English
新闻公告
More
化学进展 2024, Vol. 36 Issue (1): 132-144 DOI: 10.7536/PC230521 前一篇   后一篇

• 综述 •

快充型锂离子电池电极材料与电解液结构调控及设计

玉笛声1, 刘昌林1, 林雪1, 盛利志1,*(), 江丽丽2,*()   

  1. 1 北华大学材料科学与工程学院 吉林132013
    2 吉林化工学院材料科学与工程学院 吉林132022
  • 收稿日期:2023-05-22 修回日期:2023-08-17 出版日期:2024-01-24 发布日期:2023-09-10
  • 作者简介:

    盛利志 北华大学副教授、硕士生导师。主要从事纳米碳基材料在储能领域的应用探索。在Adv. Energy Mater.Adv. Funct. Mater.Energy Storage Mater.SmallChem. Eng. J.等期刊上发表论文38篇。2018年至今论文被引2408次、H因子25、i10指数30、ESI热点+高被引论文1篇。入选“2019—2020年度吉林省科协青年人才托举工程”、主持国家自然科学基金青年基金项目1项、省部级项目4项。

    江丽丽 吉林化工学院副教授、硕士生导师。主要从事锂离子电池快充型、耐低温型电解液的开发和界面锂离子传输机制的研究。在Angew. Chem. Int. Ed.、Adv. Energy Mater.、Nano Energy、Chem. Soc. Rev.、eTransportation等期刊发表学术论文35篇、H因子27、文章被引4000余次、ESI热点+高引论文3篇。获黑龙江省自然科学一等奖1项;主持国家自然科学基金青年基金项目1项,省部级项目4项。

  • 基金资助:
    吉林省科技发展计划(YDZJ202301ZYTS293); 吉林省科技发展计划(20210101065JC); 国家自然科学基金项目(51902006); 国家留学基金委项目(202108220125); 吉林市科技局杰出青年人才基金项目(20210103112)

Structural Regulation and Design of Electrode Materials and Electrolytes for Fast-Charging Lithium-Ion Batteries

Disheng Yu1, Changlin Liu1, Xue Lin1, Lizhi Sheng1(), Lili Jiang2()   

  1. 1 College of Material Science and Engineering, Beihua University, Jilin 132013, China
    2 College of Material Science and Engineering Jilin Institute of Chemical Technology, Jilin 132022, China
  • Received:2023-05-22 Revised:2023-08-17 Online:2024-01-24 Published:2023-09-10
  • Contact: * e-mail: shengli_zhi@126.com (Lizhi Sheng); jianglidipper@126.com (Lili Jiang)
  • Supported by:
    Jilin Province Science and Technology Development Plan Project(YDZJ202301ZYTS293); Jilin Province Science and Technology Development Plan Project(20210101065JC); National Natural Science Foundation of China(51902006); China Scholarship Council(202108220125); Science and Technology Innovative Development Program of Jilin City(20210103112)

实现锂离子电池的快速充电是促进电动汽车普及、解决环境和能源问题的有效途径。然而,常规锂离子电池体系在快速充电条件下的缓慢动力学和安全风险的增加严重阻碍了该技术的实际应用。本文综述了快充型锂离子电池电极材料和电解液在结构调控与设计方面的研究进展。首先,详细介绍了通过电极材料的结构调控来提高锂离子在电极材料中扩散速度的方法。然后,阐述了通过对锂离子溶剂化结构的调控来提高锂离子在电解液中的传输和相界面处转移速度的方法。最后,对快充型锂离子电池所面临的关键科学问题进行了总结以及对未来的研究方向进行了展望。

Achieving fast charging of lithium-ion batteries is an effective way to promote the popularity of electric vehicles and solve environmental and energy problems. However, the slow kinetics and increased safety risks of conventional lithium-ion battery systems under fast charging conditions severely hinder the practical application of this technology. This paper reviews the latest research progress in the structural regulation and design of electrode materials and electrolytes for fast-charging lithium-ion batteries. First, we systematically introduce the research progress made in recent years within the scope of improving the diffusion rate of Li-ion in electrode materials by structural modulation of electrode materials. The review focused on optimizing the ion/electron conductivity of the materials and shortening the Li-ion transfer path. Then, we systematically introduce the methods to improve the fast charging performance through the regulation and design of electrolytes, in terms of improving the ion conductivity of electrolytes and regulating Li-ion solvation structure and then highlight the acceleration of Li-ion de-solvation process by regulating the lithium salt concentration and Li-ion solvent interactions with the goal of achieving promotion of Li-ion transfer at the phase interface. Finally, the key scientific issues facing fast-charging Li-ion batteries is summarized as well as the future research directions.

