English
新闻公告
More
化学进展 2023, Vol. 35 Issue (8): 1154-1167 DOI: 10.7536/PC230111 前一篇   后一篇

• 综述 •

MOF-聚合物混合基质膜的制备、改性及其在渗透汽化中的应用

张浩1, 伍艳辉1,2,*()   

  1. 1 同济大学化学科学与工程学院 上海 200092
    2 同济大学上海市化学品分析、风险评估与控制重点实验室 上海 200092
  • 收稿日期:2023-01-30 修回日期:2023-03-12 出版日期:2023-08-24 发布日期:2023-04-20
  • 作者简介:

    伍艳辉 博士,教授,博士生导师,分别于1994年和1999年毕业于天津大学化工系/化工学院,获学士学位和博士学位;1999年进入同济大学化学系/化学科学与工程学院工作,2010年到美国加州大学伯克利分校做访问学者。研究方向:渗透汽化、正渗透、纳滤等膜过程和膜材料的研究。

  • 基金资助:
    国家重点研发计划项目(2019YFC0408200); 国家自然科学基金项目(22078249)

Preparation and Modification of MOF-Polymer Mixed Matrix Membrane and its Application in Pervaporation

Hao Zhang1, Yanhui Wu1,2()   

  1. 1 School of Chemical Science and Engineering, Tongji University,Shanghai 200092, China
    2 Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
  • Received:2023-01-30 Revised:2023-03-12 Online:2023-08-24 Published:2023-04-20
  • Contact: *email:wuyanhui@tongji.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2019YFC0408200); National Natural Science Foundation of China(22078249)

渗透汽化是一种具有能耗低、操作简便等优点的膜分离技术,目前传统聚合物渗透汽化膜在分离性能和稳定性等方面还有欠缺。金属有机框架(MOF)是由金属离子与有机配体以自组装形式组建而成的晶态多孔材料,具有独特的性质,如对目标分子的选择性吸附和分子筛分效应,近年来许多研究表明将MOF作为填料引入聚合物基质中构筑混合基质膜(MMMs)对其渗透汽化性能有很好的促进作用。本文从MOF的不同系列出发,讨论了适用于渗透汽化混合基质膜的MOF种类,分析了MOF-聚合物混合基质膜的制备方法与改性策略,综述了该类混合基质膜在渗透汽化方面(有机溶剂脱水、从稀溶液中回收有机物、有机混合物的分离)的应用进展,总结了用于渗透汽化的MOF-聚合物混合基质膜研究面临的挑战,并对其未来发展提出展望。

Pervaporation is a membrane separation technology with the advantages of low energy consumption and easy operation. At present, the traditional polymer pervaporation membrane still lacks in separation performance and stability. Metal-organic framework (MOF) is a crystalline porous material formed by self-assembly of metal ions and organic ligands. It has unique properties such as selective adsorption of target molecules and molecular sieving effect. In recent years, many studies have shown that the introduction of MOF as a filler into the polymer matrix to construct mixed matrix membranes (MMMs) has a good effect on its pervaporation performance. Starting from different series of MOF, this paper discusses the types of MOF suitable for pervaporation mixed matrix membrane, analyzes the preparation methods and modification strategies of MOF-polymer mixed matrix membrane, and reviews the application progress of this kind of mixed matrix membrane in pervaporation (dehydration of organic solvent, recovery of organic matter from dilute solution, separation of organic mixture). The challenges in the research of MOF-polymer mixed matrix membrane for pervaporation are summarized, and its future development is prospected.

Contents

1 Introduction

2 Different series of MOFs for pervaporation

2.1 Introduction of different series of MOFs

2.2 Selection of MOF fillers

3 Preparation and modification strategies of MOF based MMMs

3.1 Preparation methods of MOF based MMMs

3.2 Modification strategies of MOF based MMMs

4 Application of MOF based MMMs in pervaporation

4.1 Solvent dehydration

4.2 Recovery of organic compounds from diluted aqueous solutions

4.3 Organic-organic mixture separation

5 Conclusion and outlook

()
图1 渗透汽化的原理
Fig.1 The principle of pervaporation
图2 不同类型MOF的结构图
Fig.2 Structure diagram of different types of MOFs
表1 IRMOF系列的主要特征
Table 1 Main features of IRMOF series
表2 ZIF系列的主要特征
Table 2 Main features of ZIF series
表3 MIL系列的主要特征
Table 3 Main features of MIL series
表4 PCN系列的主要特征
Table 4 Main features of PCN series
表5 UiO系列的主要特征
Table 5 Main features of UiO series
图3 ILs修饰MIL-101制备MMMs[94]
Fig.3 Preparation of MMMs by ILs modified MIL-101[94]. Copyright 2021, J. Membr. Sci.
图4 ZIF-L基MMMs用于渗透汽化[118]
Fig.4 ZIF-L based MMMs for pervaporation[118]. Copyright 2019, J. Membr. Sci.
[1]
Brennecke J F, Freeman B. Science, 2020, 369(6501): 254.

