English
新闻公告
More
化学进展 2024, Vol. 36 Issue (1): 81-94 DOI: 10.7536/PC230511 前一篇   后一篇

• 综述 •

MOFs衍生金属氧化物在催化VOCs完全氧化中的应用

彭涛, 柴倩倩, 李传强*(), 郑旭煦, 李铃娟   

  1. 重庆交通大学 材料科学与工程学院,重庆 400074
  • 收稿日期:2023-05-11 修回日期:2023-07-11 出版日期:2024-01-24 发布日期:2023-08-06
  • 作者简介:

    李传强 重庆交通大学副教授,重庆市巴渝青年学者。主要研究方向为环境催化、废弃物资源化利用等,研究兴趣聚焦在低温合成多元催化剂、界面缺陷材料的设计与合成、聚合物低温解聚及资源化应用、表面材料优化与失效机制等。以第一/通讯作者在国内外学术期刊发表科技论文30篇,以第一完成人获重庆市化学化工学会技术进步二等奖1项,相关研究成果实现技术转化2项

  • 基金资助:
    重庆市技术创新与应用发展专项面上项目(cstc2020jscx-msxmX0071); 重庆市技术创新与应用发展专项面上项目(CSTB2022TIAD-GPX0033); 重庆市教育委员会科学技术研究项目(KJZD-K202300709)

Application of MOFs-Derived Metal Oxides in Catalytic Total Oxidation of VOCs

Tao Peng, Qianqian Chai, Chuanqiang Li(), Xuxu Zheng, Lingjuan Li   

  1. School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
  • Received:2023-05-11 Revised:2023-07-11 Online:2024-01-24 Published:2023-08-06
  • Contact: * e-mail: lichuanqiang@cqjtu.edu.cn
  • Supported by:
    Chongqing Technical Innovation and Application Development Special Surface Project(cstc2020jscx-msxmX0071); Chongqing Technical Innovation and Application Development Special Surface Project(CSTB2022TIAD-GPX0033); Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202300709)

大量挥发性有机化合物VOCs的排放对人类和环境造成了严重的影响。通过金属氧化物催化VOCs完全氧化为无毒害的二氧化碳和水是当前最有效的处理方式。为提高金属氧化物的催化性能,已开发了多种合成策略,如形貌工程、缺陷工程和掺杂工程等。然而,这些合成工艺不仅繁琐,而且催化性能有待提升。相比之下,金属有机框架(MOFs)衍生的金属氧化物由于其形貌可调、大比表面积、高缺陷浓度和良好的掺杂分散性等优点,被广泛应用于催化VOCs的完全氧化。由于目前缺乏针对MOFs衍生金属氧化物在VOCs完全氧化应用上的总结,本文从衍生金属氧化物的调控策略出发,对MOFs的合成条件、掺杂方式和热解条件进行了综述。总结了这些调控方法、衍生金属氧化物的物理化学性质与VOCs完全氧化性能的关系,并探讨了其未来的发展和挑战。

The emission of a significant amount of VOCs has resulted in severe impacts on both human health and the environment. Currently, the most effective method for treating VOCs is their total oxidation to carbon dioxide and water through metal oxide catalysis. To enhance the catalytic performance of metal oxides, various synthetic strategies have been developed, including morphology, defect, and doping engineering. However, these processes are cumbersome and require further improvements to enhance the catalytic performance. On the other hand, metal-organic frameworks (MOFs)-derived metal oxides have been extensively used to catalyze the complete oxidation of VOCs. This is because of their tunable morphology, large specific surface area, high defect concentration, and excellent doping dispersion. However, there is a lack of a comprehensive summary of the application of MOFs-derived metal oxides in the total oxidation of VOCs. Therefore, this paper reviews the synthesis conditions, doping methods, and pyrolysis conditions of MOFs from the control strategy of derived metal oxides. It also summarizes the regulation methods and the relationship between the physicochemical properties of derived metal oxides and the total oxidation performance of VOCs. Additionally, this paper discusses the future development and challenges of MOFs-derived metal oxides.

