English
新闻公告
More
化学进展 2023, Vol. 35 Issue (12): 1807-1846 DOI: 10.7536/PC230502 前一篇   后一篇

• 综述 •

金属有机框架及其衍生纳米负极材料

马浩天1,2, 田如锦1,*(), 文钟晟2   

  1. 1 大连交通大学材料科学与工程学院 大连 116028
    2 大连海事大学材料科学系 大连 116026
  • 收稿日期:2023-05-04 修回日期:2023-09-19 出版日期:2023-12-24 发布日期:2023-12-18

Metal-Organic Frameworks and Their Derivative Nano Anode Materials

Haotian Ma1,2, Rujin Tian1,*(), Zhongsheng Wen2   

  1. 1 College of Materials Science and Engineering,Dalian Jiaotong University,Dalian 116028, China
    2 Department of Materials,Dalian Maritime University,Dalian 116026, China
  • Received:2023-05-04 Revised:2023-09-19 Online:2023-12-24 Published:2023-12-18
  • Contact: *e-mail: rjtian_88@163.com

负极是锂离子电池的重要组成部分之一,较低的离子-电子电导率、明显体积效应以及容易粉化等问题限制着传统负极材料的发展和广泛应用。金属有机框架(MOFs)及其衍生材料的丰富孔隙有利于离子快速迁移,较大的比表面积提供更多的电化学反应活性位点,尤其是能通过改变合成工艺实现结构和化学组成调控,有效提高锂离子电池的可逆容量和循环稳定性。本文系统地总结和归纳了近年来MOFs及其衍生纳米负极材料的研究进展,梳理了不同合成方法、形貌结构与电化学性能间的相互关系,分析了这类负极材料急待解决的关键问题和面临的机遇与挑战。在尽可能充分发挥各自优势的基础上,结合有机配体和金属中心的多样性以及结构的多变性和特殊性,提出了一些改善储锂性能的有效措施和工业化应用的解决方案,展望了这类新型多孔纳米负极材料的未来发展趋势和应用前景。

Anode is one of the important components for lithium ion battery. Many technical bottlenecks (such as lower ionic-electronic conductivity, huge volume effect and easy pulverization resulted from long-term charge/discharge process) prevent the development and large scale application of traditional anode materials. As a novel kind of advanced multi-functional materials, Metal-organic frameworks (MOFs) and their derivative materials behave enough pore structures promoting rapid migration of Li+ and electron, and high specific surface areas providing abundant active sites for electrochemical reaction. Importantly, tunable structure and chemical composition of the MOFs and their derivative materials can be further optimized by changing parameters of synthesis process, thereby markedly increases specific capacity and cycle stability of lithium ion batteries. Herein, the recent progress in the MOFs and their derivative materials used as anode for lithium ion batteries are reviewed systematically, and the relationships between their preparation methods, microstructures, morphologies and corresponding electrochemical properties are summarized detailly. The urgent problems and challenges of this class of anode materials for lithium ion batteries are also analyzed. On the basis of resonable choosing organic ligands and metal centers, some effective measures for improving performances of lithium storage are proposed by combining with the variability and particularity of structure of the MOFs and their derivative materials, and the feasible strategies for commercialization application are suggested. Finally, the perspective and future development in design and fabrication of the new types of nano porous anodes with high energy efficiencies in relation with the next generation lithium ion battery are further discussed.