doi: 10.1126/science.abd1307     pmid: 32675363
[2]
Li H, Zhao Z Y, Xiouras C, Stefanidis G D, Li X G, Gao X. Renew. Sustain. Energy Rev., 2019, 114: 109316.

doi: 10.1016/j.rser.2019.109316     URL    
[3]
Li X, Shen S T, Xu Y Y, Guo T, Dai H L, Lu X W. Sci. Total Environ., 2021, 767: 144346.

doi: 10.1016/j.scitotenv.2020.144346     URL    
[4]
Seo H, Koh D Y. Science, 2022, 376(6597): 1053.

doi: 10.1126/science.abq3186     URL    
[5]
Yang C, Long M Y, Ding C T, Zhang R N, Zhang S Y, Yuan J Q, Zhi K D, Yin Z Y, Zheng Y, Liu Y W, Wu H, Jiang Z Y. Nat. Commun., 2022, 13: 7334.

doi: 10.1038/s41467-022-35105-8    
[6]
Ismail N, Venault A, Mikkola J P, Bouyer D, Drioli E, Kiadeh N T H. J. Membr. Sci., 2020, 597: 117601.

doi: 10.1016/j.memsci.2019.117601     URL    
[7]
Xu L H, Li S H, Mao H, Li Y, Zhang A S, Wang S, Liu W M, Lv J, Wang T, Cai W W, Sang L, Xie W W, Pei C, Li Z Z, Feng Y N, Zhao Z P. Science, 2022, 378(6617): 308.

doi: 10.1126/science.abo5680     pmid: 36264816
[8]
Zhu T Y, Xu S, Yu F, Yu X, Wang Y. J. Membr. Sci., 2020, 598: 117681.

doi: 10.1016/j.memsci.2019.117681     URL    
[9]
Kouser S, Hezam A, Khadri M J N, Khanum S A. J. Porous Mater., 2022, 29(3): 663.

doi: 10.1007/s10934-021-01184-z    
[10]
Ong Y K, Shi G M, Le N L, Tang Y P, Zuo J, Nunes S P, Chung T S. Prog. Polym. Sci., 2016, 57: 1.

doi: 10.1016/j.progpolymsci.2016.02.003     URL    
[11]
Diestel L, Wang N Y, Schwiedland B, Steinbach F, Giese U, Caro J. J. Membr. Sci., 2015, 492: 181.

doi: 10.1016/j.memsci.2015.04.069     URL    
[12]
Ge L, Zhou W, Rudolph V, Zhu Z H. J. Mater. Chem. A, 2013, 1(21): 6350.

doi: 10.1039/c3ta11131h     URL    
[13]
Yan B Y, Li X F, Huang W Q, Wang X Y, Zhang Z, Zhu B. Progress in Chemistry, 2022, 34(11): 2417.
(闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 化学进展, 2022, 34(11): 2417.).

doi: 10.7536/PC220302    
[14]
Chen L Z, Gong Q B, Chen Z. Prog. Chem., 2021, 33(8): 1280.
(陈立忠, 龚巧彬, 陈哲. 化学进展, 2021, 33(8): 1280.).

doi: 10.7536/PC200774    
[15]
Takamizawa S, Saito T, Akatsuka T, Nakata E. Inorg. Chem. 2005, 44(5): 1421.

pmid: 15732982
[16]
Takamizawa S, Kachi-Terajima C, Kohbara M A, Akatsuka T, Jin T. Chem. Asian J., 2007, 2(7): 837.

doi: 10.1002/(ISSN)1861-471X     URL    
[17]
Basu S, Cano-Odena A, Vankelecom I F J. J. Membr. Sci., 2010, 362(1/2): 478.

doi: 10.1016/j.memsci.2010.07.005     URL    
[18]
Xu X, Nikolaeva D, Hartanto Y, Luis P. Sep. Purif. Technol., 2021, 278: 119233.

