English
新闻公告
More
化学进展 2023, Vol. 35 Issue (1): 157-167 DOI: 10.7536/PC220628 前一篇   后一篇

• 综述 •

MOFs在乳液中的可控生长

赵晓竹1, 李雯1, 赵学瑞1, 何乃普1,2,*(), 李超1, 张学辉1   

  1. 1 兰州交通大学化学化工学院 兰州 730070
    2 兰州交通大学研究院 兰州 730070
  • 收稿日期:2022-06-23 修回日期:2022-10-08 出版日期:2023-01-24 发布日期:2022-10-30
  • 作者简介:

    何乃普 高分子化学与物理专业博士,兰州交通大学化学化工学院教授。长期从事高分子科学相关教学与科研工作,研究方向主要集中在智能与功能高分子的合成及其在环境、能源和生物医药等领域的应用。

  • 基金资助:
    甘肃省科技计划项目(20YF8GA032)

Controlled Growth of MOFs in Emulsion

Xiaozhu Zhao1, Wen Li1, Xuerui Zhao1, Naipu He1,2(), Chao Li1, Xuehui Zhang1   

  1. 1 School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University,Lanzhou 730070, China
    2 Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2022-06-23 Revised:2022-10-08 Online:2023-01-24 Published:2022-10-30
  • Contact: *e-mail: henaipu@mail.lzjtu.cn
  • Supported by:
    Science and Technology Programs of Gansu Province(20YF8GA032)

金属有机框架(Metal organic frameworks, MOFs)材料是金属离子与有机配体自组装形成的形貌可控的多孔晶体材料。表面活性剂的乳化作用是形成乳液的关键,其自组装形成不同形貌的胶束控制最终产物的形貌。因此,在MOFs的制备中,不同乳液体系中的胶束亦可以作为反应模板,从而调控MOFs的形貌。本文简要介绍了传统乳液、反相微乳液、无皂乳液和Pickering乳液的形成机理和特点。重点综述了近年来MOFs在不同乳液体系中可控生长研究。其中,利用无皂乳液法和Pickering乳液法是构建MOFs复合材料的理想思路。

Metal organic frameworks (MOFs), which are formed by self-assembly of metal ions and organic ligands, are porous crystal materials with controllable morphology. Meanwhile, the emulsification of surfactants plays a key role in the formation of emulsion. The morphologies of micelles by self-assembly of surfactant controls the final morphology of the target materials. Therefore, micelles in emulsion are employed as reaction templates to modulate the morphology of MOFs. In the current review, the formation mechanism and characteristics of traditional emulsion, inverse microemulsion, surfactant-free emulsion and Pickering emulsion are briefly introduced. The progress in controllable growth of MOFs in emulsions is reviewed in detail. In particular, it is an ideal strategy for constructing MOFs composites by using surfactant-free emulsion method and Pickering emulsion method.

