1843.
[9] . Treatment of Antibiotic Wastewater by Ozonation [J]. Progress in Chemistry, 2010, 22(05): 1002-1009.
[10] . Reactive Halogen Chemistry [J]. Progress in Chemistry, 2009, 21(0203): 307-334.
[11]

Ma Tao|Wang Rui**

. Catalytic Decomposition of NOx [J]. Progress in Chemistry, 2008, 20(06): 798-810.
[12] Long Jia1,2,Maofa Ge2**,Yongfu Xu3,Lin Du2,Guoshun Zhuang1,Dianxun Wang2. Advances in Atmospheric Ozone Chemistry [J]. Progress in Chemistry, 2006, 18(11): 1565-1574.
[13] Wang Zhenya**,Zhou Shikang,Sheng Liusi. Polar Stratospheric Clouds and Its Heterogeneous Chemistry* [J]. Progress in Chemistry, 2004, 16(01): 49-.
[14] Lin Yongda,Chen Qingyun. Atmospheric Ozone Layer Depletion and CFCs Alternatives [J]. Progress in Chemistry, 1998, 10(02): 228-.