doi: 10.1016/j.seppur.2021.119233     URL    
[19]
Erucar I, Keskin S. Ind. Eng. Chem. Res., 2011, 50(22): 12606.

doi: 10.1021/ie201885s     URL    
[20]
Keskin S, Sholl D S. Energy Environ. Sci., 2010, 3(3): 343.

doi: 10.1039/b923980b     URL    
[21]
Liu X W, Sun T J, Hu J L, Wang S D. J. Mater. Chem. A, 2016, 4(10): 3584.

doi: 10.1039/C5TA09924B     URL    
[22]
Mai Z H, Liu D X. Cryst. Growth Des., 2019, 19(12): 7439.

doi: 10.1021/acs.cgd.9b00879     URL    
[23]
Cheng X, Liao Y, Lei Z, Li J, Fan X L, Xiao X. J. Membr. Sci., 2023, 672: 121430.

doi: 10.1016/j.memsci.2023.121430     URL    
[24]
Gulcay-Ozcan E, Erucar I. Ind. Eng. Chem. Res., 2019, 58(8): 3225.

doi: 10.1021/acs.iecr.8b04084    
[25]
Lahoz-Martín F D, Calero S, GutiÉrrez-Sevillano J J, Martin-Calvo A. Microporous Mesoporous Mater., 2017, 248: 40.

doi: 10.1016/j.micromeso.2017.04.009     URL    
[26]
Naik P V, Wee L H, Meledina M, Turner S, Li Y B, van Tendeloo G, Martens J A, Vankelecom I F J. J. Mater. Chem. A, 2016, 4(33): 12790.

doi: 10.1039/C6TA04700A     URL    
[27]
Wang X L, Chen J X, Fang M Q, Wang T, Yu L X, Li J D. Sep. Purif. Technol., 2016, 163: 39.

doi: 10.1016/j.seppur.2016.02.040     URL    
[28]
Zhang H, Wang Y. Aiche J., 2016, 62(5): 1728.

doi: 10.1002/aic.v62.5     URL    
[29]
Zhang H F, James J, Zhao M, Yao Y, Zhang Y S, Zhang B Q, Lin Y S. J. Membr. Sci., 2017, 532: 1.

doi: 10.1016/j.memsci.2017.01.065     URL    
[30]
Zhu T Y, Zhao X X, Yi M, Xu S, Wang Y. Adv. Compos. Hybrid Mater., 2022, 5(1): 91.

doi: 10.1007/s42114-021-00218-z    
[31]
Ebrahimi M, Mansournia M. Mater. Lett., 2017, 189: 243.

doi: 10.1016/j.matlet.2016.12.025     URL    
[32]
Stephenson C J, Hupp J T, Farha O K. Inorg. Chem. Front., 2015, 2(5): 448.

doi: 10.1039/C5QI00010F     URL    
[33]
Bhattacharjee S, Lee Y R, Ahn W S. CrystEngComm, 2015, 17(12): 2575.

doi: 10.1039/C4CE02555E     URL    
[34]
Zhou T T, Sang Y T, Wang X X, Wu C Y, Zeng D W, Xie C S. Sens. Actuat. B Chem., 2018, 258: 1099.

doi: 10.1016/j.snb.2017.12.024     URL    
[35]
Kasik A, James J, Lin Y S. Ind. Eng. Chem. Res., 2016, 55(10): 2831.

doi: 10.1021/acs.iecr.6b00236     URL    
[36]
An H, Park S, Kwon H T, Jeong H K, Lee J S. J. Membr. Sci., 2017, 526: 367.

doi: 10.1016/j.memsci.2016.12.053     URL    
[37]
Qiao Z H, Liang Y Y, Zhang Z Q, Mei D H, Wang Z, Guiver M D, Zhong C L. Adv. Mater., 2020, 32(34): 2002165.

doi: 10.1002/adma.v32.34     URL    
[38]
Rodenas T, van Dalen M, Serra-Crespo P, Kapteijn F, Gascon J. Microporous Mesoporous Mater., 2014, 192: 35.

doi: 10.1016/j.micromeso.2013.08.049     URL    
[39]
Nuhnen A, Klopotowski M, Jeazet H B T, Sorribas S, Zornoza B, TÉllez C, Coronas J, Janiak C. Dalton Trans., 2020, 49(6): 1822.