Contents

1 Introduction

2 Electrode materials

2.1 Expanding the material layer spacing

2.2 Nanostructure regulation

2.3 Surface coating

2.4 Porous structure regulation

2.5 Vertical array structure

2.6 Doping

3 Electrolytes

3.1 Low viscosity solvent

3.2 Additive

3.3 Regulating solvation

4 Conclusion and outlook

()
图1 (a) 废旧石墨和N-RG中Li+扩散路径的示意图;(b)N-RG中氮的结合条件结构示意图;(c) LiFePO4/N-RG全电池和LiFePO4/商用石墨全电池的倍率性能[16]
Fig. 1 (a) Schematic diagrams of Li+ diffusion path in CG and N-RG; (b) Schematic structure of the binding conditions of N in N-RG; (c) Rate performance of the LiFePO4/N-RG full cell and LiFePO4/CG full cell[16]. Copyright 2022, Elsevier
图2 (a)沿[010]缩短Li+扩散距离的示意图;(b)1~30 C范围内的倍率性能[24];(c)U-LTO-NHMS的SEM图像[25]
Fig. 2 (a) Schematic illustration of shortening the lithium-ion diffusion distance along the [010]; (b) Rate capability at the C-rate ranging from 1~30 C[24]. Copyright 2019, American Chemical Society; (c) SEM images of U-LTO-NHMS[25]. Copyright 2019, American Elsevier
图3 (a) 无定形Al2O3/石墨的结构示意图;(b) 无定形Al2O3/石墨的HR-TEM图;(c) 不同电流密度下的倍率性能[32];(d) 界面改性示意图;(e) 原始LiNi0.6Co0.2Mn0.2O2和P-LiNi0.6Co0.2Mn0.2O2@Li3PO4-PANI的梯度磷酸聚阴离子掺杂示意图和结构模型[33]
Fig. 3 (a) Structural diagram of amorphous Al2O3@graphite. (b) HR-TEM result of amorphous Al2O3@graphite. (c) Rate capabilities at different current densities[32]. Copyright 2019, Elsevier. (d) Schematic diagram of interface modification; (e) Gradient phosphate polyanion doping schematic diagram and structure model for pristine LiNi0.6Co0.2Mn0.2O2 and P- LiNi0.6Co0.2Mn0.2O2@Li3PO4-PANI[33]. Copyright 2019, American Chemical Society
图4 (a)石墨和KOH刻蚀石墨的示意图[34];(b)制备酸处理石墨和KOH刻蚀石墨示意图[35];(c)负极制造工艺示意图[36]
Fig. 4 (a) Schematic scheme of pristine graphite and KOH etched graphite[34]. Copyright 2015, Elsevier. (b) Schematic illustration of the preparation of acid treated graphite and KOH-etched graphite[35]. Copyright 2020, Elsevier. (c) Schematic illustration of anode fabrication processes[36]. Copyright 2020, Elsevier
图5 (a)由常规涂敷技术制造的含有曲折多孔网络的随机电极结构和由冷冻涂敷技术制造的含有垂直阵列的定向电极结构;(b)冷冻涂敷技术制造的不同固体含量电极的倍率性能[38];(c)电解液中的Li+浓度;(d)电解液中的Li+浓度分布;(e)电解中的电极过电位[39]
Fig. 5 (a) Random electrode microstructure containing a tortuous porous network made by CTC directional electrode microstructure with vertical pore arrays made by FTC. (b) Rate performance of the FTC electrodes with different solid content[38]. Copyright 2021, Elsevier. (c) Li+ concentration in electrolyte. (d) Li+ concentration distribution in electrolyte. (e) Electrode overpotential in electrolyte[39]. Copyright 2022, Wiley Blackwell
图6 (a) Cr-TNO@VGTC的EDS元素映射图像:Ti, Nb, O, Cr和C[43];(b)K1Zr0.5的EDS;(c)K1Zr0.5的电化学性能[44]