Contents

1 Introduction

1.1 Conversion mechanism

1.2 Insertion/extraction mechanism

1.3 Absorption/desorption mechanism

2 Pristine MOFs

2.1 Co-MOFs

2.2 Zn-MOFs

2.3 Mn-MOFs

2.4 Fe-MOFs

2.5 Ni-MOFs

2.6 Cu-MOFs

2.7 Sn-MOFs

2.8 Other metal-based MOFs

3 MOFs-derived metal compounds

3.1 Monometal oxides

3.2 Bimetal oxides

3.3 Other metal compounds

4 MOFs-derived porous carbon

5 MOFs-derived composites

5.1 MOFs/metal compounds

5.2 MOFs/carbon-based materials

5.3 Metal oxide/metal oxide

5.4 Metal oxide/carbon-based materials

5.5 Metal sulfide/carbon-based materials

5.6 Other metal compound/carbon-based materials

5.7 Metal/metal oxide/carbon-based materials

6 Conclusion and outlook

()
图1 锂离子电池MOFs及其衍生负极材料的发展时间轴
Fig. 1 Brief summary of the development history of MOFs and their derivative anode materials for Li-ion batteries
表1 MOFs本体负极材料及其电化学性能
Table 1 Pristine MOFs as anode materials and their electrochemical performances
Materials Voltage range (V) Current density (mA/g) Cycle number Overall capacity (mAh/g) Initial discharge/
charge capacity
(mAh/g)
Initial coulomb
efficiency
(%)
Specific surface area
(m2/g)
ref
CoBTC-EtOH 0.01-3.0 100/2000 100/500 856/473 1790.3/879 49.15 17.7 19
S-Co-MOF 0.01-3.0 100/500/1000 200/700/1000 1021/601/435 1964/1564 80.4 10.4 10
H-Co-MOF 100/2000 100/700 1345/828 2147/1432 66.7 49.9 20
u-CoTDA 0.01-3.0 100/1000/2000 100/300/400 946/790/548 1631/- 75.2 52.6 22
[Co1.5L(H2O)4]n 0.01-3.0 50 50 431 1978/869 23
Co2(DOBDC) 0.01-3.0 100/500 100/200 878.5/526.1 1409/785 56 24
Co-BDCN 0.01-3.0 100 100 1132 1439/1015 70.54 24.5 25
Co-BTC 0.01-3.0 100 200 750 1739/622 36 18.5 26
CoTPA 0.005-2.8 60 100 700 1938/1004 51.8 27
Co2(OH)2BDC 0.02-3.0 50 100 650 1385/1005 72.8 28
CoC6H2O5(H2O)2 0.05-3.0 100/1250 95/499 549.8/513.4 -/- 29
Zn3(HCOOH)6 0.005-3.0 60 60 560 1344/693 30
BMOF 100 200 190 -/- 821 31
Mn-LCP 0.01-2.5 50 50 390 1807/- 32
CMPS-1 0.05-3.0 400/500 250/650 645.7/588.3 1631.8/- 33
Mn-BTC 0.01-2.0 103/1030/2060 100/100/100 694/400/250 1717/694 40.4 23.8 34
Mn-PBA 0.01-3.0 200 100 295.7 1123.7/544.5 48.5 499.8 35
Mn-1,4-BDC@200 0.01-3.0 100 100 974 1746/706.4 40.5 6.135 36
Mn-UMOFNs 0.01-3.0 100/1000 100/300 1187/818 -/- 57 32.65 38
Fe-BTC 0.01-3.0 100 100 1021.5 1765.5/683.2 38.7 1125 42
MIL-88A 0.01-3.0 10 4 40.5 140.5/5.3 4 43
Fe-MIL-88B 0.005-3.0 60 400 744.5 1507/949.9 63 44
Fe-BDC@300 0.01-3.0 100 120 324.1 1330.6/- 45
Ni-UMOFNs 0.01-3.0 100 100 546 1833/1226 67 15.04 38
Ni-MOF 0.01-3.0 100 100 620 1984/1369 46
Ni-Me4bpz 0.01-3.0 50 100 120 320/- 67 14
[Cu2(C8H4O4)4]n 0.01-2.5 48 50 161 1492/194 747 48
Cu3(BTC)2 0.05-3.0 96/191/383 50/50/50 740/644/474 1497/641 489.4 49
[Cu2(cit)(H2O)2]n 0.01-3.0 100/2000 500/500 608.5/321.5 -/- 50
Sn-MOF 0-3.0 20 200 610 1017/450 67.437 51
Sn-MOF 0.01-3.0 50 100 250 -/- 16.96 52
Al-FumA MOFs 0.01-3.0 37.5/37500 100/100 392/258 1509/899 45.5 260.1 53
Pb-MOF 0.01-3.0 100/500 500/500 489/380 1522/678 38 725 16
Cd-MOF 0.1-3.0 100 100 302 710/435 821 18
Ti-MOF 0.01-3.0 200/400 200/500 296/175.34 1590.24/- 621 54
Li/Ni-NTC 0.01-3.0 100 80 482 1084/601 55
Zn1.5Co1.5(HCO2)6 0.005-3.0 60 60 510 1344/693 30
图2 (a)CV曲线(0.1mV/s), (b) 潜在储锂位点 (Ⅰ 苯环; Ⅱ孔隙; Ⅲ层间空间), (c) 初始3次充放电曲线(0.2 A/g), (d) 倍率性能, (e)与其他负极在不同电流密度时的容量,(f) 0.2和0.5A/g时Ni-CAT NRs的循环性能[57]
Fig. 2 (a) CV curves (0.1 mV/s), (b) potential lithium-storage sites (Ⅰ, benzene rings; Ⅱ, pores; Ⅲ, interlaminar space), (c) initial three charge and discharge plots (0.2 A/g), (d) rate behaviour, (e) comparison of capacities with other anodes at various current densities, and (f) cycling properties at 0.2 and 0.5 A/g of the Ni-CAT NRs[57]
表2 MOFs衍生金属氧化物负极材料及其电化学性能
Table 2 MOFs-derived metal oxides as anode materials and their electrochemical performances
Materials Template/precursor Voltage range (V) Current density (mA/g) Cycle number Overall capacity (mAh/g) Initial discharge/charge capacity (mAh/g) Initial coulomb efficiency(%) Specific surface area
(m2/g)
ref
CuO Cu(L-Phe)2 0.1~3.0 100/1000 200/500 505.3/116.7 -/- 62
CuO Cu-BTC 0.05~3.0 100 100 470 1208/- 40 49.6 63
CuO MOF-119 0.005~3.0 2000 40 210 1208/538 64
CuO Cu-BTC 0.01~3.0 500/1000/2000 200/400/400 1062/615/423 1334.7/836.1 49.75 65
Mn2O3 Mn-MIL-100 0.1~3.0 200 100 755 1668/1003 40.45 66
Mn2O3 Mn-LCP 0.01~3.0 1000 250 705 1158/852 74 15.34 67
Mn2O3 Mn-MOF 0~3.0 400/1000 450/1200 1370/819.8 -/- 68
Mn2O3 Mn-BTC 0.01~3.0 100 60 582 3404/1559 46 38.5 69
Mn3O4 Mn-MOF-74 0.01~3.0 200/2000 400/400 890.7/437.1 1078.9/625.1 80.5 70
Co3O4 [Co3(HCOO)6](DMF)4 0.01~3.0 50/100 50/100 965/730 1118/- 5.3 71
Co3O4 Co-MOF 0.01~3.0 1000/5000 350/600 628/412 1402/879 62.7 42 72
Co3O4 CoBDC MOF 0.01~3.0 100/1000 160/200 1477/775 1392/961 69.09 133.74 73
Co3O4 Co-BTC 0.00~3.0 100 60 886 2082/1061 51 10.44 74
Co3O4 Co-MOF 0.01~3.0 100 50 1115 1608/1080 43 75
Co3O4 PBA 300 50 1465 1557/- 66.5 76
Co3O4 MOF-71 0.001~3.0 200 60 913 1286.1/879.5 68 59 77
Co3O4 Co2(NDC)2DMF2 0.01~3.0 200/2000 100/100 1058.9/348 1504.2/976.7 40 78
Co3O4-a Co-MOF 0.01~3.0 100 90 470.3 1325.5/1003.5 75.7 22.6 79
Co3O4 ZIF-67 0.01~3.0 100/100 100/60 1335/1265 1735/1083 45 81
Co3O4 Co-MOF 0.01~3.0 100 100 1370 1324/1034 20.1 80
α-Fe2O3 MIL-88 0.01~3.0 200 50 911 1372/940 69 75 84
α-Fe2O3 Fe-MOF 0.005~3.0 100 40 921.6 1487/1024 85
Fe2O3-2 MIL-53 0.005~3.0 100/1000 200/500 1176/744 1456/1048 93.1 86
Fe2O3 PB 0.01~3.0 200 30 945 -/- 25.4 87
NiO MOF-C 0.005~2.5 500/1000 100/100 748/410 2134/1303 61 36 88
NiO Ni-MOF 0.01~3.0 15 100 380 900/480 24 89
NiO Ni-MOF 0.0~3 200 100 760 1149/850 28.6 90
TiO2 MIL-125 1.0~3.0 168/840/1680 500/500/500 166/106.5/71 168/- 220 95
GeO2 Ge-MOF 0.005~3.0 100 350 1393 2079/1315 63.2 12.9 96
MnCo2O4 Mn-Co-MOF 0.01~3.0 100 100 929 1496/963 64 31.69 101
Zn-NPs ZIF-L 0.01~3.0 100 100 143 1245.9/692.2 55.6 47.6 97
ZnCo2O4 ZnCo-8-hydroxyquinoline 0.01~3.0 100/1500 50/25 1640.8/348.1 1710.2/1273.5 74.5 118 102
Mn1.8Fe1.2O4 Mn3[Fe(CN)6]2·nH2O 0.01~3.0 200 60 827 2312/1337 57.8 124 103
NixCo3-xO4 Ni-Co-BTC 0.005~3.0 100/1000/2000 100/300/300 1109.8/832/673 1619.2/1139.3 70 96.7 104
ZnxCo3-xO4 Zn-Co-ZIF 0.01~3.0 100 50 990 1272/969 76.2 65.58 105
CoFe2O4 Co[Fe(CN)6]0.667 0.01~3.0 1352/1190 85.3 102.692 106
NiFe2O4 Ni2Fe(CN)6 0.01~3.0 914 200 1071 1245/1152 260.9 107
Ni0.3Co2.7O4 Co/Ni-MOF-74 0.005~3.0 100/2000/5000 200/500/500 1410/812/656 1737/1189 28.5 108
Li4Ti5O12 MIL-125 1.0~3.0 500 700 120.3 184.9/149.1 80.6 109
图3 NCNFs在Li+半电池中的电化学性能: (a) NCNFs-800在0.1 mV/s时的CV曲线, (b) NCNFs-800在0.1 A/g时的充放电曲线, (c) NCNFs在电流密度0.1~10 A/g时的倍率性能, (d) NCNFs-800在2 A/g时的循环性能[128]
Fig. 3 The electrochemical performances of NCNFs in Li+ half cells. (a) CV curves of NCNFs-800 at 0.1 mV/s. (b)Discharge/charge profiles of NCNFs-800 at 0.1 A/g. (c) Cycling performances of NCNFs at 100 mA/g. (d) Rate capability of NCNFs at a current density from 0.1 to 10 A/g.(e) Cycling performance of NCNFs-800 at 2 A/g[128]
表3 MOFs衍生多孔碳负极材料及其电化学性能
Table 3 MOFs-derived porous carbon as anode materials and their electrochemical performances
表4 MOFs/多孔碳复合负极及其电化学性能
Table 4 MOFs/ metal compound composites as anode materials and their electrochemical performances
图4 Fe2O3纳米管@Co3O4复合材料的合成示意图: (Ⅰ) MIL-88B纳米棒、Co2+和 2-methylimidazole (2-MIM)自组装成MIL-88B@ZIF-67复合材料; (Ⅱ) 经空气中热处理转变为Fe2O3纳米管@Co3O4复合材料[161]
Fig. 4 Schematic illustration of the formation process of the Fe2O3 nanotubes@Co3O4 composite. (Ⅰ) Self-assembly of MIL-88B nanorods, Co2+ ions, and 2-methylimidazole (2-MIM) to a MIL-88B@ZIF-67 composite. (Ⅱ) Transformation to Fe2O3 nanotubes@Co3O4 composite through thermal treatment in air[161]
表5 金属氧化物/金属氧化物复合负极材料及其电化学性能
Table 5 Metal oxide/metallic oxide composites as anode materials and their electrochemical performances
图5 In2O3/HPNC复合材料的形貌特征:(a)与(b) SEM图像;(c)与(d) TEM图像;(e) HRTEM图像(内部为SAED谱)(f~k) TEM暗场图像和相应元素分布[191]
Fig. 5 Morphological features of In2O3/HPNC composite: (a) and (b) SEM images, (c) and (d) TEM images, (e) HRTEM images, and the inset is the SAED pattern, and (f~k)Dark-field TEM image and corresponding elemental mapping[191]
表6 金属氧化物/碳基复合负极材料及其电化学性能
Table 6 Metal oxide/carbon-based composites as anode materials and their electrochemical performances
Materials Template/precursor Voltage range (V) Current density (mA/g) Cycle
number
Overall capacity (mAh/g) Initial discharge
capacity/charge
capacity
(mAh/g)
Initial coulomb efficiency(%) Specific surface area (m2/g) ref
Co3O4/C ZIF-67 0.01~3.0 200 120 1100 1209/864 71.0 179.4 171
ZnO@C PPy@ZIF-8 0.01~3.0 250/1000/2000 500/500/1000 526/397/275 1106.2/665.8 60.2 174
Co3O4/C PPy@ZIF-67 0.01~3.0 250/1000/2000 500/500/1000 721/372/272 1112/645 58 174
CuO/C Cu-MOF 0.01~3.0 100 200 789 1259/- 76 131.7 175
CuO/C [Cu3(btc)2]n 0.01~3.0 100 200 510.5 1150.9/450.4 46.2 16 176
Mn3O4/C Mn-PBA 0.01~3.0 200 500 1032 1500/1205 80.3 137 177
Mn3O4/C MOF 0.01~3.0 200/500/700 100/120/120 770/651/592 1186/722 60.8 8.0 178
MnO/C Mn-MOF 0.01~3.0 50/500 150/500 884/648 1321.6/779.2 59 313 179
MnO/C Mn(PTA)-MOFs 0~3.0 600/1000 100/200 804/800 -/- 309 180
ZnO/C Zn-BTC 0.01~3.0 500 120 741 1205/715 59 198 181
Fe3O4/C Fe-MOFs 0.01~3.0 100 100 861 1044.2/- 82.4 27 186
Fe3O4@C Fe-MOF 0.01~3.0 100 80 776.8 1714/1333 78 4.57 187
SnO2@C HKUST-1 0.001~3.0 100 200 880 2134/1208 474 189
In2O3/C MIL-68(In) 0.01~3.0 100 150 720 1410/- 43 152 190
MWCNTs/Co3O4 MWCNTs/ZIF-67 0.01~3.0 100 100 813 1171/812 62.9 192
MWCNTs/ZnO ZIF-8/MWCNTs 0.01~3.0 200 100 419.8 1477/854 94.13 193
NiO/CNTs-10 Ni-MOF/CNTs 0.005~3.0 100/2000 100/300 812/502 1100/- 134.68 194
CNT/Co3O4 ZIF-67 0~3.0 1000/4000 200/200 782/577 1840/1281 93.9 195
CFs@Co3O4 CFs@ZIF-67 0.01~3.0 100 150 420 630/369.9 63 532.4 196
3DGN/CuO Cu-BTC 0.01~3.0 100 50 405 569/422 74 197
NiO/GF Ni-MOF/GF 0.01~3.0 100 50 640 903/612 67.8 119 198
Fe2O3/rGO MIL-88-Fe/GO 0.01~3.0 500/5000 200/500 846.9/610.3 1478/971 199
RGO@Co3O4 GO@ZIF 0.01~3.0 100 100 974 1451/- 70 198.54 200
RGO/NiO GO/Ni-MOFs 0~3.0 100 200 440 681/678 99.49 201
MnO/C-N-500 Mn-PBI 0.01~3.0 300 100 1085 1507/1143 75.8 146.4 203
NiO@N-C Ni-NTA 0~3.0 50/4000 300/1200 921/450 1220/1009 82.3 204
Fe2O3@N-C Fe-ZIF 0.01~3.0 100/1000 50/100 1573/1142 1696/1368 80.7 27.1 206
NCW@Fe3O4/NC NCW@Fe-ZIFs 0.01~3.0 100/1000 170/600 1963/1741 2867/1585 55.3 52.7 208
Co3O4/N-C Co-TATB MOFs 0.0~3.0 1000 200 620 1062/- 75.0 209
Co3O4/N-C N-rich Co-MOF 0.01~3.0 1000 500 612 1210/613 51 21.5 210
Co3O4/N-PC ZIF-67 0.05~3.0 100 100 892 1730/1321 76.4 97 211
Co3O4@N-C Co-MOF 0.1~3.0 500 300 795 1385/1055 76 30.16 212
MS-Co3O4@PC Co-MOFs 0.01~3.0 100/1000 60/500 1701/601 1470/1188 80.8 22.1 213
CoO-NCNTs 2D-MOFs 0.01~3.0 500 2000 583 1156/945 81.7 86.26 214
Co3O4@NGN ZIF-67@NGA 0.01~3.0 200/1000 100/400 955/676 976/865 52.3 50 215
ZnO@C(30) ZnO@ZIF-8 0.02~3.0 100/1000 100/300 539/498 1065/664 62 216
Co-doped ZnO@C Co-MOF-5s 0.01~3.0 100 50 725 903/- 217
Ti-doped-CoO@C Co-Ti-MOF 0.01~3.0 200 150 1180 1749/830.7 241.4 218
C/CoTiO3 Co-MOF 0.005~3.0 100/2000 100/1400 630/610 -/- 75.8 62.2 220
NiFe2O4/N-C NiFe-MOF 0.005~3.0 100/500 50/50 760/610 1193/773 64.8 146.2 221
NiFe2O4/CNTs Fe2Ni MIL-88 0.01~3.0 100/2000 100/100 624.6/250 1348/1030 76.4 70.73 222
CNTs@ZnCo2O4 ZIF-8 0.01~3.0 100 100 750 682.7/435.6 78 167
CoFe2O4/GNS Co-Fe-BTC 0.01~3.0 100 100 1061.7 1413/1058 24.5 225
Zn0.5MnO@C Zn-Mn-BTC 100/5000 200 /500 1050/408 1565.9/954.6 30.8 226
MnO-doped Fe3O4@C Mn-doped MIL-53
(Fe)
0.01~3.0 200 200 1297.5 1281.4/938.6 73.3 63.3 227
Co3O4/NiO/C CoNi-MOFs 0.01~3.0 1000 1000 776 1522/907 136 229
Fe-Mn-O/C Fe/Mn-MOF-74 0.0~3.0 100 200 1294 1333/837 158.2 230
Co3O4@CuO
@GQDs
Co-Cu-BTC 0.005~3.0 100 200 1054 1352/816 60 36 231
ZnO/ZnFe2O4/C MOF-5 0.005~3.0 500/2000 100/100 1390/988 1385/1047 75.6 140 232
ZnO/Ni3ZnC0.7/C Zn-MOF/Ni 0.01~3.0 500 750 1002 1743/1015 58.2 112 233
ZnO/ZnFe2O4@C ZFC 0.01~3.0 1000 500 718 1392/1059 76.1 80 234
C@ZnO/ZnCo2O4/CuCo2O4 Co-Cu-ZIF-8 0.01~3.0 300/3000/10000 500/500/500 1742/1009/664 2430/1967 80.1 549.7 235
图6 (a)合成过程示意图, (b) SEM图像, (c) 高分辨TEM图像,(d) 合成的MoS2?C的STEM-EDS分布 ((c)的内部为SAED谱)[261]
Fig. 6 (a) Schematic illustration of the fabrication process, (b) SEM image, (c) high-resolution TEM image and (d) STEM-EDS mapping of the as-synthesized MoS2?C hybrids (inset of (c) showing the corresponding SAED pattern)[261]
表7 金属硫化物/碳基复合负极材料及其电化学性能
Table 7 Metal sulfide/carbon-based composites as anode materials and their electrochemical performances
Materials Template/precursor Voltage range (V) Current density (mA/g) Cycle
number
Overall Capacity (mAh/g) Initial discharge capacity/charge capacity (mAh/g) Initial
coulomb
efficiency
(%)
Specific surface area (m2/g) ref
H-Co9S8@C Co-MOF-74 0.01~3.0 100/500 250/50 900.5/655 1119.5/867.3 77.4 127.1 238
Co9S8@NMCN ZIF-67 0.01~3.0 100 80 988 1705/1125 66 76.9 239
Co9S8/N-C ZIF-67 0.01~3.0 544 400 784 1260/900 71.48 125.9 240
Co9S8/S-NC ZIF-67 0~3.0 1000 300 500 879.7/529.3 60.17 150.5 242
Co9S8/NSC Sulfonate-based Co-MOF 0.01~3.0 100/2000 200/1000 1179/789 1816.9/862 47.5 228.1 243
CoS@PCP/
CNTs-600
ZIF-67 0.01~3.0 200 100 1668 2083/1246 101.5 245
NC/CoS2-650 ZIF-67 0.1~3.0 100/2500 50/50 560/410 1100/ 246
CoS2-N-C/3DGN Co-MOF 0.01~3.0 100 100 409.5 833.5/666.3 79.9 247
CoS2/NSCNHF ZIF8@ZIF67 0.01~3.0 100/1000 100/200 845/549.9 1155.6/739.6 64 234.25 248
Co3S4/MNCNT ZIF-67/MWCNT 0.01~3.0 200/2000 50/500 1281.2/976.5 1644.2/1055 64.17 112 249
Co1-xS/C Co-BTC 0.01~3.0 200/1000 100/700 791/667 1290/932 72 124 250
FeS/C Fe-MOFs 0.01~3.0 100 150 830 1702/972 57 0.015 251
FeS2@POC Fe-MOFs 0.01~3.0 100/2000 100/200 1074/607 1394/1115 80 44.2 252
C@Fe7S8 MIL-88 0.01~3.0 500 170 1148 1072/761 71 277 253
ZnS/PC MOF-5 0.01-2.5 100 300 438 1220/- 296.8 254
ZnS@NC ZIF-8 0.01~3.0 200/500 150/450 521.8/853 1284.9/840.6 34.6 191.45 255
α-MnS/SCMFs/Cu Mn-MOF 0.01~3.0 200/1500 300/1000 1383/601 1115/- 69 109 258
MoS2@NC-2 ZIF-8 0.005~3.0 100 50 715 1864/- 50 259
ZnCoS@Co9S8/NC ZIF-67@ZIF-8/
ZIF-67
0.01~3.0 500/2000 500/400 1814/1095 2895/2182 270.46 263
表8 其他金属化合物/碳基复合负极材料及其电化学性能
Table 8 Other metal compounds/carbon-based composites as anode materials and their electrochemical performances
图7 (A) SnZCw前驱体和(B)不同放大倍数的SnZCw的SEM图像;SnZCw的(C) TEM图像、(D) HRTEM图像和(E) 选区电子衍射; (F) 不同放大倍数的SnZCd TEM图像[276]
Fig. 7 SEM images of (A) the precursor of SnZCw, and (B) SnZCw at different magnifications; (C) TEM image, (D) HRTEM image, and (E) the SAED pattern of SnZCw; (F) TEM images at different magnifications of SnZCd[276]
表9 金属/金属氧化物/碳基复合负极材料及其电化学性能
Table 9 Metal/metal oxide/carbon-based composites materials as anode materials and their electrochemical performances
表10 MOFs及其衍生负极材料的优点和缺点
Table 10 Advantages and disadvantages of MOFs and their derivative anode materials
Materials Advantages Disadvantages
MOFs abundant active sites
large specific surface area
high porosity
adjustable composition, morphology and structure
low cost
low conductivity
poor structure stability
fast capacity decay
Porous carbon large specific surface area
high porosity
simple synthesis method and mild synthesis condition
high thermal stability
no subsequent complex physical or chemical activation
insufficient capacity
uncontrolled structure evolution
inherent structure properties determined from micropore
Single metal oxide simple synthesis method
controllable synthesis path
Large specific surface area
high porosity
controlled structure and composition
limited species
lower conductivity
easy volume expansion and pulverization
lower rate capability and cycle performance
Double metal oxides stronger synergistic effect between different metal elements
abundant redox sites
faster reaction kinetics and activity
lower conductivity
easy volume expansion and pulverization
lower rate capability and cycle performance
Other metal compounds wide variety
good mechanical and thermodynamic stability
higher theoretical capacity
complicated synthesis process
higher cost
lower reaction kinetics under high load
lower utilization
MOFs/ Metal oxide abundant active sites
high porosity
alleviated volume expansion and pulverization
lower conductivity
MOFs/C high porosity
better structure stability
higher conductivity
limited capacity
Metal oxide/Metal oxide stronger synergistic effect between different metal elements
improved electrode integrity
alleviated volume effect
lower conductivity
easy volume expansion and pulverization
limited capacity and cycle stability
Metal oxide/C higher conductivity
better structure stability
faster electron transportation
stronger synergistic effect
complicated synthesis method
uncontrolled synthesis condition
Metal sulfide/C higher conductivity
better structure stability
stronger synergistic effect
slower reaction kinetics
faster capacity decay
Other metal compounds/C abundant active sites
higher utilization rate of active substances
faster electron transportation
stronger synergistic effect
insufficient performance under high load
ambiguous reaction mechanism
Metal/Metal oxide/C higher conductivity
better structure stability
faster electron transportation
stronger synergistic effect
complicated synthesis process
ambiguous reaction mechanism
[1]
Zhong M, Kong L J, Li N, Liu Y Y, Zhu J, Bu X H. Coord. Chem. Rev., 2019, 388: 172.