doi: 10.1039/C9DT03222C     URL    
[40]
Rodenas T, van Dalen M, García-PÉrez E, Serra-Crespo P, Zornoza B, Kapteijn F, Gascon J. Adv. Funct. Mater., 2014, 24(2): 249.

doi: 10.1002/adfm.v24.2     URL    
[41]
Jeazet H B T, Staudt C, Janiak C. Chem. Commun., 2012, 48(15): 2140.

doi: 10.1039/c2cc16628c     URL    
[42]
Peng J J, Sun Y W, Wu Y, Lv Z Q, Li Z. Ind. Eng. Chem. Res., 2019, 58(19): 8290.

doi: 10.1021/acs.iecr.9b00183     URL    
[43]
Peng Y G, Zhang Y X, Huang H L, Zhong C L. Chem. Eng. J., 2018, 333: 678.

doi: 10.1016/j.cej.2017.09.138     URL    
[44]
Siwaipram S, Bopp P A, Keupp J, Pukdeejorhor L, Soetens J C, Bureekaew S, Schmid R. J. Phys. Chem. C, 2021, 125(23): 12837.

doi: 10.1021/acs.jpcc.1c01033     URL    
[45]
Huang S, Yang K L, Liu X F, Pan H, Zhang H, Yang S. RSC Adv., 2017, 7(10): 5621.

doi: 10.1039/C6RA26469G     URL    
[46]
Wickenheisser M, Jeremias F, Henninger S K, Janiak C. Inorganica Chimica Acta, 2013, 407: 145.

doi: 10.1016/j.ica.2013.07.024     URL    
[47]
Mahdipoor H R, Halladj R, Ganji Babakhani E, Amjad-Iranagh S, Sadeghzadeh Ahari J. RSC Adv., 2021, 11(9): 5192.

doi: 10.1039/d0ra09292d     pmid: 35424434
[48]
Li Y Q, Gao Q, Zhang L J, Zhou Y S, Zhong Y X, Ying Y, Zhang M C, Huang C Q, Wang Y A. Dalton Trans., 2018, 47(18): 6394.

doi: 10.1039/C8DT00572A     URL    
[49]
Yang W J, Liang W B, O’Dell L A, Toop H D, Maddigan N, Zhang X M, Kochubei A, Doonan C J, Jiang Y J, Huang J. JACS Au, 2021, 1(12): 2172.

doi: 10.1021/jacsau.1c00226     URL    
[50]
Chen Y W, Qiao Z W, Huang J L, Wu H X, Xiao J, Xia Q B, Xi H X, Hu J, Zhou J, Li Z. ACS Appl. Mater. Interfaces, 2018, 10(44): 38638.

doi: 10.1021/acsami.8b14400     URL    
[51]
Feng D W, Gu Z Y, Li J R, Jiang H L, Wei Z W, Zhou H C. Angewandte Chemie Int. Ed., 2012, 51(41): 10307.

doi: 10.1002/anie.201204475     URL    
[52]
Bonnett B L, Smith E D, de La Garza M, Cai M, Haag J V IV, Serrano J M, Cornell H D, Gibbons B, Martin S M, Morris A J. ACS Appl. Mater. Interfaces, 2020, 12(13): 15765.

doi: 10.1021/acsami.0c04349     URL    
[53]
Chen Y W, Qiao Z W, Wu H X, Lv D F, Shi R F, Xia Q B, Zhou J, Li Z. Chem. Eng. Sci., 2018, 175: 110.
[54]
Zhang Y M, Yang X Y, Zhou H C. Dalton Trans., 2018, 47(34): 11806.

doi: 10.1039/C8DT01508B     URL    
[55]
Feng D W, Wang K C, Su J, Liu T F, Park J, Wei Z W, Bosch M, Yakovenko A, Zou X D, Zhou H C. Angewandte Chemie Int. Ed., 2015, 54(1): 149.

doi: 10.1002/anie.v54.1     URL    
[56]
Zhang H Y, Meng Q, Li H J, Wu G G, Li K, Xu J H, Wang L L, Wu J, Meng X R, Hou H W. CrystEngComm, 2022, 24(43): 7611.

doi: 10.1039/D2CE01109C     URL    
[57]
Anjum M W, Vermoortele F, Laeeq Khan A, Bueken B, de Vos D E, Vankelecom I F J. ACS Appl. Mater. Interfaces, 2015, 7(45): 25193.