Fig. 6 (a) EDS elemental mapping images of Cr-TNO@VGTC[43]. Copyright 2020, Wiley VCH Verlag. (b) The EDS of K1Zr0.5. (c) The Electrochemical performance of K1Zr0.5[44]. Copyright 2018, Elsevier
图7 (a)离子导率;(b)在常规电解液和M9F1中循环1000次后石墨表面的低温TEM图像;(c)M9F1电解液的电池在4 C恒流循环期间的电压曲线;(d)常规电解液(1.2 M LiPF6 EC/EMC(3:7))的电池在4 C恒流循环期间的电压曲线[49]
Fig. 7 (a) Ionic conductivity; (b) Cryo-TEM images of the graphite surface after 1000 cycles in Gen2 and M9F1; (c) Voltage profiles over 4 C constant current cycling duration in M9F1; (d) Voltage profiles over 4 C constant current cycling duration in Gen2[49]. Copyright 2022, Wiley VCH Verlag
图8 (a) 在富镍LiNi0.8Co0.1Mn0.1O2正极中使用和不使用LiBOB和DA添加剂形成的均匀和损坏的CEI示意图;(b) 常规电解液(1.1 mol·L?1 LiPF6 EC/DEC(1:1))和LiBOB+DA电解液半电池的倍率性能[53]
Fig. 8 (a) Schematic illustration of uniform and damaged CEI formed in nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode with and without LiBOB+DA additives; (b) Rate performance of conventional electrolyte (1.1 mol·L?1 LiPF6 EC/DEC(1:1)) and LiBOB+DA [53]. Copyright 2021, Elsevier BV
图9 (a)常规低浓度电解液和高浓度电解液中Li+的配位 [56];(b)降低Li+去溶剂化和在SEI中扩散的活化能(Ea)[63]
Fig. 9 (a) Representative environment of Li+ in a conventional dilute solution and salt-superconcentrated solution[56]. Copyright 2014, American Chemical Society. (b) Reduced activation energy (Ea) for Li+ desolvation and diffusion across an SEI[63]. Copyright 2020, Elsevier
图10 (a)石墨负极上的无机化合物;(b)石墨负极上的SEI膜;(c)Li|石墨半电池的倍率性能[67];(d)分子动力学模拟的1.4 mol·L?1 LiFSI在BDE/DME电解液中的结构;(e)根据模拟轨迹计算出的Li-OBDE、Li-ODME和Li-OFSI的径向分布函数;(f)BDE/DME电解液的拉曼光谱[68]
Fig. 10 (a) The inorganic compounds on graphite anode. (b) The SEI attached on graphite layer. (c) Rate capability for lithium of graphite[67]. Copyright 2020, John Wiley and Sons Ltd. (d) MD simulated electrolyte structure of 1.4 mol·L?1 LiFSI in BDE/DME. (e) Redial distribution functions of Li-OBDE、Li-ODME、Li-OFSI pairs calculated from MD simulation trajectories. (f) Raman spectra of BDE/DME electrolyte[68]. Copyright 2022, Elsevier BV
图11 (a) 基于第一性原理计算的Li+与溶剂和阴离子的结合能[70];(b) 分子动力学模拟的石墨和电解液之间的原子SEI结构;(c) 1.8 mol·L?1 LiFSI DOL和1.0 mol·L?1 LiPF6 EC/DMC(1:1体积比)的天然石墨|Li电池的倍率性能[71]
Fig. 11 (a) Binding energy of Li+ with solvents and anions based on DFT calculations[70]. Copyright 2020, John Wiley and Sons Ltd. (b) AMID simulated atomic SEI structure between graphite and electrolytes. (c) Rate performance of NG||Li cell with 1.8 mol·L?1 LiFSI DOL and 1.0 mol·L?1 LiPF6 EC/DMC (1:1 by vol.)[71]. Copyright 2022, Wiley Blackwell
[1]
Richard S, Ralf W, Gerhard H, Tobias P, Martin W. Nat. Energy, 2018, 3: 267.