doi: 10.1016/j.ccr.2019.02.029     URL    
[2]
Jiang J, Li Y Y, Liu J P, Huang X T, Yuan C Z, David Lou X W. Adv. Mater., 2012, 24(38): 5166.

doi: 10.1002/adma.v24.38     URL    
[3]
Lux L, Williams K, Ma S Q. CrystEngComm, 2015, 17(1): 10.

doi: 10.1039/C4CE01499E     URL    
[4]
Jiang Y, Yue J L, Guo Q B, Xia Q Y, Zhou C, Feng T, Xu J, Xia H. Small, 2018, 14(19): 1704296.

doi: 10.1002/smll.v14.19     URL    
[5]
Li Z J, Du Z, Zhang J, Chen J W, Wang G, Wang R L. Prog. Chem., 2019, 31(1): 201.
(李振杰, 钟杜, 张洁, 陈金伟, 王刚, 王瑞林. 化学进展, 2019, 31: 201.).

doi: 10.7536/PC180415    
[6]
Zhao Y, Kang Y, Jin Y, Wang L, Tian G, He X. Prog. Chem., 2019, 31: 613.

doi: 10.7536/PC180916    
(赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明. 化学进展, 2019, 31: 613.).

doi: 10.7536/PC180916    
[7]
Li X X, Cheng F Y, Zhang S N, Chen J. J. Power Sources, 2006, 160(1): 542.

doi: 10.1016/j.jpowsour.2006.01.015     URL    
[8]
C, Lin Y, Zhao Y, Wang JinD, Chen L, Shen C. Mater. Sci. Technol., 2017, 33(8): 768.
[9]
Shin J, Kim M, Cirera J, Chen S, Halder G J, Yersak T A, Paesani F, Cohen S M, Meng Y S. J. Mater. Chem. A, 2015, 3(8): 4738.

doi: 10.1039/C4TA06694D     URL    
[10]
Li C, Hu X S, Lou X B, Zhang L J, Wang Y, Amoureux J P, Shen M, Chen Q, Hu B W. J. Mater. Chem. A, 2016, 4(41): 16245.

doi: 10.1039/C6TA06413B     URL    
[11]
Xiao T, Jin J, Zhang Y F, Xi W, Wang R, Gong Y S, He B B, Wang H W. Electrochim. Acta, 2022, 427: 140851.

doi: 10.1016/j.electacta.2022.140851     URL    
[12]
Matei Ghimbeu C, GÓrka J, Simone V, Simonin L, Martinet S, Vix-Guterl C. Nano Energy, 2018, 44: 327.

doi: 10.1016/j.nanoen.2017.12.013     URL    
[13]
Nie P, Shen L F, Luo H F, Ding B, Xu G Y, Wang J, Zhang X G. J. Mater. Chem. A, 2014, 2(16): 5852.

doi: 10.1039/C4TA00062E     URL    
[14]
An T C, Wang Y H, Tang J, Wang Y, Zhang L J, Zheng G F. J. Colloid Interface Sci., 2015, 445: 320.

doi: 10.1016/j.jcis.2015.01.012     URL    
[15]
Zhao C C, Shen C, Han W Q. RSC Adv., 2015, 5(26): 20386.

doi: 10.1039/C4RA16416D     URL    
[16]
Lin X M, Niu J L, Lin J, Wei L M, Hu L, Zhang G, Cai Y P. Inorg. Chem., 2016, 55(17): 8244.

doi: 10.1021/acs.inorgchem.6b01123     URL    
[17]
Lin X M, Niu J L, ChenD N, Lu Y N, Zhang G, Cai Y P. CrystEngComm, 2016, 18(36): 6841.

doi: 10.1039/C6CE01068G     URL    
[18]
Hu L, Lin X M, Mo J T, Lin J, Gan H L, Yang X L, Cai Y P. Inorg. Chem., 2017, 56(8): 4289.

doi: 10.1021/acs.inorgchem.6b02663     URL    
[19]
Li C, Lou X B, Shen M, Hu X S, Guo Z, Wang Y, Hu B W, Chen Q. ACS Appl. Mater. Interfaces, 2016, 8(24): 15352.

doi: 10.1021/acsami.6b03648     URL    
[20]
Chen L, Yang W J, Wang J B, Chen C R, Wei MD. Chem. A Eur. J., 2018, 24(50): 13362.

doi: 10.1002/chem.v24.50     URL    
[21]
Xing J J, Shi F N, XueD F. Chem. Res., 2020, 31(2): 95.
(邢锦娟, 史发年, 薛冬峰. 化学研究, 2020, 31(2): 95.).
[22]
Ning Y Q, Lou X B, Li C, Hu X S, Hu B W. Chem. A Eur. J., 2017, 23(63): 15984.