doi: 10.1021/acsami.5b08964     URL    
[58]
Zhang M M, Sun Q, Wang Y J, Shan W J, Lou Z N, Xiong Y. Chem. Eng. J., 2021, 421: 129748.

doi: 10.1016/j.cej.2021.129748     URL    
[59]
Jiang Y Z, Liu C Y, Caro J, Huang A S. Microporous Mesoporous Mater., 2019, 274: 203.

doi: 10.1016/j.micromeso.2018.08.003     URL    
[60]
Friebe S, Geppert B, Steinbach F, Caro J. ACS Appl. Mater. Interfaces, 2017, 9(14): 12878.

doi: 10.1021/acsami.7b02105     URL    
[61]
Kim S, Lee H E, Suh J M, Lim M H, Kim M. Inorg. Chem., 2020, 59(23): 17573.

doi: 10.1021/acs.inorgchem.0c02809     URL    
[62]
Lin S Y, Ravari A K, Zhu J, Usov P M, Cai M, Ahrenholtz S R, Pushkar Y, Morris A J. ChemSusChem, 2018, 11(2): 464.

doi: 10.1002/cssc.v11.2     URL    
[63]
Wang N X, Zhang G J, Wang L, Li J, An Q F, Ji S L. Sep. Purif. Technol., 2017, 186: 20.

doi: 10.1016/j.seppur.2017.05.046     URL    
[64]
Min J, Qu X L, Yan B. Anal., 2021, 146(9): 3052.

doi: 10.1039/D0AN02467H     URL    
[65]
Li Y H, Liu M Y, Wei Y W, Wang C C, Wang P. Environ. Sci.: Nano, 2023, 10(2): 672.
[66]
Zhao M T, Huang Y, Peng Y W, Huang Z Q, Ma Q L, Zhang H. Chem. Soc. Rev., 2018, 47(16): 6267.

doi: 10.1039/C8CS00268A     URL    
[67]
Zhu X, Tian C C, Do-Thanh C L, Dai S. ChemSusChem, 2017, 10(17): 3304.

doi: 10.1002/cssc.v10.17     URL    
[68]
Cheng Y D, Wang X R, Jia C K, Wang Y X, Zhai L Z, Wang Q, Zhao D. J. Membr. Sci., 2017, 539: 213.

doi: 10.1016/j.memsci.2017.06.011     URL    
[69]
Peng Y, Yang W S. Adv. Mater. Interfaces, 2020, 7(1): 1901514.

doi: 10.1002/admi.v7.1     URL    
[70]
Yao A Y, Hua D, Zhao F G, Zheng D Y, Pan J Y, Hong Y P, Liu Y, Rao X P, Zhou S F, Zhan G W. Sep. Purif. Technol., 2022, 282: 120022.

doi: 10.1016/j.seppur.2021.120022     URL    
[71]
Dong X L, Lin Y S. Chem. Commun., 2013, 49(12): 1196.

doi: 10.1039/c2cc38512k     URL    
[72]
Wang C, Zhou D D, Gan Y W, Zhang X W, Ye Z M, Zhang J P. Natl. Sci. Rev., 2021, 8: nwaa094.

doi: 10.1093/nsr/nwaa094     URL    
[73]
Wu G R, Li Y L, Geng Y Z, Lu X Y, Jia Z Q. J. Chem. Technol. Biotechnol., 2019, 94(3): 973.
[74]
Zheng H A, Wang D R, Sun X, Jiang S Y, Liu Y, Zhang D Q, Zhang L Z. Chem. Eng. J., 2021, 411: 128524.

doi: 10.1016/j.cej.2021.128524     URL    
[75]
Rajati H, Navarchian A H, Tangestaninejad S. Chem. Eng. Sci., 2018, 185: 92.

doi: 10.1016/j.ces.2018.04.006     URL    
[76]
Sánchez-Laínez J, Pardillos-Ruiz A, Carta M, Malpass-Evans R, McKeown N B, TÉllez C, Coronas J. Sep. Purif. Technol., 2019, 224: 456.

doi: 10.1016/j.seppur.2019.05.035     URL    
[77]
Chen K, Xu K, Xiang L, Dong X, Han Y, Wang C Q, Sun L B, Pan Y C. J. Membr. Sci., 2018, 563: 360.