doi: 10.1038/s41560-018-0107-2    
[2]
Naireeta D, Rajendra S, Richard R B, Kevin B. Energies, 2021, 14: 7566.

doi: 10.3390/en14227566     URL    
[3]
Collin R, Miao Y, Yokochi A, Enjeti P, von Jouanne A. Energies, 2019, 12(10): 1839.

doi: 10.3390/en12101839     URL    
[4]
Chen J Y, Ji C Z, Endler E, Li R H, Liu L S, Li Y L, Zheng S Q, Vetterlein S, Gao M, Du J Y, Parkes M, Ouyang M, Marinescu M, Offer G, Wu B. eTransportation, 2019, 1: 100011.

doi: 10.1016/j.etran.2019.100011     URL    
[5]
Okubo M, Hosono E, Kim J, Enomoto M, Kojima N, Kudo T, Zhou H S, Honma I. J. Am. Chem. Soc., 2007, 129(23): 7444.

doi: 10.1021/ja0681927     URL    
[6]
Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058): 928.

doi: 10.1126/science.1212741     URL    
[7]
Manuel W, Raffael R, Johannes K, Yehonatan L, Natasha R L, Philip M, Lukas S, Thomas W, Margret W M, Doron A, Martin W, Yair E E, Jürgen J. Adv. Energy Mater., 2021, 11: 2101126.

doi: 10.1002/aenm.v11.33     URL    
[8]
Yao Y X, Chen X, Yao N, Gao J H, Xu G, Ding J F, Song C L, Cai W L, Yan C, Zhang Q. Angewandte Chemie Int. Ed., 2023, 62(4): e202380461.

doi: 10.1002/anie.v62.4     URL    
[9]
Zhang S S. J. Power Sources, 2006, 161(2): 1385.
[10]
Xu L, Xiao Y, Yang Y, Xu R, Yao Y X, Chen X R, Li Z H, Yan C, Huang J Q. Adv. Mater., 2023, 35(42): 2301881.

doi: 10.1002/adma.v35.42     URL    
[11]
Xu L, Yang Y, Xiao Y, Cai W L, Yao Y X, Chen X R, Yan C, Yuan H, Huang J Q. J. Energy Chem., 2022, 67: 255.
[12]
Xu L, Xiao Y, Yang Y, Yang S J, Chen X R, Xu R, Yao Y X, Cai W L, Yan C, Huang J Q, Zhang Q. Angewandte Chemie Int. Ed., 2022, 61(39): e202210365.

doi: 10.1002/anie.v61.39     URL    
[13]
Andrew M C, Alision R D, Stephen E T, Bryant J P, Andrew N J, Kandler S. J. Electrochem. Soc., 2019, 166: A1412.

doi: 10.1149/2.0451908jes     URL    
[14]
Wang X, Zeng W, Hong L, Xu W W, Yang H K, Wang F, Duan H G, Tang M, Jiang H Q. Nat. Energy, 2018, 3(3): 227.

doi: 10.1038/s41560-018-0104-5    
[15]
Jana A, García R E. Nano Energy, 2017, 41: 552.

doi: 10.1016/j.nanoen.2017.08.056     URL    
[16]
Xu C, Ma G, Yang W, Che S, Li Y, Jia Y, Liu H L, Chen F J, Zhang G, Liu H C, Wu N, Huang G Y, Li Y F. Electrochimica Acta, 2022, 415: 140198.

doi: 10.1016/j.electacta.2022.140198     URL    
[17]
Kim T H, Jeon E K, Ko Y, Jang B Y, Kim B S, Song H K. J. Mater. Chem. A, 2014, 2(20): 7600.
[18]
Jiang Y, Song D Y, Wu J, Wang Z X, Huang S S, Xu Y, Chen Z W, Zhao B, Zhang J J. ACS Nano, 2019, 13(8): 9100.

doi: 10.1021/acsnano.9b03330     pmid: 31323180
[19]
Wang S L, Zhang Z X, Deb A, Yang C C, Yang L, Hirano S I. Electrochimica Acta, 2014, 143: 297.

doi: 10.1016/j.electacta.2014.07.139     URL    
[20]
Wang G X, Liu H, Liu J, Qiao S Z, Lu G M, Munroe P, Ahn H. Adv. Mater., 2010, 22(44): 4944.