Contents

1 Introduction

2 Regulatory strategies of MOFs-derived metal oxides and their application in catalytic total oxidation of VOCs

2.1 Synthesis conditions

2.2 Doping methods

2.3 Pyrolysis conditions

3 Mechanism of catalytic VOCs total oxidation

4 Conclusion and outlook

()
表1 近5年来MOFs衍生的MOs在VOCs的研究总结
Table 1 Summary of research on MOFs-derived MOs in VOCs in recent five years
Catalyst MOF pyrolysis conditions pollutant Concentration(ppm) WHSV(mL·gcat−1·h−1) T90(℃) ref
CeO2/Co3O4 CoCe-BDC Air, 350 ℃ Acetone 600 18 600 180 35
CeCoOx-MNS ZIF-67 Air, 450 ℃ Toluene 3000 30 000 249 44
CeO2-1 Ce-BTC Air, 450 ℃ o-xylene 500 48 000 198 52
Co3O4-R Co-MOF-74 Air, 350 ℃ o-xylene 100 120 000 270 37
Mn-100-AR-O MIL-101(Mn) O2 after Ar,
700 ℃
Toluene 1000 30 000 265 49
ZSA-1-Co3O4 ZSA-1 Air, 350 ℃ Toluene / 20 000 240 40
CeO2 Ce-MOF-808 Air, 250 ℃ Toluene 1000 30 000 278 41
Mn3O4-MOFs-74-300 Mn-MOF-74 Air, 300 ℃ Toluene 1000 20 000 218 50
CeCoOx-200 Ce[Co(CN)6]2·nH2O Air, 500 ℃ Toluene 3000 30 000 168 56
Co3O4-400 ZIF-67 Air, 350 ℃ Toluene 12000 21 000 259 43
CeO2-C Ce-BTC Air, 450 ℃ o-xylene 500 48 000 193 62
Co2Mn3 MnCo-BTC Air, 350 ℃ Propane 10000 120 000 255 45
M-Co2Cu1Ox CoCu-MOF-74 Air, 400 ℃ Toluene 1000 30 000 220 66
MOF-Mn1Co1 Mn3[Co(CN)6]2·nH2O Air, 450 ℃ Toluene 500 96 000 226 75
MnOx-CeO2-MOF Ce/Mn-MOF-74 Air, 600 ℃ Toluene 1000 60 000 220 78
CuMn2Ox CuMn -BTC N2,350 ℃&500 ℃ Acetone 1019 18 000 144 80
MnOx-CeO2-s Mn/Ce-BTC Air, 600 ℃ ethylacetate 500 60 000 205 83
CuO/Co3O4 Cu/ZIF-67 Air, 500 ℃ Toluene 1000 20 000 229 84
M-Co1Mn1Ox Mn/ZSA-1 Air, 500 ℃ Toluene - 20 000 192 85
15Mn/Cr2O3-M Cr-MIL-101 Air, 500 ℃ Toluene 1000 60 000 268 86
10%CeO2-MnOx Mn-BTC Air, 300 ℃ Toluene 1000 48 000 275 89
M-Co1Cu1Ox Mn/ZSA-1 Air, 350 ℃ Toluene 1000 20 000 208 88
MnOx/Co3O4-4 h Mn/ZIF-67 Air, 350 ℃ chlorobenzene 1000 60 000 334 90
MnOx/Co3O4-10 Mn/ZIF-67 O2 after N2, 500 ℃ Toluene 1000 120 000 242 70
CoMn6 Mn/ZIF-67 Air, 350 ℃ Toluene 1000 60 000 219 92
MOF-CMO/400 Mn3[Co(CN)6]2·nH2O Air, 400 ℃ Toluene 1000 20 000 209 72
M-Co3O4-350 ZSA-1 Air, 350 ℃ Toluene 1000 20 000 239 95
Co3O4-350 Co-BTC Air, 350 ℃ Propane 10000 60 000 275 96
CeO2-MOF/ 350 Ce-BTC Air, 350 ℃ Toluene 1000 12 000 260 97
1Mn1Ce-300 MnCe-BTC O2 after Ar,
300 ℃
Toluene 1000 30 000 244 103
HW-MnxCo3-xO4 ZIF-67 Air, 350 ℃ Toluene 3000 30 000 188 104
MnOx-NA Mn-BDC O2 after N2, 350 ℃ Acetone 600 56 000 167 105
MnOx@ZrO2-NA MOF-808 O2 after N2, 300 ℃ Toluene 1000 60 000 260 106
MnOx-700 Mn-MOF-74 Air, 700 ℃ chlorobenzene 50 12 000 225 109
3Mn2Ce Mn/Ce-BTC O2 after Ar,
300 ℃
Toluene 1000 30 000 236 117
图1 (a) Co3O4-R和Co3O4-S的形貌及o-xylene上的催化氧化活性[37];(b) ZSA-1-Co3O4、MOF-74-Co3O4和ZIF-67-Co3O4的形貌以及甲苯完全氧化活性[40];(c) Ce-MOF-808、Ce-BTC、Ce-UiO-66的XRD图谱[41];(d) DMF/水控制Co-MOF-74尺寸和形貌的机制[42];(e) 1.7 μm、800 nm和400 nm尺寸ZIF-67的合成过程[43];(f) 立方状、网状纳米片、棒状的Co-MOFs的合成步骤[44];(g)球磨法制备MOFs衍生MnCo二元氧化物的示意图[45]
Fig. 1 (a) Morphology of Co3O4-R and Co3O4-S and catalytic oxidation activity on o-xylene[37]; (b) Morphology of ZSA-1-Co3O4, MOF-74-Co3O4 and ZIF-67-Co3O4 and complete oxidation activity of toluene[40]; (c) XRD patterns of Ce-MOF-808, Ce-BTC and Ce-UiO-66[41]; (d) Mechanism of DMF/ water control on the size and morphology of Co-MOF-74[42]; (e) Synthesis of ZIF-67 at 1.7 μm, 800 nm and 400 nm[43]; (f) Synthesis steps of cubic, reticular nanosheet and rod-like Co-MOFs[44]; (g) Schematic diagram of preparation of MoFs-derived MnCo dioxides by ball milling[45]
图2 (a) CoCeBDC衍生的CoCeOx和普通负载制备Co3O4/CeO2[68];(b) CeCuBDC衍生的异价取代的CeCuOx[67];(c) MOFs的掺杂位点[33];(d) 硝酸镍掺杂ZIF-67制备中空NiOx/Co3O4的流程[69];(e) 协同热解-氧化-吸附制备MnOx/Co3O4的过程[70];(f) Co-MOFs封装到有序介孔CeO2中制备CeCoOx的流程[71];(g) 中空CoMn2O4的制备方法[72]
Fig. 2 (a) Co3O4/CeO2 was prepared by CoCeOx derived from CoCeBDC and ordinary load[68]; (b) CoCeBDC derived heterovalent substituted CoCeOx[67]; (c) Doping sites of MOFs[33]; (d) Preparation of hollow NiOx/Co3O4 by doping ZIF-67 with nickel nitrate[69]; (e) The preparation of MnOx/Co3O4 by synergistic pyrolysis-oxidation-adsorption[70]; (f) CeCoOx was prepared by encapsulation of Co-MOFs into ordered mesoporous CeO2[71]; (g) Preparation method of hollow CoMn2O4[72]
图3 (a) 不同温度下热解Ce-BTC的图解模型[99];(b) ZIF-67在不同热解条件下的形貌图解[104];(c) 两段式制备MnOx-NA的过程[105];(d) 两段式制备MnOx@ZrO2-NA的过程[106]
Fig. 3 (a) Graphical models of pyrolysis Ce-BTC at different temperatures[99]; (b) Morphology diagram of ZIF-67 under different pyrolysis conditions[104]; (c) Two-stage preparation of MnOx-NA[105]; (d) A two-stage process for preparing MnOx@ZrO2-NA[106]
图4 (a, b) MvK模型反应步骤; (c) LH模型反应步骤
Fig. 4 (a, b) MvK model reaction steps; (c) LH model reaction steps
[1]
Zhang Z X, Jiang Z, Shangguan W F. Catal. Today, 2016, 264: 270.