doi: 10.1016/j.memsci.2018.06.007     URL    
[78]
Knebel A, Bavykina A, Datta S J, Sundermann L, Garzon-Tovar L, Lebedev Y, Durini S, Ahmad R, Kozlov S M, Shterk G, Karunakaran M, Daniela Carja I, Simic D, Weilert I, Klüppel M, Giese U, Cavallo L, Rueping M, Eddaoudi M, Caro J, Gascon J. Nat. Mater., 2020, 19(12): 1346.

doi: 10.1038/s41563-020-0764-y    
[79]
Zhao C, Ji S L, Wang N X, Shu L, Liu H X, Li J R. Membr. Sci. Technol., 2017, 37(6): 32.
(赵翠, 纪树兰, 王乃鑫, 束伦, 刘红霞, 李建荣. 膜科学与技术, 2017, 37(6): 32.).
[80]
Askari M, Chung T S. J. Membr. Sci., 2013, 444: 173.

doi: 10.1016/j.memsci.2013.05.016     URL    
[81]
Chen X Y, Hoang V T, Rodrigue D, Kaliaguine S. RSC Adv., 2013, 3(46): 24266.

doi: 10.1039/c3ra43486a     URL    
[82]
Wang Z G, Tian Y Y, Fang W X, Shrestha B B, Huang M H, Jin J. ACS Appl. Mater. Interfaces, 2021, 13(2): 3166.

doi: 10.1021/acsami.0c19554     URL    
[83]
Han Z T, Zhao Y X, Jiang H J, Sheng A, Li H, Jia H, Yun Z Y, Wei Z, Wang H Y. ACS Appl. Nano Mater., 2022, 5(1): 183.

doi: 10.1021/acsanm.1c02523     URL    
[84]
Si Z H, Li J F, Ma L, Cai D, Li S F, Baeyens J, Degrève J, Nie J, Tan T W, Qin P Y. Angewandte Chemie Int. Ed., 2019, 58(48): 17175.

doi: 10.1002/anie.v58.48     URL    
[85]
Hao L, Li P, Yang T X, Chung T S. J. Membr. Sci., 2013, 436: 221.

doi: 10.1016/j.memsci.2013.02.034     URL    
[86]
Zhang X, Tong Z W, Liu C, Ye L, Zhou Y W, Meng Q, Zhang G L, Gao C J. ACS Omega, 2022, 7(18): 15786.

doi: 10.1021/acsomega.2c00881     pmid: 35571851
[87]
Ding X L, Li X, Zhao H Y, Wang R, Zhao R Q, Li H, Zhang Y Z. Chin. J. Chem. Eng., 2018, 26: 501.

doi: 10.1016/j.cjche.2017.07.017     URL    
[88]
Penkova A V, Kuzminova A I, Dmitrenko M E, Surkova V A, Liamin V P, Markelov D A, Komolkin A V, Poloneeva D Y, Laptenkova A V, Selyutin A A, Mazur A S, Emeline A V, Thomas S, Ermakov S S. Sep. Purif. Technol., 2021, 263: 118370.

doi: 10.1016/j.seppur.2021.118370     URL    
[89]
Yin H D, Cay-Durgun P, Lai T M, Zhu G H, Engebretson K, Setiadji R, Green M D, Laura Lind M. Polymer, 2020, 195: 122379.

doi: 10.1016/j.polymer.2020.122379     URL    
[90]
Ziaul Mustafa M, bin Mukhtar H, Md Nordin N A H, Mannan H A, Nasir R, Fazil N. Chem. Eng. Technol., 2019, 42(12): 2580.

doi: 10.1002/ceat.v42.12     URL    
[91]
Lin R J, Ge L, Diao H, Rudolph V, Zhu Z H. ACS Appl. Mater. Interfaces, 2016, 8(46): 32041.

doi: 10.1021/acsami.6b11074     URL    
[92]
Tang W Y, Lou H, Li Y F, Kong X B, Wu Y H, Gu X H. J. Membr. Sci., 2019, 581: 93.

doi: 10.1016/j.memsci.2019.03.049     URL    
[93]
Zhang A S, Li S H, Ahmad A, Mao H, Xu L H, Zhao Z P. J. Membr. Sci., 2021, 619: 118807.

doi: 10.1016/j.memsci.2020.118807     URL    
[94]
Zhang A S, Li S H, Mao H, Xu L H, Lv M Y, Zhao Z P. Adv. Membr., 2021, 1: 100006.
[95]
Li S F, Chen Z, Yang Y H, Si Z H, Li P, Qin P Y, Tan T W. Sep. Purif. Technol., 2019, 215: 163.