doi: 10.1002/adma.v22.44     URL    
[21]
Wang X, Weng Q H, Yang Y J, Bando Y, Golberg D. Chem. Soc. Rev., 2016, 45(15): 4042.

doi: 10.1039/c5cs00937e     pmid: 27196691
[22]
Mendoza-Sánchez B, Gogotsi Y. Adv. Mater., 2016, 28(29): 6104.

doi: 10.1002/adma.v28.29     URL    
[23]
Wang D D, Shan Z Q, Tian J H, Chen Z. Nanoscale, 2019, 11(2): 520.

doi: 10.1039/C8NR07249C     URL    
[24]
Zhao Y, Peng L L, Liu B R, Yu G H. Nano Lett., 2014, 14(5): 2849.

doi: 10.1021/nl5008568     pmid: 24730515
[25]
Wang D D, Liu H D, Li M Q, Wang X F, Bai S, Shi Y, Tian J H, Shan Z Q, Meng Y S, Liu P, Chen Z. Energy Storage Mater., 2019, 21: 361.
[26]
Verma P, Novák P. Carbon, 2012, 50(7): 2599.

doi: 10.1016/j.carbon.2012.02.019     URL    
[27]
Jiang L L, Cheng X B, Peng H J, Huang J Q, Zhang Q. eTransportation, 2019, 2: 100033.

doi: 10.1016/j.etran.2019.100033     URL    
[28]
Wang C, Sheng L Z, Jiang M H, Lin X R, Wang Q, Guo M Q, Wang G, Zhou X M, Zhang X, Shi J Y, Jiang L L. J. Power Sources, 2023, 555: 232405.
[29]
Li H Q, Zhou H S. Chem. Commun., 2012, 48(9): 1201.

doi: 10.1039/C1CC14764A     URL    
[30]
Lyu H L, Li J L, Wang T, Thapaliya B P, Men S, Jafta C J, Tao R M, Sun X G, Dai S. ACS Appl. Energy Mater., 2020, 3(6): 5657.

doi: 10.1021/acsaem.0c00633     URL    
[31]
Guan Y B, Shen J R, Wei X F, Zhu Q Z, Zheng X H, Zhou S Q, Xu B. Appl. Surf. Sci., 2019, 481: 1459.

doi: 10.1016/j.apsusc.2019.03.213     URL    
[32]
Kim D S, Kim Y E, Kim H. J. Power Sources, 2019, 422: 18.
[33]
Ran Q W, Zhao H Y, Shu X H, Hu Y Z, Hao S, Shen Q Q, Liu W, Liu J T, Zhang M L, Li H, Liu X Q. ACS Appl. Energy Mater., 2019, 2(5): 3120.

doi: 10.1021/acsaem.8b02112     URL    
[34]
Cheng Q, Yuge R, Nakahara K, Tamura N, Miyamoto S. J. Power Sources, 2015, 284: 258.
[35]
Kim J, Nithya Jeghan S M, Lee G. Microporous Mesoporous Mater., 2020, 305: 110325.

doi: 10.1016/j.micromeso.2020.110325     URL    
[36]
Chen K H, Namkoong M J, Goel V, Yang C L. J. Power Sources, 2020, 471: 228475.

doi: 10.1016/j.jpowsour.2020.228475     URL    
[37]
Billaud J, Bouville F, Magrini T, Villevieille C, Studart A R. Nat. Energy, 2016, 1(8): 16097.

doi: 10.1038/nenergy.2016.97    
[38]
Guo Y M, Jiang Y L, Zhang Q, Wan D Y, Huang C. J. Power Sources, 2021, 506: 230052.
[39]
Tu S B, Lu Z H, Zheng M T, Chen Z H, Wang X C, Cai Z, Chen C J, Wang L, Li C H, Seh Z W, Zhang S Q, Lu J, Sun Y M. Adv. Mater., 2022, 34(39): 2202892.

doi: 10.1002/adma.v34.39     URL    
[40]
Cai Y X, Ku L, Wang L S, Ma Y T, Zheng H F, Xu W J, Han J T, Qu B H, Chen Y Z, Xie Q S, Peng D L. Sci. China Mater., 2019, 62(10): 1374.