doi: 10.1016/j.cattod.2015.10.040     URL    
[2]
Zheng Y F, Fu K X, Yu Z H, Su Y, Han R, Liu Q L. J. Mater. Chem. A, 2022, 10(27): 14171.
[3]
He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z P. Chem. Rev., 2019, 119(7): 4471.

doi: 10.1021/acs.chemrev.8b00408    
[4]
Zhang S H, You J P, Kennes C, Cheng Z W, Ye J X, Chen D Z, Chen J M, Wang L D. Chem. Eng. J., 2018, 334: 2625.

doi: 10.1016/j.cej.2017.11.014     URL    
[5]
Kamal M S, Razzak S A, Hossain M M. Atmos. Environ., 2016, 140: 117.

doi: 10.1016/j.atmosenv.2016.05.031     URL    
[6]
Feng C, Xiong G, Jiang F, Gao Q, Chen C, Pan Y, Fei Z, Li Y, Lu Y, Liu C. Sep. Purif. Technol., 2022, 284: 120269.

doi: 10.1016/j.seppur.2021.120269     URL    
[7]
Almaie S, Vatanpour V, Rasoulifard M H, Koyuncu I. Chemosphere, 2022, 306: 135655.

doi: 10.1016/j.chemosphere.2022.135655     URL    
[8]
Li X Q, Zhang L, Yang Z Q, Wang P, Yan Y F, Ran J Y. Sep. Purif. Technol., 2020, 235: 116213.

doi: 10.1016/j.seppur.2019.116213     URL    
[9]
Zheng S J, Qian Y, Wang X B, Vujanović M, Zhang Y J, Ur Rahman Z, Yang P H, Duan F, Tan H Z, De Toni A, Li Y, Mikulćić H. Fuel, 2022, 315: 123149.

doi: 10.1016/j.fuel.2022.123149     URL    
[10]
Lelicińska-Serafin K, Rolewicz-Kalińska A, Manczarski P. Int. J. Environ. Res. Public Health, 2019, 16(17): 3009.
[11]
Xie L H, Liu X M, He T, Li J R. Chem, 2018, 4(8): 1911.

doi: 10.1016/j.chempr.2018.05.017     URL    
[12]
Yang R J, Guo Z J, Cai L X, Zhu R S, Fan Y Y, Zhang Y F, Han P P, Zhang W J, Zhu X G, Zhao Q T, Zhu Z Y, Chan C K, Zeng Z Y. Small, 2021, 17(50): 2103052.