doi: 10.1002/chem.v23.63     URL    
[23]
Li G H, Yang H, Li F C, Cheng F Y, Shi W, Chen J, Cheng P. Inorg. Chem., 2016, 55(10): 4935.

doi: 10.1021/acs.inorgchem.6b00450     URL    
[24]
Liao Y X, Li C, Lou X B, Wang P, Yang Q, Shen M, Hu B W. J. Colloid Interface Sci., 2017, 506: 365.

doi: 10.1016/j.jcis.2017.07.063     URL    
[25]
Wang P, Lou X B, Li C, Hu X S, Yang Q, Hu B W. Nano Micro Lett., 2018, 10(2): 19.
[26]
GeD H, Peng J, Qu G L, Geng H B, Deng Y Y, Wu J J, Cao X Q, Zheng J W, Gu H W. New J. Chem., 2016, 40(11): 9238.

doi: 10.1039/C6NJ02568D     URL    
[27]
Wang L P, Zhao M J, Qiu J L, Gao P, Xue J, Li J Z. Energy Technol., 2017, 5(4): 637.

doi: 10.1002/ente.v5.4     URL    
[28]
Gou L, Hao L M, Shi Y X, Ma S L, Fan X Y, Xu L, LiD L, Wang K. J. Solid State Chem., 2014, 210(1): 121.

doi: 10.1016/j.jssc.2013.11.014     URL    
[29]
Fei H L, Liu X, Li Z W. Chem. Eng. J., 2015, 281: 453.

doi: 10.1016/j.cej.2015.06.082     URL    
[30]
Saravanan K, Nagarathinam M, Balaya P, Vittal J J. J. Mater. Chem., 2010, 20(38): 8329.

doi: 10.1039/c0jm01671c     URL    
[31]
Lin Y C, Zhang Q J, Zhao C C, Li H L, Kong C L, Shen C, Chen L. Chem. Commun., 2015, 51(4): 697.

doi: 10.1039/C4CC07149B     URL    
[32]
Liu Q, Yu L L, Wang Y, Ji Y Z, Horvat J, Cheng M L, Jia X Y, Wang G X. Inorg. Chem., 2013, 52(6): 2817.

doi: 10.1021/ic301579g     pmid: 23461562
[33]
Fei H L, Liu X, Li Z W, Feng W J. Electrochim. Acta, 2015, 174: 1088.

doi: 10.1016/j.electacta.2015.06.088     URL    
[34]
Maiti S, Pramanik A, Manju U, Mahanty S. ACS Appl. Mater. Interfaces, 2015, 7(30): 16357.

doi: 10.1021/acsami.5b03414     URL    
[35]
Xiong P X, Zeng G J, Zeng L X, Wei MD. Dalton Trans., 2015, 44(38): 16746.

doi: 10.1039/C5DT03030G     URL    
[36]
Hu H P, Lou X B, Li C, Hu X S, Li T, Chen Q, Shen M, Hu B W. New J. Chem., 2016, 40(11): 9746.

doi: 10.1039/C6NJ02179D     URL    
[37]
Reinsch H, Stock N. CrystEngComm, 2013, 15(3): 544.

doi: 10.1039/C2CE26436F     URL    
[38]
Li C, Hu X S, Tong W, Yan W S, Lou X B, Shen M, Hu B W. ACS Appl. Mater. Interfaces, 2017, 9(35): 29829.

doi: 10.1021/acsami.7b09363     URL    
[39]
FÉrey G, Millange F, Morcrette M, Serre C, Doublet M L, Grenèche J M, Tarascon J M. Angew. Chem. Int. Ed., 2007, 46(18): 3259.

doi: 10.1002/anie.v46:18     URL    
[40]
de Combarieu G, Morcrette M, Millange F, Guillou N, Cabana J, Grey C P, Margiolaki I, FÉrey G, Tarascon J M. Chem. Mater., 2009, 21(8): 1602.

doi: 10.1021/cm8032324     URL    
[41]
Fateeva A, Horcajada P, Devic T, Serre C, Marrot J, Grenèche J M, Morcrette M, Tarascon J M, Maurin G, FÉrey G. Eur. J. Inorg. Chem., 2010, 2010(24): 3789.

doi: 10.1002/ejic.v2010:24     URL    
[42]
Hu X S, Lou X B, Li C, Ning Y Q, Liao Y X, Chen Q, Mananga E S, Shen M, Hu B W. RSC Adv., 2016, 6(115): 114483.

doi: 10.1039/C6RA22738D     URL    
[43]
Du J. MasteralDissertation of Xi’an University of Science and Technology, 2017.
(杜婕. 西安科技大学硕士论文, 2017.).
[44]
Shen L S, Song H W, Wang C X. Electrochim. Acta, 2017, 235: 595.

doi: 10.1016/j.electacta.2017.03.105     URL    
[45]
Lou X B, Hu H P, Li C, Hu X S, Li T, Shen M, Chen Q, Hu B W. RSC Adv., 2016, 6(89): 86126.

doi: 10.1039/C6RA17608A     URL    
[46]
Zhang Y, Niu Y B, Liu T, Li Y T, Wang M Q, Hou J K, Xu M W. Mater. Lett., 2015, 161: 712.

doi: 10.1016/j.matlet.2015.09.079     URL    
[47]
Park K S, Ni Z, CôtÉ A P, Choi J Y, Huang RD, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Proc. Natl. Acad. Sci. U. S. A., 2006, 103(27): 10186.

doi: 10.1073/pnas.0602439103     URL    
[48]
Senthil Kumar R, Nithya C, Gopukumar S, Anbu Kulandainathan M. Energy Technol., 2014, 2(11): 921.

doi: 10.1002/ente.v2.11     URL    
[49]
Maiti S, Pramanik A, Manju U, Mahanty S. Microporous Mesoporous Mater., 2016, 226: 353.

doi: 10.1016/j.micromeso.2016.02.011     URL    
[50]
Hu X S. DoctoralDissertation of East China Normal University, 2018.
(胡小诗. 华东师范大学博士论文, 2018.).
[51]
Wu N, Wang W, Kou L Q, Zhang X, Shi Y R, Li T H, Li F, Zhou J M, Wei Y. Chem. A Eur. J., 2018, 24(24): 6330.

doi: 10.1002/chem.v24.24     URL    
[52]
Wu N, Jia T, Shi Y R, Yang Y J, Li T H, Li F, Wang Z. Ionics, 2020, 26(3): 1547.

doi: 10.1007/s11581-019-03392-9    
[53]
Wang Y, Qu Q T, Liu G, Battaglia V S, Zheng H H. Nano Energy, 2017, 39: 200.

doi: 10.1016/j.nanoen.2017.06.007     URL    
[54]
Xia S B, Yu S W, Yao L F, Li F S, Li X, Cheng F X, Shen X, Sun C K, Guo H, Liu J J. Electrochim. Acta, 2019, 296: 746.

doi: 10.1016/j.electacta.2018.11.135     URL    
[55]
Han X Y, Yi F, Sun T L, Sun J T. Electrochem. Commun., 2012, 25: 136.

doi: 10.1016/j.elecom.2012.09.014     URL    
[56]
Guo L Z, Sun J F, Zhang W H, Hou L R, Liang L W, Liu Y, Yuan C Z. ChemSusChem, 2019, 12(22): 5051.

doi: 10.1002/cssc.v12.22     URL    
[57]
Guo L Z, Sun J F, Sun X, Zhang J Y, Hou L R, Yuan C Z. Nanoscale Adv., 2019, 1(12): 4688.

doi: 10.1039/C9NA00616H     URL    
[58]
Yan J, Cui Y T, Xie M, Yang G Z, BinD S, LiD. Angew. Chem. Int. Ed., 2021, 60(46): 24467.

doi: 10.1002/anie.v60.46     URL    
[59]
Mao P C, Fan H L, Liu C, Lan G X, Huang W, Li Z P, Mahmoud H, Zheng R G, Wang Z Y, Sun H Y, Liu Y G. Sustain. Energy Fuels, 2022, 6(17): 4075.

doi: 10.1039/D2SE00520D     URL    
[60]
Sun M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y, Su B L. Chem. Soc. Rev., 2016, 45(12): 3479.

doi: 10.1039/C6CS00135A     URL    
[61]
Yao Y, Hou H Y, Liu X X, Tian C, Meng K, Lan J, Xu J L, Feng M M. J. Synth. Cryst., 2020, 49(7): 1242.
(姚远, 侯宏英, 刘显茜, 田川, 孟堃, 兰建, 徐加雷, 冯蒙蒙. 人工晶体学报, 2020, 49(7): 1242.).
[62]
Wu R B, Qian X K, Yu F, Liu H, Zhou K, Wei J, Huang Y Z. J. Mater. Chem. A, 2013, 1(37): 11126.

doi: 10.1039/c3ta12621h     URL    
[63]
Xiao X L, Liu X F, Zhao H, ChenD F, Liu F Z, Xiang J H, Hu Z B, Li YD. Adv. Mater., 2012, 24(42): 5762.

doi: 10.1002/adma.v24.42     URL    
[64]
Banerjee A, Singh U, Aravindan V, Srinivasan M, Ogale S. Nano Energy, 2013, 2(6): 1158.

doi: 10.1016/j.nanoen.2013.04.008     URL    
[65]
Hu X S, Li C, Lou X B, Yang Q, Hu B W. J. Mater. Chem. A, 2017, 5(25): 12828.

doi: 10.1039/C7TA02953E     URL    
[66]
Zhang B W, Hao S J, XiaoD R, Wu J S, Huang Y Z. Mater.Des., 2016, 98: 319.
[67]
Bai Z C, Zhang Y H, Zhang Y W, Guo C L, Tang B, SunD. J. Mater. Chem. A, 2015, 3(10): 5266.

doi: 10.1039/C4TA06292B     URL    
[68]
Cao K Z, Jiao L F, Xu H, Liu H Q, Kang H Y, Zhao Y, Liu Y C, Wang Y J, Yuan H T. Adv. Sci., 2016, 3(3): 1500185.

doi: 10.1002/advs.v3.3     URL    
[69]
Zheng F C, Xu S H, Yin Z C, Zhang Y G, Lu L. RSC Adv., 2016, 6(96): 93532.

doi: 10.1039/C6RA19334J     URL    
[70]
Hu X S, Lou X B, Li C, Yang Q, Chen Q, Hu B W. ACS Appl. Mater. Interfaces, 2018, 10(17): 14684.

doi: 10.1021/acsami.8b00953     URL    
[71]
Liu B, Zhang X B, Shioyama H, Mukai T, Sakai T, Xu Q. J. Power Sources, 2010, 195(3): 857.

doi: 10.1016/j.jpowsour.2009.08.058     URL    
[72]
Li X, Tian XD, Yang T, Song Y, Liu Y M, Guo Q G, Liu Z J. J. Alloys Compd., 2018, 735: 2446.

doi: 10.1016/j.jallcom.2017.12.001     URL    
[73]
Li A, Zhong M, Shuang W, Wang C P, Liu J, Chang Z, Bu X H. Inorg. Chem. Front., 2018, 5(7): 1602.

doi: 10.1039/C8QI00196K     URL    
[74]
Zheng F C, Yin Z C, Xia H Y, Zhang Y G. Mater. Lett., 2017, 197: 188.

doi: 10.1016/j.matlet.2017.03.050     URL    
[75]
Han Y, Zhao M L, Dong L, Feng J M, Wang Y J, LiD J, Li X F. J. Mater. Chem. A, 2015, 3(45): 22542.