Contents

1 Introduction

2 Controllable growths of MOFs in traditional emulsions

3 Controllable growths of MOFs in inverse micro emulsion

4 Controllable growths of MOFs in surfactant-free emulsion

5 Controllable growths of MOFs in Pickering emulsion

6 Conclusion and outlook

()
表1 MOFs在不同乳液中的可控生长
Table 1 Controlled Growth of MOFs in Different Emulsion
Emulsion MOFs Base stock Morphological Pore size Application ref
Traditional emulsion/Surface growth on
micelle template
HKUST-1 Cu(NO3)2/
H3BTC/H2O/EtOH/CTAB/TMB
Hierarchically micro-/
mesoporous MOFs
Meso-micro pores, tunable pore size: 3.8~31.0 nm Heterogeneous catalysis 24
HKUST-1 Cu(NO3)2/H3BTC/
H2O/EtOH/HPW/
CTAB
Hierarchically micro-/
mesoporous MOFs, bimodal micro-/mesoporous hexagonal variant
Meso-micro pores, wide mesopores of 5 nm
separated by microporous
walls
Selective catalysis 25
HKUST-1 Cu(NO3)2/H3BTC/
DMF/CTAB/CA
Hierarchically micro-/
mesoporous MOFs
Meso-micro pores, wide mesopores of 19.6 nm, wide micropores of
0.86 nm
Bulky molecule capture, heterogeneous catalysis 26
Cu-(5-OH-
BDC)-C16
Cu(NO3)2/5-
OH-BDC/H2O/CTAC
2D hexagonal symmetry, highly ordered hexagonal meso-structure Meso-micro pores Heterogeneous
catalysis, controlled
drug release
28
Reverse microemulsion/
Interior growth in
micelle template
Gd(BDC)1.5(H2O)2 GdCl3/BDC/CTAB/ isooctane/1-
hexanol/H2O
Nanorods of fairly uniform shape and size
100~125 nm in length by 40 nm in diameter
Micropores Target-specific
multimodal imaging contrast agents
32
[Gd(1,2,
4-BTC)
(H2O)3]·H2O
GdCl3/BDC/CTAB/isooctane/1-
hexanol/H2O
Irregularly shaped
crystalline nanoplates
~100 nm in diameter, an average thickness of 35 nm
Micropores Target-
specificmultimodal imaging contrast agents
32
Mn(BDC)(H2O)2 MnCl2/[NMeH3]2
(BDC)/CTAB/1-
hexanol/
n-heptane/H2O
Nanorods of fairly uniform shape and size
750 nm to several μm in length, 50~100 nm
in diameters
Micropores Targeted delivery of other imaging and therapeutic agents 33
Mn3(BTC)2
(H2O)6
Microwave heating
MnCl2/Na3BTC/
CTAB/1-hexanol
/isooctane/H2O
An unusual spiral rod morphology of fairly uniform shape and size, 1~2 μm in length, 50~100 nm
in diameter
Micropores Target-specific MR imaging 33
ZIF-8
ZIF-67
Zn(NO3)2/2-MI/
CTAB/n-hexanol/n-heptane/H2O
Nanoparticles, the mean particle size of ZIF-8 was
2.3 nm, the ZIF-67 has the mean particle size of 2.7 nm
Micropores Gas storage 34
ZIF-8 Zn(NO3)2/2-MI/
CTAB/1-hexanol/heptane/H2O
Spherical particle, the mean particle was 100 nm Micropores Gas storage,
heterogeneous catalysis
35
ZIF-8 Zn(NO3)2/2-MI/
CTAB/n-hexanol/n-heptane/H2O
Lamellar MOFs@polymer networks, regular spherical nanoparticles, 100 nm
in dimeter
Micropores CO2 adsorption 36
ZIF-8
ZIF-67
Zn(NO3)2/2-MI/
H2O/BmimPF6/TX-100
Cu(NO3)2/H3BTC/
Nanoparticles, size < 2.3 nm, narrow distribution < 0.5 nm Micropores Biomedical imaging 38
HKUST-1 H2O/ethanol/BmimPF6/TX-100 Spherical nanoparticles, the mean particle size was
1.6 nm (σ = 0.4)
Micropores
La-MOFs La(NO3)3/BTC/H2O/BmimPF6/TX-100 Micellar particles:
spherical, lamellar,
and cylindrical
Micropores Sensing, controlled drug release 41
Surfactant-free emulsion /Surface growth on
polymer template