doi: 10.1002/smll.v17.50     URL    
[13]
Min X, Guo M M, Liu L Z, Li L, Gu J N, Liang J X, Chen C, Li K, Jia J P, Sun T H. J. Hazard. Mater., 2021, 406: 124743.
[14]
Zhao Q, Zheng Y F, Song C F, Liu Q L, Ji N, Ma D G, Lu X B. Appl. Catal. B Environ., 2020, 265: 118552.

doi: 10.1016/j.apcatb.2019.118552     URL    
[15]
Lou B Z, Shakoor N, Adeel M, Zhang P, Huang L L, Zhao Y W, Zhao W C, Jiang Y Q, Rui Y K. J. Clean. Prod., 2022, 363: 132523.
[16]
Kim H S, Kim H J, Kim J H, Kim J H, Kang S H, Ryu J H, Park N K, Yun D S, Bae J W. Catalysts, 2022, 12(1): 63.

doi: 10.3390/catal12010063     URL    
[17]
Lu Y Q, Deng H, Pan T T, Wang L, Zhang C B, He H. Appl. Surf. Sci., 2022, 606: 154834.

doi: 10.1016/j.apsusc.2022.154834     URL    
[18]
Shen K, Gao B, Xia H Q, Deng W, Yan J R, Guo X H, Guo Y L, Wang X Y, Zhan W C, Dai Q G. Environ. Sci. Technol., 2022, 56(12): 8854.

doi: 10.1021/acs.est.2c00942     URL    
[19]
Guo Y L, Wen M C, Li G Y, An T C. Appl. Catal. B Environ., 2021, 281: 119447.

doi: 10.1016/j.apcatb.2020.119447     URL    
[20]
Wu X, Han R, Liu Q, Su Y, Lu S, Yang L, Song C, Ji N, Ma D, Lu X. Catal. Sci. Technol., 2021, 11(16): 5374.

doi: 10.1039/D1CY00478F     URL    
[21]
Huang H B, Xu Y, Feng Q Y, Leung D. Catal. Sci. \& Technol., 2015, 5: 2649.
[22]
Liu R, Wu H, Shi J H, Xu X M, Zhao D, Ng Y H, Zhang M L, Liu S J, Ding H. Catal. Sci. Technol., 2022, 12(23): 6945.

doi: 10.1039/D2CY01181F     URL    
[23]
Li H L, Eddaoudi M, O'Keeffe M, Yaghi O M. Nature, 1999, 402(6759): 276.

doi: 10.1038/46248    
[24]
He T, Kong X J, Bian Z X, Zhang Y Z, Si G R, Xie L H, Wu X Q, Huang H L, Chang Z, Bu X H, Zaworotko M J, Nie Z R, Li J R. Nat. Mater., 2022, 21(6): 689.

doi: 10.1038/s41563-022-01237-x    
[25]
Hussain I, Iqbal S, Hussain T, Chen Y T, Ahmad M, Javed M S, AlFantazi A, Zhang K L. J. Mater. Chem. A, 2021, 9(33): 17790.
[26]
Li Y Z, Wang G D, Ma L N, Hou L, Wang Y Y, Zhu Z H. ACS Appl. Mater. Interfaces, 2021, 13(3): 4102.

doi: 10.1021/acsami.0c21554     URL    
[27]
Li D D, Xu H Q, Jiao L, Jiang H L. EnergyChem, 2019, 1(1): 100005.

doi: 10.1016/j.enchem.2019.100005     URL    
[28]
Hu H, Guan B Y, Xia B Y, David Lou X W. J. Am. Chem. Soc., 2015, 137(16): 5590.

doi: 10.1021/jacs.5b02465     URL    
[29]
Cong Y Q, Chen X, Wang W X, Ye L J, Zhang Y, Lv S W. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 655: 130266.

doi: 10.1016/j.colsurfa.2022.130266     URL    
[30]
Li C Q, Liu X, Yang X Y, Peng T, Li Y Q, Chen M W, Lin C C, Jiang J, Su Z Y, Kong W J, Wang Y. Ceram. Int., 2022, 48(13): 18460.

doi: 10.1016/j.ceramint.2022.03.115     URL    
[31]
Zhou W X, Tang Y J, Zhang X Y, Zhang S T, Xue H G, Pang H. Coord. Chem. Rev., 2023, 477: 214949.

doi: 10.1016/j.ccr.2022.214949     URL    
[32]
Sanati S, Abazari R, Albero J, Morsali A, García H, Liang Z B, Zou R Q. Angewandte Chemie Int. Ed., 2021, 60(20): 11048.

doi: 10.1002/anie.v60.20     URL    
[33]
De Villenoisy T, Zheng X R, Wong V, Mofarah S S, Arandiyan H, Yamauchi Y, Koshy P, Sorrell C C. Adv. Mater., 2023, 35(24): 2370174.

doi: 10.1002/adma.v35.24     URL    
[34]
Reddy R K, Lin J N, Chen Y Y, Zeng C, Lin X M, Cai Y P, Su C. Coord. Chem. Rev., 2020, 420: 213434.