doi: 10.1007/s40843-019-9456-1    
[41]
Huang S F, Li Z P, Wang B, Zhang J J, Peng Z Q, Qi R J, Wang J, Zhao Y F. Adv. Funct. Mater., 2018, 28(10): 1706294.

doi: 10.1002/adfm.v28.10     URL    
[42]
Wang J X, Xia Y, Liu Y, Li W, Zhao D Y. Energy Storage Mater., 2019, 22: 147.
[43]
Zhu H, Liu B, Liang Y, Tu J P. Adv. Funct. Mater., 2020, 30: 2002665.

doi: 10.1002/adfm.v30.25     URL    
[44]
Wu J B, Xu Y L, Chen Y J, Li L, Wang H, Zhao J. J. Power Sources, 2018, 401: 142.
[45]
Verma P, Maire P, Novák P. Electrochimica Acta, 2010, 55(22): 6332.

doi: 10.1016/j.electacta.2010.05.072     URL    
[46]
Xu K. Chem. Rev., 2004, 104(10): 4303.

doi: 10.1021/cr030203g     URL    
[47]
Hilbig P, Ibing L, Winter M, Cekic-Laskovic I. Energies, 2019, 12(15): 2869.

doi: 10.3390/en12152869     URL    
[48]
Logan E R, Hall D S, Cormier M M E, Taskovic T, Bauer M, Hamam I, Hebecker H, Molino L, Dahn J R. J. Phys. Chem. C, 2020, 124(23): 12269.

doi: 10.1021/acs.jpcc.0c02370     URL    
[49]
Gao H P, Yan Q Z, Holoubek J, Yin Y J, Bao W, Liu H D, Baskin A, Li M Q, Cai G R, Li W K, Tran D, Liu P, Luo J, Meng Y S, Chen Z. Adv. Energy Mater., 2023, 13(5): 2202906.

doi: 10.1002/aenm.v13.5     URL    
[50]
Cai W L, Yao Y X, Zhu G L, Yan C, Jiang L L, He C X, Huang J Q, Zhang Q. Chem. Soc. Rev., 2020, 49(12): 3806.

doi: 10.1039/C9CS00728H     URL    
[51]
Ramasubramanian A, Yurkiv V, Foroozan T, Ragone M, Shahbazian-Yassar R, Mashayek F. J. Phys. Chem. C, 2019, 123(16): 10237.

doi: 10.1021/acs.jpcc.9b00436    
[52]
Shi J L, Ehteshami N, Ma J L, Zhang H, Liu H D, Zhang X, Li J, Paillard E. J. Power Sources, 2019, 429: 67.

doi: 10.1016/j.jpowsour.2019.04.113     URL    
[53]
Cheng F Y, Zhang X Y, Qiu Y G, Zhang J X, Liu Y, Wei P, Ou M Y, Sun S X, Xu Y, Li Q, Fang C, Han J T, Huang Y H. Nano Energy, 2021, 88: 106301.

doi: 10.1016/j.nanoen.2021.106301     URL    
[54]
Wang X Y, Li S Y, Zhang W D, Wang D, Shen Z Y, Zheng J P, Zhuang H L, He Y, Lu Y Y. Nano Energy, 2021, 89: 106353.

doi: 10.1016/j.nanoen.2021.106353     URL    
[55]
Zheng J M, Lochala J A, Kwok A, Daniel Deng Z, Xiao J. Adv. Sci., 2017, 4(8): 1700032.

doi: 10.1002/advs.v4.8     URL    
[56]
Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. J. Am. Chem. Soc., 2014, 136(13): 5039.

doi: 10.1021/ja412807w     pmid: 24654781
[57]
Peled E, Menkin S. J. Electrochem. Soc., 2017, 164(7): A1703.
[58]
Suo L M, Xue W J, Gobet M, Greenbaum S G, Wang C, Chen Y M, Yang W L, Li Y X, Li J. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(6): 1156.

doi: 10.1073/pnas.1712895115     URL    
[59]
Yao Y X, Yao N, Zhou X R, Li Z H, Yue X Y, Yan C, Zhang Q. Adv. Mater., 2022, 34(45): 2206448.