doi: 10.1039/C5TA06205E     URL    
[76]
Hu L, Yan N, Chen Q W, Zhang P, Zhong H, Zheng X R, Li Y, Hu X Y. Chem. A Eur. J., 2012, 18(29): 8971.

doi: 10.1002/chem.v18.29     URL    
[77]
Li C, Chen T Q, Xu W J, Lou X B, Pan L K, Chen Q, Hu B W. J. Mater. Chem. A, 2015, 3(10): 5585.

doi: 10.1039/C4TA06914E     URL    
[78]
Gou L, Ma L, Zhao M J, Liu P G, Wang XD, Fan X Y, LiD L. J. Mater. Sci., 2019, 54(2): 1529.

doi: 10.1007/s10853-018-2892-1    
[79]
Zhang L M, Yan B, Zhang J H, Liu Y J, Yuan A H, Yang G. Ceram. Int., 2016, 42(4): 5160.

doi: 10.1016/j.ceramint.2015.12.038     URL    
[80]
Su P P, Liao S C, Rong F, Wang F Q, Chen J, Li C, Yang Q H. J. Mater. Chem. A, 2014, 2(41): 17408.

doi: 10.1039/C4TA02874K     URL    
[81]
Shao J, Wan Z M, Liu H M, Zheng H Y, Gao T, Shen M, Qu Q T, Zheng H H. J. Mater. Chem. A, 2014, 2(31): 12194.

doi: 10.1039/C4TA01966K     URL    
[82]
Li J F, Wang J Z, Liang X, Zhang Z J, Liu H K, Qian Y T, Xiong S L. ACS Appl. Mater. Interfaces, 2014, 6(1): 24.

doi: 10.1021/am404841t     URL    
[83]
Wang J Y, Yang N L, Tang H J, Dong Z H, Jin Q, Yang M, Kisailus D, Zhao H J, Tang Z Y, Wang D. Angew. Chem., 2013, 125(25): 6545.

doi: 10.1002/ange.v125.25     URL    
[84]
Xu XD, Cao R G, Jeong S, Cho J. Nano Lett., 2012, 12(9): 4988.

doi: 10.1021/nl302618s     URL    
[85]
Banerjee A, Aravindan V, Bhatnagar S, MhamaneD, Madhavi S, Ogale S. Nano Energy, 2013, 2(5): 890.

doi: 10.1016/j.nanoen.2013.03.006     URL    
[86]
Guo W X, Sun W W, Lv L P, Kong S F, Wang Y. ACS Nano, 2017, 11(4): 4198.

doi: 10.1021/acsnano.7b01152     URL    
[87]
Zhang L, Wu H B, Madhavi S, Hng H H, David Lou X W. J. Am. Chem. Soc., 2012, 134(42): 17388.

doi: 10.1021/ja307475c     pmid: 23057775
[88]
Soundharrajan V, Sambandam B, Song J J, Kim S, Jo J, Duong P T, Kim S, Mathew V, Kim J. J. Energy Chem., 2018, 27(1): 300.

doi: 10.1016/j.jechem.2017.05.003     URL    
[89]
Zhang F, JiangD G, Zhang X G. Nano Struct. Nano Objects, 2016, 5: 1.
[90]
Xu J M, Tang H B, Xu T T, WuD, Shi Z F, Tian Y T, Li X J. Ionics, 2017, 23(12): 3273.

doi: 10.1007/s11581-017-2160-4     URL    
[91]
Bi Z H, Paranthaman M P, Guo B K, Unocic R R, Meyer H M, Bridges C A, Sun X G, Dai S. J. Mater. Chem. A, 2014, 2(6): 1818.

doi: 10.1039/C3TA14535B     URL    
[92]
Mai Y Y, Zhang F, Feng X L. Nanoscale, 2014, 6(1): 106.

doi: 10.1039/C3NR04791A     URL    
[93]
Lee S, Ha J, Choi J, Song T, Lee J W, Paik U. ACS Appl. Mater. Interfaces, 2013, 5(22): 11525.

doi: 10.1021/am404082h     URL    
[94]
Hao B, Yan Y, Wang X B, Chen G. ACS Appl. Mater. Interfaces, 2013, 5(13): 6285.

doi: 10.1021/am4013215     URL    
[95]
Wang Z Q, Li X, Xu H, Yang Y, Cui Y J, Pan H G, Wang Z Y, Chen B L, Qian GD. J. Mater. Chem. A, 2014, 2(31): 12571.

doi: 10.1039/C4TA02029D     URL    
[96]
Zhang W B, Pang H C, Sun W W, Lv L P, Wang Y. Electrochem. Commun., 2017, 84: 80.

doi: 10.1016/j.elecom.2017.09.019     URL    
[97]
Wang X X, Xue H J, Na Z L, YinD M, Li Q, Wang C L, Wang L M, Huang G. J. Power Sources, 2018, 396: 659.

doi: 10.1016/j.jpowsour.2018.06.086     URL    
[98]
Wang CD, Li Y, Ruan Y J, Jiang J J, Wu Q H. Mater. Today Energy, 2017, 3: 1.
[99]
Xiong Q Q, Tu J P, Shi S J, Liu X Y, Wang X L, Gu CD. J. Power Sources, 2014, 256: 153.

doi: 10.1016/j.jpowsour.2014.01.038     URL    
[100]
Xing Z, Ju Z C, Yang J, Xu H Y, Qian Y T. Electrochim. Acta, 2013, 102: 51.

doi: 10.1016/j.electacta.2013.03.174     URL    
[101]
Yang L G, Wang X, Zheng F C. J. Mater. Sci. Mater. Electron., 2019, 30(17): 16687.

doi: 10.1007/s10854-019-02049-7    
[102]
Du J C, Tang Y H, Wang Y, Shi P H, Fan J C, Xu Q J, Min Y L. Dalton Trans., 2018, 47(22): 7571.

doi: 10.1039/C8DT01129J     URL    
[103]
Zheng F C, ZhuD Q, Shi X H, Chen Q W. J. Mater. Chem. A, 2015, 3(6): 2815.

doi: 10.1039/C4TA06150K     URL    
[104]
Wu L L, Wang Z, Long Y, Li J, Liu Y, Wang Q S, Wang X, Song S Y, Liu X G, Zhang H J. Small, 2017, 13(17): 1604270.

doi: 10.1002/smll.201604270     URL    
[105]
Wu R B, Qian X K, Zhou K, Wei J, Lou J, Ajayan P M. ACS Nano, 2014, 8(6): 6297.

doi: 10.1021/nn501783n     URL    
[106]
Guo H, Li T T, Chen W W, Liu L X, Yang X J, Wang Y P, Guo Y C. Nanoscale, 2014, 6(24): 15168.

doi: 10.1039/C4NR04422C     URL    
[107]
Guo H, Li T T, Chen W W, Liu L X, Qiao J L, Zhang J J. Sci. Rep., 2015, 5: 13310.

doi: 10.1038/srep13310    
[108]
Li H, Liang M, Sun W W, Wang Y. Adv. Funct. Mater., 2016, 26(7): 982.

doi: 10.1002/adfm.v26.7     URL    
[109]
Chen C, Qian S, Ding Y, Yao T H, Guo J H, Wang H K. J. Funct. Mater., 2020, 51(10): 10116.
(陈川, 钱森, 丁一, 姚天浩, 郭经红, 王红康. 功能材料, 2020, 51(10): 10116.).

doi: 10.3969/j.issn.1001-9731.2020.10.018    
[110]
Yu L, Yang J F, David Lou X W. Angew. Chem. Int. Ed., 2016, 128(43): 13620.

doi: 10.1002/ange.v128.43     URL    
[111]
Zhou Y L, YanD, Xu H Y, Feng J K, Jiang X L, Yue J, Yang J, Qian Y T. Nano Energy, 2015, 12: 528.

doi: 10.1016/j.nanoen.2015.01.019     URL    
[112]
Sennu P, Christy M, Aravindan V, Lee Y G, Nahm K S, Lee Y S. Chem. Mater., 2015, 27(16): 5726.

doi: 10.1021/acs.chemmater.5b02364     URL    
[113]
Duan J L, Zou Y L, Li Z Y, Long B. Powder Technol., 2019, 354: 834.

doi: 10.1016/j.powtec.2019.07.004     URL    
[114]
Liu F, Song S Y, XueD F, Zhang H J. Adv. Mater., 2012, 24(8): 1089.

doi: 10.1002/adma.v24.8     URL    
[115]
Oktaviano H S, Yamada K, Waki K. J. Mater. Chem., 2012, 22(48): 25167.

doi: 10.1039/c2jm34684b     URL    
[116]
Zhang H B, Nai J W, Yu L, David Lou X W. Joule, 2017, 1(1): 77.

doi: 10.1016/j.joule.2017.08.008     URL    
[117]
Zhang Y, Sha M, Fu Q, Zhao H, Lei Y. Mater. Today Sustain., 2022, 18: 100156.
[118]
Chen Y Y, Du W Q, Dou B X, Chen J H, Hu L, Zeb A, Lin X M. CrystEngComm, 2022, 24(15): 2729.

doi: 10.1039/D2CE00167E     URL    
[119]
Zuo L, Chen S H, Wu J F, Wang L, Hou H Q, Song Y H. RSC Adv., 2014, 4(106): 61604.

doi: 10.1039/C4RA10575C     URL    
[120]
Takamura T, Awano H, Ura T, Sumiya K. J. Power Sources, 1997, 68(1): 114.

doi: 10.1016/S0378-7753(97)02583-4     URL    
[121]
Li A, Tong Y, Cao B, Song H H, Li Z H, Chen X H, Zhou J S, Chen G, Luo H M. Sci. Rep., 2017, 7: 40574.

doi: 10.1038/srep40574    
[122]
Turon Teixidor G, Park B Y, Mukherjee P P, Kang Q, Madou M J. Electrochim. Acta, 2009, 54(24): 5928.

doi: 10.1016/j.electacta.2009.05.060     URL    
[123]
Park B Y, Zaouk R, Wang C L, Madou M J. J. Electrochem. Soc., 2007, 154(2): P1.

doi: 10.1149/1.2400607     URL    
[124]
Luo Y M, Sun L, Xu F, Wang Z Q. Key Eng. Mater., 2017, 727: 705.

doi: 10.4028/www.scientific.net/KEM.727     URL    
[125]
Peng H J, Hao G X, Chu Z H, Lin Y W, Lin X M, Cai Y P. RSC Adv., 2017, 7(54): 34104.

doi: 10.1039/C7RA05090A     URL    
[126]
Zheng G X, Chen M H, Zhang H R, Zhang J W, Liang X Q, Qi M L, Yin J H. Surf. Coat. Technol., 2019, 359: 384.

doi: 10.1016/j.surfcoat.2018.12.075     URL    
[127]
Shen C, Zhao C C, Xin F X, Cao C, Han W Q. Electrochim. Acta, 2015, 180: 852.

doi: 10.1016/j.electacta.2015.09.036     URL    
[128]
Chu K N, Hu M L, Song B, Chen S L, Li J Y, Zheng F C, Li Z Q, Li R, Zhou J Y. RSC Adv., 2023, 13(9): 5634.

doi: 10.1039/D2RA08135K     URL    
[129]
He X L, Cai Y Q, Zhao W, Zhuang Q C, Ju Z C. J. Phys. Chem. Solids, 2020, 147: 109639.