doi: 10.1016/j.ccr.2020.213434     URL    
[35]
Zheng Y F, Zhao Q, Shan C P, Lu S C, Su Y, Han R, Song C F, Ji N, Ma D G, Liu Q L. ACS Appl. Mater. Interfaces, 2020, 12(25): 28139.

doi: 10.1021/acsami.0c04904     URL    
[36]
Wang L, Yin G Y, Yang Y Q, Zhang X D. React. Kinetics Mech. Catal., 2019, 128(1): 193.
[37]
Ma Y, Wang L, Ma J Z, Wang H H, Zhang C B, Deng H, He H. ACS Catal., 2021, 11(11): 6614.

doi: 10.1021/acscatal.1c01116     URL    
[38]
Jian Y F, Tian M J, He C, Xiong J C, Jiang Z Y, Jin H, Zheng L R, Albilali R, Shi J W. Appl. Catal. B Environ., 2021, 283: 119657.

doi: 10.1016/j.apcatb.2020.119657     URL    
[39]
Xie Y J, Yu Y Y, Gong X Q, Guo Y, Guo Y L, Wang Y Q, Lu G Z. CrystEngComm, 2015, 17(15): 3005.

doi: 10.1039/C5CE00058K     URL    
[40]
Lei J, Wang S, Li J P. Chem. Eng. Sci., 2020, 220: 115654.

doi: 10.1016/j.ces.2020.115654     URL    
[41]
Sun W J, Li X M, Sun C, Huang Z, Xu H L, Shen W. Catalysts, 2019, 9(8): 682.

doi: 10.3390/catal9080682     URL    
[42]
Huang C, Gu X Y, Su X Y, Xu Z C, Liu R, Zhu H J. J. Solid State Chem., 2020, 289: 121497.
[43]
Zhao J H, Tang Z C, Dong F, Zhang J Y. Mol. Catal., 2019, 463: 77.
[44]
Dong F, Han W G, Guo Y, Han W L, Tang Z C. Chem. Eng. J., 2021, 405: 126948.

doi: 10.1016/j.cej.2020.126948     URL    
[45]
Li C Q, Liu X, Peng T, Zhang T, Lin C C, Zhang Y Y, Chai Q Q, Qiu W G, Song L Y. Appl. Surf. Sci., 2023, 619: 156698.

doi: 10.1016/j.apsusc.2023.156698     URL    
[46]
Lu S C, Han R, Wang H, Song C F, Ji N, Lu X B, Ma D G, Liu Q L. Chem. Eng. J., 2022, 448: 137629.

doi: 10.1016/j.cej.2022.137629     URL    
[47]
Feng C, Chen C, Xiong G Y, Yang D, Wang Z, Pan Y, Fei Z Y, Lu Y K, Liu Y Q, Zhang R D, Li X B. Appl. Catal. B Environ., 2023, 328: 122528.

doi: 10.1016/j.apcatb.2023.122528     URL    
[48]
Ma Y, Wang L, Ma J Z, Liu F D, Einaga H, He H. Environ. Sci. Technol., 2022, 56(13): 9751.

doi: 10.1021/acs.est.2c02450     URL    
[49]
Zhang X D, Lv X T, Bi F K, Lu G, Wang Y X. Mol. Catal., 2020, 482: 110701.
[50]
Chen J J, Bai B B, Lei J, Wang P, Wang S, Li J P. Chem. Eng. Sci., 2022, 263: 118065.

doi: 10.1016/j.ces.2022.118065     URL    
[51]
Marshall C R, Staudhammer S A, Brozek C K. Chem. Sci., 2019, 10(41): 9396.

doi: 10.1039/C9SC03802G     URL    
[52]
Mei J, Shen Y, Wang Q L, Shen Y, Li W, Zhao J K, Chen J R, Zhang S H. ACS Appl. Mater. Interfaces, 2022, 14(31): 35694.

doi: 10.1021/acsami.2c08418     URL    
[53]
Niu Y D, Yuan Y, Zhang Q, Chang F F, Yang L, Chen Z W, Bai Z Y. Nano Energy, 2021, 82: 105699.

doi: 10.1016/j.nanoen.2020.105699     URL    
[54]
Jang J S, Koo W T, Kim D H, Kim I D. ACS Cent. Sci., 2018, 4(7): 929.

doi: 10.1021/acscentsci.8b00359     URL    
[55]
Zhai C B, Zhang H P, Du L Y, Wang D X, Xing D J, Zhang M Z. CrystEngComm, 2020, 22(7): 1286.

doi: 10.1039/C9CE01807G     URL    
[56]
Han W L, Zhao H J, Dong F, Tang Z C. Nanoscale, 2018, 10(45): 21307.

doi: 10.1039/C8NR07882C     URL    
[57]
Zhang B X, Zhang J L, Liu C C, Sang X X, Peng L, Ma X, Wu T B, Han B X, Yang G Y. RSC Adv., 2015, 5(47): 37691.