doi: 10.1016/j.seppur.2018.12.078     URL    
[96]
Xu L H, Li Y, Li S H, Lv M Y, Zhao Z P. J. Membr. Sci., 2022, 656: 120605.

doi: 10.1016/j.memsci.2022.120605     URL    
[97]
Zhong H, Xie H R, Ma X H, Xu Z L. Membr. Sci. Technol., 2019, 39(3): 79.
(仲华, 谢浩然, 马晓华, 许振良. 膜科学与技术, 2019, 39(3): 79.).
[98]
Fazlifard S, Mohammadi T, Bakhtiari O. Chem. Eng. Technol., 2017, 40(4): 648.

doi: 10.1002/ceat.v40.4     URL    
[99]
Benzaqui M, Semino R, Carn F, Tavares S R, Menguy N, GimÉnez-MarquÉs M, Bellido E, Horcajada P, Berthelot T, Kuzminova A I, Dmitrenko M E, Penkova A V, Roizard D, Serre C, Maurin G, Steunou N. ACS Sustainable Chem. Eng., 2019, 7(7): 6629.

doi: 10.1021/acssuschemeng.8b05587     URL    
[100]
Zhang X, Cheng F Y, Zhang H Z, Xu Z L, Xue S M, Ma X H, Xu X R. J. Membr. Sci., 2020, 601: 117916.

doi: 10.1016/j.memsci.2020.117916     URL    
[101]
Lin G S, Chen Y R, Chang T H, Huang T C, Zhuang G L, Huang W Z, Liu Y C, Matsuyama H, Wu K C W, Tung K L. J. Membr. Sci., 2021, 621: 118935.

doi: 10.1016/j.memsci.2020.118935     URL    
[102]
Shi G M, Yang T X, Chung T S. J. Membr. Sci., 2012, 415-416: 577.
[103]
Hua D, Ong Y K, Wang Y, Yang T X, Chung T S. J. Membr. Sci., 2014, 453: 155.

doi: 10.1016/j.memsci.2013.10.059     URL    
[104]
Sorribas S, Kudasheva A, Almendro E, Zornoza B, de la Iglesia Ó, TÉllez C, Coronas J. Chem. Eng. Sci., 2015, 124: 37.

doi: 10.1016/j.ces.2014.07.046     URL    
[105]
Xu Y M, Chung T S. J. Membr. Sci., 2017, 531: 16.

doi: 10.1016/j.memsci.2017.02.041     URL    
[106]
Su Z B, Chen J H, Sun X, Huang Y H, Dong X F. RSC Adv., 2015, 5(120): 99008.

doi: 10.1039/C5RA21073A     URL    
[107]
Zhang W X, Ying Y P, Ma J, Guo X Y, Huang H L, Liu D H, Zhong C L. J. Membr. Sci., 2017, 527: 8.

doi: 10.1016/j.memsci.2017.01.001     URL    
[108]
Xu Y M, Japip S, Chung T S. J. Membr. Sci., 2018, 549: 217.

doi: 10.1016/j.memsci.2017.12.001     URL    
[109]
Vinu M, Senthil Raja D, Jiang Y C, Liu T Y, Xie Y Y, Lin Y F, Yang C C, Lin C H, Alshehri S M, Ahamad T, Salunkhe R R, Yamauchi Y, Deng Y H, Wu K C W. J. Taiwan Inst. Chem. Eng., 2018, 83: 143.

doi: 10.1016/j.jtice.2017.11.007     URL    
[110]
Mao H, Zhen H G, Ahmad A, Zhang A S, Zhao Z P. J. Membr. Sci., 2019, 573: 344.

doi: 10.1016/j.memsci.2018.12.017     URL    
[111]
Si Z H, Cai D, Li S F, Li G Z, Wang Z, Qin P Y. Sep. Purif. Technol., 2019, 221: 286.

doi: 10.1016/j.seppur.2019.04.004     URL    
[112]
Xu L H, Li S H, Mao H, Zhang A S, Cai W W, Wang T, Zhao Z P. J. Mater. Chem. A, 2021, 9(19): 11853.

doi: 10.1039/D1TA01736E     URL    
[113]
Li J, Wang N X, Yan H, Ji S L, Zhang G J. RSC Adv., 2014, 4(104): 59750.

doi: 10.1039/C4RA10655E     URL    
[114]
Li Y B, Wee L H, Martens J A, Vankelecom I F J. J. Mater. Chem. A, 2014, 2(26): 10034.