doi: 10.1016/j.jpcs.2020.109639     URL    
[130]
Shi X Z, Gong J, Kierzek K, Michalkiewicz B, Zhang S, Chu P K, Chen X C, Tang T, Mijowska E. New J. Chem., 2019, 43(26): 10405.

doi: 10.1039/C9NJ01542F     URL    
[131]
Tong Y L, Ji D, Wang P, Zhou H, Akhtar K, Shen X P, Zhang J H, Yuan A H. RSC Adv., 2017, 7(40): 25182.

doi: 10.1039/C7RA02543B     URL    
[132]
Yang Y, Zheng F C, Xia G L, Lun Z Y, Chen Q W. J. Mater. Chem. A, 2015, 3(36): 18657.

doi: 10.1039/C5TA05676D     URL    
[133]
Mao Y, Duan H, Xu B, Zhang L, Hu Y S, Zhao C C, Wang Z X, Chen L Q, Yang Y S. Energy Environ. Sci., 2012, 5(7): 7950.

doi: 10.1039/c2ee21817h     URL    
[134]
Yu Y X. Phys. Chem. Chem. Phys., 2013, 15(39): 16819.

doi: 10.1039/c3cp51689j     URL    
[135]
Zheng F C, Yang Y, Chen Q W. Nat. Commun., 2014, 5: 5261.

doi: 10.1038/ncomms6261    
[136]
Cao N, Du H L, Wang J L, Ma W X, Ma W L, Tian C. J. Chin. Ceram. Soc., 2018, 46(12): 1748.
(曹娜, 杜慧玲, 王金磊, 马武祥, 马万里, 田超. 硅酸盐学报, 2018, 46(12): 1748.).
[137]
Li G H, Li F C, Yang H, Cheng F Y, Xu N, Shi W, Cheng P. Inorg. Chem. Commun., 2016, 64: 63.

doi: 10.1016/j.inoche.2015.12.017     URL    
[138]
Gao G L, WangD Y, Zeng Q, Shen C. J. South China Norm. Univ. Nat. Sci. Ed., 2018, 50(2): 30.
(高国梁, 王德宇, 曾群, 沈彩. 华南师范大学学报(自然科学版), 2018, 50(2): 30.).
[139]
HongD Y, Hwang Y K, Serre C, FÉrey G, Chang J S. Adv. Funct. Mater., 2009, 19(10): 1537.

doi: 10.1002/adfm.v19:10     URL    
[140]
Wei R P, Dong Y T, Zhang Y Y, Zhang R, Al-Tahan M A, Zhang J M. J. Colloid Interface Sci., 2021, 582: 236.

doi: 10.1016/j.jcis.2020.08.044     URL    
[141]
Jin Y, Zhao C C, Sun Z X, Lin Y C, Chen L, WangD Y, Shen C. RSC Adv., 2016, 6(36): 30763.

doi: 10.1039/C6RA01645F     URL    
[142]
Zhang C H, Hu W Q, Jiang H, Chang J K, Zheng M S, Wu Q H, Dong Q F. Electrochim. Acta, 2017, 246: 528.

doi: 10.1016/j.electacta.2017.06.059     URL    
[143]
Li C, Lou X B, Yang Q, Zou Y M, Hu B W. Chem. Eng. J., 2017, 326: 1000.

doi: 10.1016/j.cej.2017.06.048     URL    
[144]
Wang J, Polleux J, Lim J, Dunn B. J. Phys. Chem. C, 2007, 111(40): 14925.

doi: 10.1021/jp074464w     URL    
[145]
He S H, Li Z P, Ma L M, Wang J Q, Yang S R. New J. Chem., 2017, 41(23): 14209.

doi: 10.1039/C7NJ02846F     URL    
[146]
Vermoortele F, Vandichel M, van de Voorde B, Ameloot R, Waroquier M, van Speybroeck V, de VosD E. Angew. Chem. Int. Ed., 2012, 51(20): 4887.

doi: 10.1002/anie.201108565     pmid: 22488675
[147]
Zhu W, Chen Z, Pan Y, Dai R Y, Wu Y, Zhuang Z B, WangD S, Peng Q, Chen C, Li YD. Adv. Mater., 2019, 31(38): 1800426.

doi: 10.1002/adma.v31.38     URL    
[148]
Sun X M, Gao G, YanD W, Feng C Q. Appl. Surf. Sci., 2017, 405: 52.

doi: 10.1016/j.apsusc.2017.01.247     URL    
[149]
Zheng X Z, Li Y F, Xu Y X, Hong Z S, Wei MD. CrystEngComm, 2012, 14(6): 2112.

doi: 10.1039/c2ce06350f     URL    
[150]
Wang B X, Wang Z Q, Cui Y J, Yang Y, Wang Z Y, Qian GD. RSC Adv., 2015, 5(103): 84662.

doi: 10.1039/C5RA16587C     URL    
[151]
Wang P, Shen M Q, Zhou H, Meng C F, Yuan A H. Small, 2019, 15(47): 1903522.

doi: 10.1002/smll.v15.47     URL    
[152]
Kang Y, Zhang Y H, Shi Q, Shi H W, XueD F, Shi F N. J. Colloid Interface Sci., 2021, 585: 705.

doi: 10.1016/j.jcis.2020.10.050     URL    
[153]
Zhang L, Wu H B, David Lou X W. J. Am. Chem. Soc., 2013, 135(29): 10664.

doi: 10.1021/ja401727n     pmid: 23805894
[154]
Li J B, YanD, Hou S J, Lu T, Yao Y F, ChuaD H C, Pan L K. Chem. Eng. J., 2018, 335: 579.

doi: 10.1016/j.cej.2017.10.183     URL    
[155]
Xu W W, Cui XD, Xie Z Q, Dietrich G, Wang Y. Electrochim. Acta, 2016, 222: 1021.

doi: 10.1016/j.electacta.2016.11.071     URL    
[156]
Hu L, Huang Y M, Zhang F P, Chen Q W. Nanoscale, 2013, 5(10): 4186.

doi: 10.1039/c3nr00623a     URL    
[157]
Guo W X, Sun W W, Wang Y. ACS Nano, 2015, 9(11): 11462.

doi: 10.1021/acsnano.5b05610     URL    
[158]
Wang B X, Wang Z Q, Cui Y J, Yang Y, Wang Z Y, Chen B L, Qian GD. Microporous Mesoporous Mater., 2015, 203: 86.

doi: 10.1016/j.micromeso.2014.10.026     URL    
[159]
WangD P, Fu M S, Ha Y, Wang H, Wu R B. J. Colloid Interface Sci., 2018, 529: 265.

doi: 10.1016/j.jcis.2018.06.010     URL    
[160]
Yang X, Tang Y B, Huang X, Xue H T, Kang W P, Li W Y, Ng T W, Lee C S. J. Power Sources, 2015, 284: 109.

doi: 10.1016/j.jpowsour.2015.02.155     URL    
[161]
Zhang S L, Guan B Y, Wu H B, David Lou X W. Nano Micro Lett., 2018, 10(3): 44.

doi: 10.1007/s40820-018-0197-1    
[162]
Lu Y, Yu L, Wu M, Wang Y, David Lou X W. Adv. Mater., 2018, 30(1): 1702875.

doi: 10.1002/adma.v30.1     URL    
[163]
Huang G, Zhang F F, Zhang L L, Du X C, Wang J W, Wang L M. J. Mater. Chem. A, 2014, 2(21): 8048.

doi: 10.1039/C4TA00200H     URL    
[164]
Huang G, Zhang L L, Zhang F F, Wang L M. Nanoscale, 2014, 6(10): 5509.

doi: 10.1039/c3nr06041a     pmid: 24730026
[165]
Zhong M, YangD H, Kong L J, Shuang W, Zhang Y H, Bu X H. Dalton Trans., 2017, 46(45): 15947.

doi: 10.1039/c7dt03047a     pmid: 29119170
[166]
Xu X H, Cao K Z, Wang Y J, Jiao L F. J. Mater. Chem. A, 2016, 4(16): 6042.

doi: 10.1039/C6TA00723F     URL    
[167]
Huang G, YinD M, Wang L M. J. Mater. Chem. A, 2016, 4(39): 15106.

doi: 10.1039/C6TA05389K     URL    
[168]
Hou L R, Lian L, Zhang L H, Pang G, Yuan C Z, Zhang X G. Adv. Funct. Mater., 2015, 25(2): 238.

doi: 10.1002/adfm.v25.2     URL    
[169]
Yang X, Xue H T, Yang QD, Yuan R, Kang W P, Lee C S. Chem. Eng. J., 2017, 308: 340.

doi: 10.1016/j.cej.2016.09.071     URL    
[170]
CaiD P, Zhan H B, Wang T H. Mater. Lett., 2017, 197: 241.

doi: 10.1016/j.matlet.2017.02.012     URL    
[171]
Wu Y Z, Meng J S, Li Q, Niu C J, Wang X P, Yang W, Li W, Mai L Q. Nano Res., 2017, 10(7): 2364.

doi: 10.1007/s12274-017-1433-6     URL    
[172]
Zhao K N, Liu F N, Niu C J, Xu W W, Dong Y F, Zhang L, Xie S M, Yan M Y, Wei Q L, ZhaoD Y, Mai L Q. Adv. Sci., 2015, 2(12): 1500154.

doi: 10.1002/advs.v2.12     URL    
[173]
Liu L X, Guo H, Liu J J, Qian F, Zhang C H, Li T T, Chen W W, Yang X J, Guo Y C. Chem. Commun., 2014, 50(67): 9485.

doi: 10.1039/C4CC03807J     URL    
[174]
Zhang J, Chu R X, Chen Y L, Jiang H, Zeng Y B, Chen X, Zhang Y, Huang N M, Guo H. J. Alloys Compd., 2019, 797: 83.

doi: 10.1016/j.jallcom.2019.04.162     URL    
[175]
Peng H J, Hao G X, Chu Z H, He C L, Lin X M, Cai Y P. J. Alloys Compd., 2017, 727: 1020.

doi: 10.1016/j.jallcom.2017.08.231     URL    
[176]
Yin H, Yu X X, Li Q W, Cao M L, Zhang W, Zhao H, Zhu M Q. J. Alloys Compd., 2017, 706: 97.

doi: 10.1016/j.jallcom.2017.02.215     URL    
[177]
Peng H J, Hao G X, Chu Z H, Lin J, Lin X M, Cai Y P. Cryst. GrowthDes., 2017, 17(11): 5881.
[178]
Sambandam B, Soundharrajan V, Song J J, Kim S, Jo J, TungD P, Kim S, Mathew V, Kim J. Inorg. Chem. Front., 2016, 3(12): 1609.

doi: 10.1039/C6QI00348F     URL    
[179]
Tang B. MasteralDissertation of Beijing University of Chemical Technology, 2017.
(唐波. 北京化工大学硕士论文, 2017.).
[180]
SunD, Tang Y G, YeD L, Yan J, Zhou H S, Wang H Y. ACS Appl. Mater. Interfaces, 2017, 9(6): 5254.

doi: 10.1021/acsami.6b14801     URL    
[181]
Yang T, Liu Y G, Huang Z H, Liu J W, Bian P J, Ling CD, Liu H, Wang G X, Zheng R K. J. Alloys Compd., 2018, 735: 1079.

doi: 10.1016/j.jallcom.2017.11.125     URL    
[182]
Yang S J, Nam S, Kim T, Im J H, Jung H, Kang J H, Wi S, Park B, Park C R. J. Am. Chem. Soc., 2013, 135(20): 7394.