doi: 10.1039/C5RA02440D     URL    
[58]
Cheng X Q, Zhang A F, Hou K K, Liu M, Wang Y X, Song C S, Zhang G L, Guo X W. Dalton Trans., 2013, 42(37): 13698.

doi: 10.1039/c3dt51322j     URL    
[59]
Wang S M, Liu H R, Zheng S T, Lan H L, Yang Q Y, Zheng Y Z. Sep. Purif. Technol., 2023, 304: 122378.

doi: 10.1016/j.seppur.2022.122378     URL    
[60]
Guo H L, Zhu Y Z, Wang S, Su S Q, Zhou L, Zhang H J. Chem. Mater., 2012, 24(3): 444.

doi: 10.1021/cm202593h     URL    
[61]
Sun D, Tang Y G, Ye D L, Yan J, Zhou H S, Wang H Y. ACS Appl. Mater. Interfaces, 2017, 9(6): 5254.

doi: 10.1021/acsami.6b14801     URL    
[62]
Mei J, Zhang S H, Pan G J, Cheng Z W, Chen J R, Zhao J K. J. Environ. Chem. Eng., 2022, 10(6): 108743.
[63]
Babu R, Roshan R, Kathalikkattil A C, Kim D W, Park D W. ACS Appl. Mater. Interfaces, 2016, 8(49): 33723.

doi: 10.1021/acsami.6b12458     URL    
[64]
Gu W H, Lv J, Quan B, Liang X H, Zhang B S, Ji G B. J. Alloys Compd., 2019, 806: 983.
[65]
Yue C G, Lin Y H, Sang J T, Li Z Y, Zhang P B, Fan M M, Leng Y, Jiang P P, Haryono A. Mater. Today Commun., 2022, 31: 103270.
[66]
Sun N, Zhang Y F, Wang L Y, Cao Z Z, Sun J M. J. Alloys Compd., 2022, 928: 167105.
[67]
Li Y X, Han W, Wang R X, Weng L T, Serrano-Lotina A, Bañares M A, Wang Q Y, Yeung K L. Appl. Catal. B Environ., 2020, 275: 119121.

doi: 10.1016/j.apcatb.2020.119121     URL    
[68]
Wang Q Y, Li Z M, Bañares M A, Weng L T, Gu Q F, Price J, Han W, Yeung K L. Small, 2019, 15(42): 1903525.

doi: 10.1002/smll.v15.42     URL    
[69]
Chen X, Li J J, Chen X, Cai S C, Yu E Q, Chen J, Jia H P. ACS Appl. Nano Mater., 2018, 1(6): 2971.

doi: 10.1021/acsanm.8b00587     URL    
[70]
Han D W, Ma X Y, Yang X Q, Xiao M L, Sun H, Ma L J, Yu X L, Ge M F. J. Colloid Interface Sci., 2021, 603: 695.
[71]
Wen M, Dong F, Tang Z C, Zhang J Y. Mol. Catal., 2022, 519: 112149.
[72]
Luo L, Huang R, Hu W, Yu Z S, Tang Z X, Chen L Q, Zhang Y H, Zhang D, Xiao P. ACS Appl. Nano Mater., 2022, 5(6): 8232.

doi: 10.1021/acsanm.2c01329     URL    
[73]
Hu Z, Tang Z Y, Zhang T, Yong X, Mi R L, Li D, Yang X, Yang R T. Ind. Eng. Chem. Res., 2022, 61(14): 4803.

doi: 10.1021/acs.iecr.1c05077     URL    
[74]
Lu T L, Su F C, Zhao Q, Li J X, Zhang C S, Zhang R Q, Liu P P. Sep. Purif. Technol., 2022, 296: 121436.

doi: 10.1016/j.seppur.2022.121436     URL    
[75]
Luo Y J, Zheng Y B, Zuo J C, Feng X S, Wang X Y, Zhang T H, Zhang K, Jiang L L. J. Hazard. Mater., 2018, 349: 119.
[76]
Tu S, Chen Y, Zhang X Y, Yao J Z, Wu Y, Wu H X, Zhang J Y, Wang J L, Mu B, Li Z, Xia Q B. Appl. Catal. A Gen., 2021, 611: 117975.

doi: 10.1016/j.apcata.2020.117975     URL    
[77]
Guo Z Y, Song L H, Xu T T, Gao D W, Li C C, Hu X, Chen G Z. Mater. Chem. Phys., 2019, 226: 338.

doi: 10.1016/j.matchemphys.2019.01.057     URL    
[78]
Sun H, Yu X L, Ma X Y, Yang X Q, Lin M Y, Ge M F. Catal. Today, 2020, 355: 580.