doi: 10.1002/adma.v34.45     URL    
[60]
Monroe C, Newman J. J. Electrochem. Soc., 2005, 152(2): A396.
[61]
Wu M F, Wen Z Y, Liu Y, Wang X Y, Huang L Z. J. Power Sources, 2011, 196(19): 8091.
[62]
Yao Y X, Wan J, Liang N Y, Yan C, Wen R, Zhang Q. J. Am. Chem. Soc., 2023, 145(14): 8001.

doi: 10.1021/jacs.2c13878     URL    
[63]
Xu R, Yan C, Xiao Y, Zhao M, Yuan H, Huang J Q. Energy Storage Mater., 2020, 28: 401.
[64]
Yamada Y, Yaegashi M, Abe T, Yamada A. Chem. Commun., 2013, 49(95): 11194.

doi: 10.1039/c3cc46665e     URL    
[65]
Yamada Y, Wang J H, Ko S, Watanabe E, Yamada A. Nat. Energy, 2019, 4(4): 269.

doi: 10.1038/s41560-019-0336-z    
[66]
Cao X, Zou L F, Matthews B E, Zhang L C, He X Z, Ren X D, Engelhard M H, Burton S D, El-Khoury P Z, Lim H S, Niu C J, Lee H, Wang C S, Arey B W, Wang C M, Xiao J, Liu J, Xu W, Zhang J G. Energy Storage Mater., 2021, 34: 76.
[67]
Jiang L L, Yan C, Yao Y X, Cai W L, Huang J Q, Zhang Q. Angewandte Chemie Int. Ed., 2021, 60(7): 3402.

doi: 10.1002/anie.v60.7     URL    
[68]
Zhang G Z, Deng X L, Li J W, Wang J, Shi G L, Yang Y, Chang J, Yu K, Chi S S, Wang H, Wang P, Liu Z B, Gao Y, Zheng Z J, Deng Y H, Wang C Y. Nano Energy, 2022, 95: 107014.

doi: 10.1016/j.nanoen.2022.107014     URL    
[69]
Cai W L, Deng Y, Deng Z W, Jia Y, Li Z H, Zhang X M, Xu C, Zhang X Q, Zhang Y, Zhang Q. Adv. Energy Mater., 2023, 13(31): 2301396.

doi: 10.1002/aenm.v13.31     URL    
[70]
Yao Y X, Chen X, Yan C, Zhang X Q, Cai W L, Huang J Q, Zhang Q. Angewandte Chemie Int. Ed., 2021, 60(8): 4090.

doi: 10.1002/anie.v60.8     URL    
[71]
Sun C C, Ji X, Weng S T, Li R H, Huang X T, Zhu C N, Xiao X Z, Deng T, Fan L W, Chen L X, Wang X F, Wang C S, Fan X L. Adv. Mater., 2022, 34(43): 2206020.

doi: 10.1002/adma.v34.43     URL    
[72]
Lei S, Zeng Z Q, Liu M C, Zhang H, Cheng S J, Xie J. Nano Energy, 2022, 98: 107265.

doi: 10.1016/j.nanoen.2022.107265     URL    
[1] 任启蒙, 王青磊, 李因文, 宋学省, 上官雪慧, 李法强. 锂电池高电压电解液[J]. 化学进展, 2023, 35(7): 1077-1096.
[2] 李清萍, 李涛, 邵琛琛, 柳伟. 普鲁士蓝基钠离子电池正极材料的改性[J]. 化学进展, 2023, 35(7): 1053-1064.
[3] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[4] 黄铭浩, 王跃达, 侯倩, 项宏发. 锂金属电池电解液的理论计算模拟研究[J]. 化学进展, 2023, 35(12): 1847-1863.
[5] 马浩天, 田如锦, 文钟晟. 金属有机框架及其衍生纳米负极材料[J]. 化学进展, 2023, 35(12): 1807-1846.
[6] 谢志莹, 郑新华, 王明明, 于海洲, 仇晓燕, 陈维. 水系锌离子电池[J]. 化学进展, 2023, 35(11): 1701-1726.
[7] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[8] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[9] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[10] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[11] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[12] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[13] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[14] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[15] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.