doi: 10.1021/ja311550t     URL    
[183]
Wang H B, Pan Q M, Cheng Y X, Zhao J W, Yin G P. Electrochim. Acta, 2009, 54(10): 2851.

doi: 10.1016/j.electacta.2008.11.019     URL    
[184]
Jamnik J, Maier J. Phys. Chem. Chem. Phys., 2003, 5(23): 5215.

doi: 10.1039/b309130a     URL    
[185]
Farrusseng D, Aguado S, Pinel C. Angew. Chem. Int. Ed., 2009, 48(41): 7502.

doi: 10.1002/anie.200806063     pmid: 19691074
[186]
Chen Y Q, Zheng L, Fu Y Y, Zhou R H, Song Y H, Chen S H. RSC Adv., 2016, 6(89): 85917.

doi: 10.1039/C6RA19041C     URL    
[187]
Yang L, Tian Y, Ge P, Zhao G G, Pu T C, Yang Y C, Zou G Q, Hou H S, Huang L P, Ji X B. ChemElectroChem, 2018, 5(22): 3426.

doi: 10.1002/celc.v5.22     URL    
[188]
Zhao L, Liu W, Liu S, Wang J F, Wang H L, Chen J X. J. Mater. Chem. A, 2015, 3(27): 14210.

doi: 10.1039/C5TA01926E     URL    
[189]
Wang M H, Yang H, Zhou X L, Shi W, Zhou Z, Cheng P. Chem. Commun., 2016, 52(4): 717.

doi: 10.1039/C5CC07983G     URL    
[190]
Jin L N, Zhao X S, Qian X Y, Wang S W, Shen X Q, Dong MD. Mater. Lett., 2017, 199: 176.

doi: 10.1016/j.matlet.2017.04.016     URL    
[191]
Xu H J, Wang L, Zhong J, Wang T, Cao J H, Wang Y Y, Li X Q, Fei H L, Zhu J, Duan XD. Energy Environmental Mater., 2020, 3(2): 177.

doi: 10.1002/eem2.v3.2     URL    
[192]
Huang G, Zhang F F, Du X C, Qin Y L, YinD M, Wang L M. ACS Nano, 2015, 9(2): 1592.

doi: 10.1021/nn506252u     pmid: 25629650
[193]
Zou Y L, Qi Z G, Ma Z S, Jiang W J, Hu R W, Duan J L. J. Electroanal. Chem., 2017, 788: 184.

doi: 10.1016/j.jelechem.2016.12.028     URL    
[194]
Xu Y Q, Hou S J, Yang G, Lu T, Pan L K. J. Solid State Electrochem., 2018, 22(3): 785.

doi: 10.1007/s10008-017-3811-0     URL    
[195]
Chen Y, Yu L, David Lou X. Angew. Chem. Int. Edit., 2016, 55(20): 5990.

doi: 10.1002/anie.v55.20     URL    
[196]
Wang F X, Han Q G, Yi Z, GengD, Li X, Wang Z, Wang L M. J. Electroanal. Chem., 2017, 807: 196.

doi: 10.1016/j.jelechem.2017.10.039     URL    
[197]
JiD, Zhou H, Tong Y L, Wang J P, Zhu M Z, Chen T H, Yuan A H. Chem. Eng. J., 2017, 313: 1623.

doi: 10.1016/j.cej.2016.11.063     URL    
[198]
Shao J X, Zhou H, Feng J H, Zhu M Z, Yuan A H. J. Alloys Compd., 2019, 784: 869.

doi: 10.1016/j.jallcom.2019.01.157     URL    
[199]
Zhang L, Liu W X, Shi W H, Xu X L, Mao J, Li P, Ye C Z, Yin R L, Ye S F, Liu X Y, Cao X H, Gao C. Chem. A Eur. J., 2018, 24(52): 13689.

doi: 10.1002/chem.v24.52     URL    
[200]
YinD M, Huang G, Sun Q J, Li Q, Wang X X, YuanD X, Wang C L, Wang L M. Electrochim. Acta, 2016, 215: 410.

doi: 10.1016/j.electacta.2016.08.110     URL    
[201]
Tian S Y, Zheng G X, Liu Q, Ren M Y, Yin J H. Int. J. Electrochem. Sci., 2019, 14(10): 9459.

doi: 10.20964/2019.10.14     URL    
[202]
Niu J L, Hao G X, Lin J, He X B, Sathishkumar P, Lin X M, Cai Y P. Inorg. Chem., 2017, 56(16): 9966.

doi: 10.1021/acs.inorgchem.7b01486     URL    
[203]
Wang Z H, Xiong X Q, Qie L, Huang Y H. Electrochim. Acta, 2013, 106: 320.

doi: 10.1016/j.electacta.2013.05.088     URL    
[204]
Chu K N, Li Z Q, Xu S K, Yao G, Xu Y, Niu P, Zheng F C. J. Alloys Compd., 2021, 854: 157264.

doi: 10.1016/j.jallcom.2020.157264     URL    
[205]
Zhang Q Y, Liu F J, Gao P A, Zhao P, Guo H X, Wang L, Wan Z L. Mater. Lett., 2020, 268: 127366.

doi: 10.1016/j.matlet.2020.127366     URL    
[206]
Zheng F C. DoctoralDissertation of University of Science and Technology of China, 2015.
(郑方才. 中国科学技术大学博士论文, 2015.).
[207]
Zheng F C, He M N, Yang Y, Chen Q W. Nanoscale, 2015, 7(8): 3410.

doi: 10.1039/C4NR06321J     URL    
[208]
Wang Y, Gao Y J, Shao J, Holze R, Chen Z, Yun Y X, Qu Q T, Zheng H H. J. Mater. Chem. A, 2018, 6(8): 3659.

doi: 10.1039/C7TA10330A     URL    
[209]
Kang W P, Zhang Y, Fan L L, Zhang L L, Dai F N, Wang R M, SunD F. ACS Appl. Mater. Interfaces, 2017, 9(12): 10602.

doi: 10.1021/acsami.6b15000     URL    
[210]
Han X, Chen W M, Han X G, Tan Y Z, SunD. J. Mater. Chem. A, 2016, 4(34): 13040.

doi: 10.1039/C6TA05096D     URL    
[211]
Hou Y, Li J Y, Wen Z H, Cui S M, Yuan C, Chen J H. Nano Energy, 2015, 12: 1.

doi: 10.1016/j.nanoen.2014.11.043     URL    
[212]
Sun Y, Huang F Z, Li S K, Shen Y H, Xie A J. Nano Res., 2017, 10(10): 3457.

doi: 10.1007/s12274-017-1557-8     URL    
[213]
Ding Y C, Hu L H, HeD C, Peng Y Q, Niu Y J, Li Z Q, Zhang X X, Chen S H. Chem. Eng. J., 2020, 380: 122489.

doi: 10.1016/j.cej.2019.122489     URL    
[214]
Pang Y C, Chen S, Xiao C H, Ma SD, Ding S J. J. Mater. Chem. A, 2019, 7(8): 4126.

doi: 10.1039/C8TA10575H     URL    
[215]
Sui Z Y, Zhang P Y, Xu M Y, Liu Y W, Wei Z X, Han B H. ACS Appl. Mater. Interfaces, 2017, 9(49): 43171.

doi: 10.1021/acsami.7b15315     URL    
[216]
Park J, Ju J B, Choi W, Kim S O. J. Alloys Compd., 2019, 773: 960.

doi: 10.1016/j.jallcom.2018.09.298     URL    
[217]
Yue H Y, Shi Z P, Wang Q X, Cao Z X, Dong H Y, Qiao Y, Yin Y H, Yang S T. ACS Appl. Mater. Interfaces, 2014, 6(19): 17067.

doi: 10.1021/am5046873     URL    
[218]
Li J K, WangD, Zhou J S, Hou L, Gao F M. ChemElectroChem, 2019, 6(3): 917.

doi: 10.1002/celc.v6.3     URL    
[219]
Zhang X, Cao W J, Zou W W, ZhaoD Y, Zhao H B, Fang J H. Ferroelectrics, 2019, 547(1): 59.

doi: 10.1080/00150193.2019.1592484     URL    
[220]
Li J K, WangD, Zhou J S, Hou L, Gao F M. J. Alloys Compd., 2019, 793: 247.

doi: 10.1016/j.jallcom.2019.04.100     URL    
[221]
Zhang J L, Chen Z H. Front. Mater., 2020, 7: 178.

doi: 10.3389/fmats.2020.00178     URL    
[222]
Zou Y L, Li Z Y, Liu Y L, Duan J L, Long B. J. Alloys Compd., 2020, 820: 153085.

doi: 10.1016/j.jallcom.2019.153085     URL    
[223]
Mujahid M, Ullah Khan R, Mumtaz M, Mubasher, Soomro S A, Ullah S. Ceram. Int., 2019, 45(7): 8486.

doi: 10.1016/j.ceramint.2019.01.160     URL    
[224]
Cai M C, Cai S R, Zheng M S, Dong Q F. J. Electrochem., 2014, 20(2): 101.
(蔡默超, 蔡森荣, 郑明森, 董全峰. 电化学, 2014, 20(2): 101.).

doi: 10.13208/j.electrochem.130722    
[225]
Yang H, Zhang K, Wang Y, Yan C, Lin S. J. Phys. Chem. Solids, 2017, 115: 317.

doi: 10.1016/j.jpcs.2017.12.042     URL    
[226]
WangD, Zhou W W, Zhang R, Huang X X, Zeng J J, Mao Y F, Ding C Y, Zhang J, Liu J P, Wen G W. J. Mater. Chem. A, 2018, 6(7): 2974.

doi: 10.1039/C7TA10154F     URL    
[227]
He Z S, Wang K, Zhu S S, Huang L A, Chen M M, Guo J F, Pei S E, Shao H B, Wang J M. ACS Appl. Mater. Interfaces, 2018, 10(13): 10974.

doi: 10.1021/acsami.8b01358     URL    
[228]
Zhang W, Wang B, Luo H, Jin F, Ruan T T, WangD L. J. Alloys Compd., 2019, 803: 664.

doi: 10.1016/j.jallcom.2019.06.337     URL    
[229]
Wang Y Z, Kong M G, Liu Z W, Lin C C, Zeng Y. J. Mater. Chem. A, 2017, 5(46): 24269.

doi: 10.1039/C7TA08264A     URL    
[230]
Sun W W, Chen S, Wang Y. Dalton Trans., 2019, 48(6): 2019.

doi: 10.1039/C8DT04716B     URL    
[231]
Wu M H, Chen H Q, Lv L P, Wang Y. Chem. Eng. J., 2019, 373: 985.

doi: 10.1016/j.cej.2019.05.100     URL    
[232]
Zou F, Hu X L, Li Z, Qie L, Hu C C, Zeng R, Jiang Y, Huang Y H. Adv. Mater., 2014, 26(38): 6622.

doi: 10.1002/adma.v26.38     URL    
[233]
Zhao Y C, Li X, Liu JD, Wang C G, Zhao Y Y, Yue G H. ACS Appl. Mater. Interfaces, 2016, 8(10): 6472.

doi: 10.1021/acsami.5b12562     URL    
[234]
Yuan C Z, Cao H, Zhu S Q, Hua H, Hou L R. J. Mater. Chem. A, 2015, 3(40): 20389.