doi: 10.1016/j.cattod.2019.05.062     URL    
[79]
Zhang X D, Zhao Z Y, Zhao S H, Xiang S, Gao W K, Wang L, Xu J C, Wang Y X. J. Catal., 2022, 415: 218.
[80]
Wang L, Sun Y G, Zhu Y B, Zhang J, Ding J, Gao J D, Ji W X, Li Y Y, Wang L Q, Ma Y L. J. Colloid Interface Sci., 2022, 622: 577.
[81]
Hu W, Huang J C, Xu J Y, Cheng S, Lyu Y, Xie D, Wang Z Q. Fuel Process. Technol., 2022, 236: 107424.

doi: 10.1016/j.fuproc.2022.107424     URL    
[82]
Liu W X, Yin R L, Xu X L, Zhang L, Shi W H, Cao X H. Adv. Sci., 2019, 6(12): 1802373.

doi: 10.1002/advs.v6.12     URL    
[83]
Jiang Y W, Gao J H, Zhang Q, Liu Z Y, Fu M L, Wu J L, Hu Y, Ye D Q. Chem. Eng. J., 2019, 371: 78.

doi: 10.1016/j.cej.2019.03.233     URL    
[84]
Xu W J, Chen X, Chen J, Jia H P. J. Hazard. Mater., 2021, 403: 123869.
[85]
Lei J, Wang P, Wang S, Li J P, Xu Y P, Li S Y. Chin. J. Chem. Eng., 2022, 52: 1.

doi: 10.1016/j.cjche.2021.11.027     URL    
[86]
Chen X, Chen X, Cai S C, Yu E Q, Chen J, Jia H P. Appl. Surf. Sci., 2019, 475: 312.

doi: 10.1016/j.apsusc.2018.12.277    
[87]
Wang L D, Li Y L, Liu J, Tian Z X, Jing Y. Sep. Purif. Technol., 2021, 277: 119505.

doi: 10.1016/j.seppur.2021.119505     URL    
[88]
Lei J, Wang S, Li J P, Xu Y P, Li S Y. Chem. Eng. Sci., 2022, 251: 117436.

doi: 10.1016/j.ces.2022.117436     URL    
[89]
Zhang Q, Jiang Y W, Gao J H, Fu M L, Zou S B, Li Y X, Ye D Q. Catalysts, 2020, 10(6): 681.

doi: 10.3390/catal10060681     URL    
[90]
Hu Z Y, Chen J, Yan D X, Li Y, Jia H P, Lu C Z. Appl. Surf. Sci., 2021, 551: 149453.

doi: 10.1016/j.apsusc.2021.149453     URL    
[91]
Mao J W, Meng Q, Xu Z H, Xu L S, Fan Z, Zhang G L. Chem. Commun., 2022, 58(98): 13600.

doi: 10.1039/D2CC04954F     URL    
[92]
Zhao J G, Wang P F, Liu C L, Zhao Q, Wang J L, Shi L, Xu G W, Abudula A, Guan G Q. J. Colloid Interface Sci., 2023, 629: 706.
[93]
Wang X, Zhao S N, Zhang Y B, Wang Z, Feng J, Song S Y, Zhang H J. Chem. Sci., 2016, 7(2): 1109.

doi: 10.1039/C5SC03430B     URL    
[94]
Yang P, Song X L, Jia C C, Chen H S. J. Ind. Eng. Chem., 2018, 62: 250.

doi: 10.1016/j.jiec.2018.01.002     URL    
[95]
Lei J, Wang S, Li J P. Ind. Eng. Chem. Res., 2020, 59(13): 5583.

doi: 10.1021/acs.iecr.9b06243     URL    
[96]
Li C Q, Liu X, Wang H B, He Y, Song L Y, Deng Y D, Cai S C, Li S M. Adv. Powder Technol., 2022, 33(1): 103373.

doi: 10.1016/j.apt.2021.11.025     URL    
[97]
Chen X, Chen X, Yu E Q, Cai S C, Jia H P, Chen J, Liang P. Chem. Eng. J., 2018, 344: 469.

doi: 10.1016/j.cej.2018.03.091     URL    
[98]
Zhang X D, Hou F L, Yang Y, Wang Y X, Liu N, Chen D, Yang Y Q. Appl. Surf. Sci., 2017, 423: 771.

doi: 10.1016/j.apsusc.2017.06.235     URL    
[99]
Zhang X D, Hou F L, Li H X, Yang Y, Wang Y X, Liu N, Yang Y Q. Microporous Mesoporous Mater., 2018, 259: 211.

doi: 10.1016/j.micromeso.2017.10.019     URL    
[100]
Cui L F, Zhao D, Yang Y, Wang Y X, Zhang X D. J. Solid State Chem., 2017, 247: 168.
[101]
Zhang X D, Li H X, Hou F L, Yang Y, Dong H, Liu N, Wang Y X, Cui L F. Appl. Surf. Sci., 2017, 411: 27.