doi: 10.1039/C4TA00316K     URL    
[115]
Liu S N, Liu G P, Zhao X H, Jin W Q. J. Membr. Sci., 2013, 446: 181.

doi: 10.1016/j.memsci.2013.06.025     URL    
[116]
Liu S N, Liu G P, Shen J, Jin W Q. Sep. Purif. Technol., 2014, 133: 40.

doi: 10.1016/j.seppur.2014.06.034     URL    
[117]
Li Q Q, Cheng L, Shen J, Shi J Y, Chen G N, Zhao J, Duan J G, Liu G P, Jin W Q. Sep. Purif. Technol., 2017, 178: 105.

doi: 10.1016/j.seppur.2017.01.024     URL    
[118]
Mao H, Zhen H G, Ahmad A, Li S H, Liang Y, Ding J F, Wu Y, Li L Z, Zhao Z P. J. Membr. Sci., 2019, 582: 307.

doi: 10.1016/j.memsci.2019.04.022     URL    
[119]
Liu W, Ban Y J, Liu J Y, Wang Y C, Hu Z Y, Wang Y H, Li Q M, Yang W S. Sep. Purif. Technol., 2021, 276: 119085.

doi: 10.1016/j.seppur.2021.119085     URL    
[120]
Jin H, Liu X L, Ban Y J, Peng Y, Jiao W M, Wang P, Guo A, Li Y S, Yang W S. Chem. Eng. J., 2016, 305: 12.

doi: 10.1016/j.cej.2015.10.115     URL    
[121]
Mao H, Li S H, Zhang A S, Xu L H, Lu H X, Lv J, Zhao Z P. Sep. Purif. Technol., 2021, 272: 118813.

doi: 10.1016/j.seppur.2021.118813     URL    
[122]
Xu X, Hartanto Y, Nikolaeva D, He Z R, Chergaoui S, Luis P. Sep. Purif. Technol., 2022, 293: 121085.

doi: 10.1016/j.seppur.2022.121085     URL    
[123]
Zhu H P, Li R H, Liu G Z, Pan Y, Li J H, Wang Z G, Guo Y N, Liu G P, Jin W Q. J. Membr. Sci., 2022, 652: 120473.

doi: 10.1016/j.memsci.2022.120473     URL    
[124]
Knozowska K, Thür R, Kujawa J, Kolesnyk I, Vankelecom I F J, Kujawski W. Sep. Purif. Technol., 2021, 264: 118315.

doi: 10.1016/j.seppur.2021.118315     URL    
[125]
Msahel A, Galiano F, Pilloni M, Russo F, Hafiane A, Castro-Muñoz R, Kumar V B, Gedanken A, Ennas G, Porat Z, Scano A, Ben Hamouda S, Figoli A. Membranes, 2021, 11(1): 65.

doi: 10.3390/membranes11010065     URL    
[126]
Yu S N, Jiang Z Y, Li W D, Mayta J Q, Ding H, Song Y M, Li Z, Dong Z W, Pan F S, Wang B Y, Zhang P, Cao X Z. Chem. Eng. Process. Process. Intensif., 2018, 123: 12.

doi: 10.1016/j.cep.2017.11.001     URL    
[127]
Shi W Y, Han X L, Bai F, Hua C, Cao X Z. Sep. Purif. Technol., 2021, 272: 118924.

doi: 10.1016/j.seppur.2021.118924     URL    
[128]
Gao G K, Wang Y R, Zhu H J, Chen Y F, Yang R X, Jiang C, Ma H Y, Lan Y Q. Adv. Sci., 2020, 7(24): 2002190.

doi: 10.1002/advs.v7.24     URL    
[1] 罗文浩, 袁睿, 孙金元, 周连群, 罗小河, 罗阳. 金属有机框架纳米酶在临床检测中的应用[J]. 化学进展, 2023, 35(9): 1389-1398.
[2] 杨冬荣, 张达, 任昆, 李付鹏, 东鹏, 张家庆, 杨斌, 梁风. 全固态钠离子电池及界面改性[J]. 化学进展, 2023, 35(8): 1177-1190.
[3] 李清萍, 李涛, 邵琛琛, 柳伟. 普鲁士蓝基钠离子电池正极材料的改性[J]. 化学进展, 2023, 35(7): 1053-1064.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[6] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[7] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[8] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[9] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[10] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[11] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[12] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[13] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[14] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[15] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.