doi: 10.1039/C5TA05984D     URL    
[235]
Niu J L, Zeng C H, Peng H J, Lin X M, Sathishkumar P, Cai Y P. Small, 2017, 13(47): 170215.
[236]
Li J F, Han L, Li Y Q, Li J L, Zhu G, Zhang X J, Lu T, Pan L K. Chem. Eng. J., 2020, 380: 122590.

doi: 10.1016/j.cej.2019.122590     URL    
[237]
Lu M J, Liao C, Jiang C, Du Y, Zhang Z, Wu S P. Electrochim. Acta, 2017, 250: 196.

doi: 10.1016/j.electacta.2017.08.019     URL    
[238]
Zhang L G, Li H, Xie H T, Chen T X, Yang C, Wang JD. J. Mater. Res., 2018, 33(10): 1496.

doi: 10.1557/jmr.2018.59     URL    
[239]
Mujtaba J, Sun H Y, Huang G Y, Zhao Y Y, Arandiyan H, Sun G X, Xu S M, Zhu J. RSC Adv., 2016, 6(38): 31775.

doi: 10.1039/C6RA03126A     URL    
[240]
Zeng P Y, Li J W, Ye M, Zhuo K F, Fang Z. Chem. A Eur. J., 2017, 23(40): 9517.

doi: 10.1002/chem.v23.40     URL    
[241]
Grugeon S, Laruelle S, Dupont L, Tarascon J M. Solid State Sci., 2003, 5(6): 895.

doi: 10.1016/S1293-2558(03)00114-6     URL    
[242]
Wang F, Li K, Wang X, Li J Q, Pan J, Feng J, Liu K, Song S Y, Zhang H J. ACS Appl. Energy Mater., 2018, 1(11): 6242.

doi: 10.1021/acsaem.8b01259     URL    
[243]
Chen L, Yang W J, Li X Y, Han L J, Wei MD. J. Mater. Chem. A, 2019, 7(17): 10331.

doi: 10.1039/c9ta01433k    
[244]
Paraknowitsch J P, Thomas A. Energy Environ. Sci., 2013, 6(10): 2839.

doi: 10.1039/c3ee41444b     URL    
[245]
Wu R B, Wang D P, Rui X H, Liu B, Zhou K, Law A W K, Yan Q Y, Wei J, Chen Z. Adv. Mater., 2015, 27(19): 3038.

doi: 10.1002/adma.v27.19     URL    
[246]
Wang Q F, Zou R Q, Xia W, Ma J, Qiu B, Mahmood A, Zhao R, Yang Y, XiaD G, Xu Q. Small, 2015, 11(21): 2511.

doi: 10.1002/smll.v11.21     URL    
[247]
Song J B, Zhang C Y, Zhang J H, Zhou H, Chen L, Bian L L, Yuan A H. J. Nanopart. Res., 2019, 21(5): 90.

doi: 10.1007/s11051-019-4522-5    
[248]
Wang J L, Wang J W, Han L F, Liao C, Cai W, Kan Y C, Hu Y. Nanoscale, 2019, 11(43): 20996.

doi: 10.1039/C9NR07767G     URL    
[249]
Tian R, Zhou Y, Duan H N, Guo Y P, Li H, Chen K F, XueD F, Liu H Z. ACS Appl. Energy Mater., 2018, 1(2): 402.

doi: 10.1021/acsaem.7b00072     URL    
[250]
Yang T, YangD X, Liu Y G, Liu J, Chen Y F, Bao L, Lu X X, Xiong Q Q, Qin H Y, Ji Z G, Ling CD, Zheng R K. Electrochimica Acta, 2018, 290: 193.

doi: 10.1016/j.electacta.2018.08.084     URL    
[251]
Zhao J G, Hu Z, SunD Z, Jia H, Liu X M. Nanomaterials, 2019, 9(4): 492.

doi: 10.3390/nano9040492     URL    
[252]
Yin W H, Li W Y, Wang K, Chai W W, Ye W K, Rui Y C, Tang B. Electrochim. Acta, 2019, 318: 673.

doi: 10.1016/j.electacta.2019.05.152     URL    
[253]
Huang W, Li S, Cao X Y, Hou C Y, Zhang Z, Feng J K, Ci L J, Si P C, Chi Q J. ACS Sustain. Chem. Eng., 2017, 5(6): 5039.

doi: 10.1021/acssuschemeng.7b00430     URL    
[254]
Fu Y, Zhang Z A, Yang X, Gan Y Q, Chen W. RSC Adv., 2015, 5(106): 86941.

doi: 10.1039/C5RA15108B     URL    
[255]
Ding H, Huang H C, Zhang X K, Xie L, Fan J Q, Jiang T, ShiD A, Ma N, Tsai F C. ChemElectroChem, 2019, 6(22): 5617.

doi: 10.1002/celc.201901568    
[256]
Chen Z L, Wu R B, Wang H, Jiang Y K, Jin L, Guo Y H, Song Y, Fang F, SunD L. Chem. Eng. J., 2017, 326: 680.

doi: 10.1016/j.cej.2017.06.009     URL    
[257]
Wu HD, Li G, Li Y, Geng Z X, Ren T Q, Cai T F, Yang Z X. Cryst. Res. Technol., 2019, 54(6): 1800281.

doi: 10.1002/crat.v54.6     URL    
[258]
Ma Y, Ma Y J, Kim G T, Diemant T, Behm R J, GeigerD, Kaiser U, Varzi A, Passerini S. Adv. Energy Mater., 2019, 9(43): 1902077.

doi: 10.1002/aenm.v9.43     URL    
[259]
Xue H L, Yue S, Wang J, Zhao Y, Li Q, Yin M M, Wang S S, Feng C H, Wu Q, Li H S, ShiD X, Jiao Q Z. J. Electroanal. Chem., 2019, 840: 230.

doi: 10.1016/j.jelechem.2019.03.058     URL    
[260]
Shao J, Gao T, Qu Q T, Shi Q, Zuo Z C, Zheng H H. J. Power Sources, 2016, 324: 1.

doi: 10.1016/j.jpowsour.2016.05.056     URL    
[261]
Hu C, Ma K, Hu Y J, Chen A P, Saha P, Jiang H, Li C Z. Green Energy Environ., 2021, 6(1): 75.

doi: 10.1016/j.gee.2020.02.001     URL    
[262]
Yuan D X, Huang G, YinD M, Wang X X, Wang C L, Wang L M. ACS Appl. Mater. Interfaces, 2017, 9(21): 18178.

doi: 10.1021/acsami.7b02176     URL    
[263]
Aslam M K, Ahmad Shah S S, Li S, Chen C G. J. Mater. Chem. A, 2018, 6(29): 14083.

doi: 10.1039/C8TA04676J     URL    
[264]
Li J B, YanD, Lu T, Yao Y F, Pan L K. Chem. Eng. J., 2017, 325: 14.

doi: 10.1016/j.cej.2017.05.046     URL    
[265]
Jiang T C, Bu F X, Liu B L, Hao G L, Xu Y X. New J. Chem., 2017, 41(12): 5121.

doi: 10.1039/C7NJ01166K     URL    
[266]
Yang T, Liu Y G, YangD X, Deng B B, Huang Z H, Ling CD, Liu H, Wang G X, Guo Z P, Zheng R K. Energy Storage Mater., 2019, 17: 374.
[267]
Yang T, Liu J W, Yang D X, Mao Q N, Zhong J S, Yuan Y J, Li X Y, Zheng X, Ji Z G, Liu H, Wang G X, Zheng R K. ACS Appl. Energy Mater., 2020, 3(11): 11073.

doi: 10.1021/acsaem.0c02056     URL    
[268]
Liu H, Li Z, Zhang L, Ruan H, Hu R. Nanoscale Res. Lett., 2019, 14: 237.

doi: 10.1186/s11671-019-3055-2    
[269]
Tao S, Cui P X, Cong S, Chen S M, WuD J, Qian B, Song L, Marcelli A. Sci. China Mater., 2020, 63(9): 1672.

doi: 10.1007/s40843-020-1328-y    
[270]
Wang X X, Na Z L, YinD M, Wang C L, Wu Y M, Huang G, Wang L M. ACS Nano, 2018, 12(12): 12238.

doi: 10.1021/acsnano.8b06039     URL    
[271]
Xia G L, Su J W, Li M S, Jiang P, Yang Y, Chen Q W. J. Mater. Chem. A, 2017, 5(21): 10321.

doi: 10.1039/C7TA02600E     URL    
[272]
Qi J, Shi Z P, Li X, Gao B X, Wang H, Yang L C, Tang Y, Zhu M. J. Alloys Compd., 2019, 786: 284.

doi: 10.1016/j.jallcom.2019.01.267     URL    
[273]
Yan H R, Qiu F, Wang K L, ZhangD P, Chen J H, Niu F E. Plast. Sci. Technol., 2020, 48(11): 7.
(闫浩然, 邱帆, 汪楷丽, 张大鹏, 陈君华, 牛斐洱. 塑料科技, 2020, 48(11): 7.).
[274]
Zhou K Q, Lai L F, Zhen Y C, Hong Z S, Guo J H, Huang Z G. Chem. Eng. J., 2017, 316: 137.

doi: 10.1016/j.cej.2017.01.060     URL    
[275]
Zhong M, He W W, Shuang W, Liu Y Y, Hu T L, Bu X H. Inorg. Chem., 2018, 57(8): 4620.

doi: 10.1021/acs.inorgchem.8b00365     pmid: 29608062
[276]
Chen S H, Zhou R H, Chen Y Q, Li P, Song Y H, Wang L. Int. J. Electrochem. Sci., 2016, 11(12): 10522.

doi: 10.20964/2016.12.62     URL    
[277]
He Q, Liu J S, Li Z H, Li Q, Xu L, Zhang B X, Meng J S, Wu Y Z, Mai L Q. Small, 2017, 13(37): 1701504.

doi: 10.1002/smll.v13.37     URL    
[278]
Zou F, Chen Y M, Liu K W, Yu Z T, Liang W F, Bhaway S M, Gao M, Zhu Y. ACS Nano, 2016, 10(1): 377.

doi: 10.1021/acsnano.5b05041     URL    
[279]
Joshi B, Samuel E, Il Kim Y, Kim M W, Jo H S, Swihart M T, Yoon W Y, Yoon S S. Chem. Eng. J., 2018, 351: 127.

doi: 10.1016/j.cej.2018.05.098     URL    
[1] 彭涛, 柴倩倩, 李传强, 郑旭煦, 李铃娟. MOFs衍生金属氧化物在催化VOCs完全氧化中的应用[J]. 化学进展, 2024, 36(1): 81-94.
[2] 玉笛声, 刘昌林, 林雪, 盛利志, 江丽丽. 快充型锂离子电池电极材料与电解液结构调控及设计[J]. 化学进展, 2024, 36(1): 132-144.
[3] 罗文浩, 袁睿, 孙金元, 周连群, 罗小河, 罗阳. 金属有机框架纳米酶在临床检测中的应用[J]. 化学进展, 2023, 35(9): 1389-1398.
[4] 张浩, 伍艳辉. MOF-聚合物混合基质膜的制备、改性及其在渗透汽化中的应用[J]. 化学进展, 2023, 35(8): 1154-1167.
[5] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[6] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[7] 刘苏慧, 张飞飞, 王小青, 刘普旭, 杨江峰. 钛基金属有机框架材料合成的研究进展[J]. 化学进展, 2023, 35(12): 1752-1763.
[8] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[9] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[10] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[11] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[12] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[13] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[14] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[15] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.