doi: 10.1016/j.apsusc.2017.03.179     URL    
[102]
Zheng J, Wang Z, Chen Z, Zuo S F. J. Rare Earths, 2021, 39(7): 790.
[103]
Zhang X D, Xiang S, Du Q X, Bi F K, Xie K L, Wang L. Mol. Catal., 2022, 522: 112226.
[104]
Zhao J H, Han W L, Tang Z C, Zhang J Y. Cryst. Growth Des., 2019, 19(11): 6207.

doi: 10.1021/acs.cgd.9b00677     URL    
[105]
Zheng Y F, Liu Q L, Shan C P, Su Y, Fu K X, Lu S C, Han R, Song C F, Ji N, Ma D G. Environ. Sci. Technol., 2021, 55(8): 5403.

doi: 10.1021/acs.est.0c08335     URL    
[106]
Li W W, Gao G Q, Wang L L, Xu H M, Huang W J, Yan N Q, Qu Z. Fuel, 2022, 320: 123983.

doi: 10.1016/j.fuel.2022.123983     URL    
[107]
Li Z J, Ma C, Qi M, Li Y L, Qu Y C, Zhang Y, Zhou L L, Yun J. Mol. Catal., 2023, 535: 112857.
[108]
Yang Y Q, Dong H, Wang Y, He C, Wang Y X, Zhang X D. J. Solid State Chem., 2018, 258: 582.
[109]
Jiang T T, Wang X, Chen J Z, Zhang J J, Mai Y L. ChemistrySelect, 2022, 7(29): e202201409.

doi: 10.1002/slct.v7.29     URL    
[110]
Yang S, Qi Z T, Wen Y C, Wang X X, Zhang S H, Li W, Li S J. Chem. Eng. J., 2023, 452: 139657.

doi: 10.1016/j.cej.2022.139657     URL    
[111]
Jiang S L, Li C H, Muhammad Y, Tang Y, Wang R M, Li J J, Li J, Zhao Z X, Zhao Z X,. Appl. Catal. B Environ., 2023, 328: 122509.

doi: 10.1016/j.apcatb.2023.122509     URL    
[112]
Dong Y L, Zhao J Y, Zhang J Y, Chen Y, Yang X X, Song W N, Wei L G, Li W. Chem. Eng. J., 2020, 388: 124244.

doi: 10.1016/j.cej.2020.124244     URL    
[113]
Li R Z, Zhang L, Zhu S M, Fu S Y, Dong X P, Ida S, Zhang L X, Guo L M. Appl. Catal. A Gen., 2020, 602: 117715.

doi: 10.1016/j.apcata.2020.117715     URL    
[114]
Liu P, Liao Y X, Li J J, Chen L W, Fu M L, Wu P Q, Zhu R L, Liang X L, Wu T L, Ye D Q. J. Colloid Interface Sci., 2021, 594: 713.
[115]
Zhang Z R, Hu G T, Zhao C C, Wei X L, Dou B J, Liang W J, Bin F. Fuel, 2023, 341: 127760.

doi: 10.1016/j.fuel.2023.127760     URL    
[116]
Feng C, Jiang F, Xiong G Y, Chen C, Wang Z, Pan Y, Fei Z Y, Lu Y K, Li X B, Zhang R D, Liu Y Q. Chem. Eng. J., 2023, 451: 138868.

doi: 10.1016/j.cej.2022.138868     URL    
[117]
Zhang X D, Bi F K, Zhu Z Q, Yang Y, Zhao S H, Chen J F, Lv X T, Wang Y X, Xu J C, Liu N. Appl. Catal. B Environ., 2021, 297: 120393.

doi: 10.1016/j.apcatb.2021.120393     URL    
[1] 罗文浩, 袁睿, 孙金元, 周连群, 罗小河, 罗阳. 金属有机框架纳米酶在临床检测中的应用[J]. 化学进展, 2023, 35(9): 1389-1398.
[2] 刘文亮, 王宇琦, 李晓晗, 张轩瑜, 王继乾. 手性等离子体核壳纳米结构的设计及应用[J]. 化学进展, 2023, 35(8): 1168-1176.
[3] 张浩, 伍艳辉. MOF-聚合物混合基质膜的制备、改性及其在渗透汽化中的应用[J]. 化学进展, 2023, 35(8): 1154-1167.
[4] 潘自宇, 冀豪栋. 银纳米材料的可控合成及其环境应用[J]. 化学进展, 2023, 35(8): 1229-1257.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[7] 刘苏慧, 张飞飞, 王小青, 刘普旭, 杨江峰. 钛基金属有机框架材料合成的研究进展[J]. 化学进展, 2023, 35(12): 1752-1763.
[8] 马浩天, 田如锦, 文钟晟. 金属有机框架及其衍生纳米负极材料[J]. 化学进展, 2023, 35(12): 1807-1846.
[9] 金卫涛, 杨婷, 贾吉美, 周晓斐. 基于纳米材料介导的自噬治疗癌症[J]. 化学进展, 2023, 35(11): 1655-1673.
[10] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[11] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[12] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[13] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[14] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[15] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.