ZIF-8 Zn(NO3)2/2-MI/
H2O/1-octanol /PVP
Hollow MOFs Nanospheres with average diameters around 130 nm, the shell thickness increased from 20 nm to 50 nm Pore aperture of ZIF-8 =
3.4 Å
Heterogeneous catalysis 43
MIL-88A FeCl3/Tributylamine /1-Octanol/H2O/ PVA/Fumaric acid micro-fluidic System Uniform spherical shape with tunable size, 450 μm in diameter and 2 μm in shell thickness, Micropores, micropores
size: less than 1 nm
Enzyme and
nanoparticle encapsulation
44
ZIF-8 Zn(NO3)2/2-MI/
APS/H2O/TEA /DMAPMA
ZIF-8@PDMAPMA
nanoparticle, spherical
nanospheres, polyhedron
cube morphology, 100~
400 nm
Micropores Drug loading 45
Cu3(BTC)2 Cu(NO3)2/
H3BTC/H2O/
EtOH/CH3COOH/ Pluronic F127
Discrete octahedral,
nanocrystals, 100~200 nm
Mesopore diameter=4.0 nm Gas storage,
catalysis, sensing, and drug delivery.
46
Cu2(HBTB)2 Cu(NO3)2/
H3BTB/H2O/
EtOH/CH3COOH/ Pluronic F127
Flower-like nanosheets, thickness of the lamellar stacking = 40~60 nm Mesopore diameter =
3.9 nm
UiO-66-NH2 ZrO(NO3)2·2H2O/
BDC-NH2/toluene/H2O/P123/
F127/NaClO4/H2O/AA
Bowl-like mesoporous
nanoparticles, dendritic
nanospheres, walnut-shaped
nanoparticles, nanosheet
with surface folds,
nano disk
Pore aperture = 0.8 nm, 1.1 nm Heterogeneous
regeneration of
the coenzymes
47
ZIF-8 Zn(NO3)2/2-MI/
catalase/H2O
Cruciate flower The average pore diameter was 12.24 nm Enzyme immobilization 48
Pickering emulsion/Surface growth on
solid template
ZIF-8 HIPE
Zn(NO3)2/2-MI/
H2O/CNCs/dodecane
Microspheres,
micropores/ mesopores, the
wall thickness of
microsphere was 2.0~
2.5 μm
Micropores Dye adsorption 53
Cu3(BTC)2 Cu(NO3)2/H3BTC/
n-octanol/H2O/GO
Regular octahedron, columnar
100~200 nm, columnar rod with a length of 1~2 μm
Macropores CO2 adsorption 54
ZIF-8 HIPE
Zn(NO3)2/2-MI/
H2O/oleic acid/ZIF-8
Foam-like structure
containing well-separated
macro-porous cavities, ZIF-8 nanoparticle shape or size = 120 nm
Macroporous size: 17 μm, micropores size: less than 1 nm Gas separation,
pollutant removal
56
ZIF-8 HIPE
Zn(NO3)2/
2-MI/H2O/ cyclohexane/ZIF-8
(200 nm)
Hierarchical microporous
MOF monoliths, nanoZIF-8:
rhombic dodecahedron size = 200 nm, 3D ZIF-8 monoliths void walls were coated with close-packed ZIF-8
nanoparticles.
Micropores in the ZIF-8 framework: 0.64 and 0.90 nm, 3D ZIF-8 monoliths void size of around 50 μm Oil-water separation, selective catalysis 57
图1 传统乳液中MOFs可控生长示意图
Fig. 1 Schematic illustration of controllable growths of MOFs in traditional emulsion
图2 (a) 协同胶束模板体系制备三维多级孔MOFs晶体 (b) 介孔MOFs在两个不同放大倍数下的TEM图像[26]
Fig. 2 (a) Preparation of hierarchical mesoporous MOFs crystals by cooperative micellar template system. (b) TEM images of the mesoMOFs at two different levels of magnification[26]. Copyright 2012, ACS
图3 反相微乳液中制备形貌可控的MOFs示意图
Fig. 3 Schematic illustration of controllable growth of MOFs in inverse microemulsion
图4 (A) 在离子液反相微乳液体系中制备金属有机框架示意图, (B) (a) NZIF-8 (b) NZIF-67 (d) NHKUST-1在ILME-1的TEM图 (c) NHKUST-1在ILME-2 中的TEM图[38]
Fig. 4 (A) Schematic representation of the growth process of metal-organic frameworks by ionic liquid reverse microemulsion method. (B) TEM image (a) of NZIF-8 (b) of NZIF-67 (d) of NHKUST-1 synthesized in ILME-1, TEM image (c) of NHKUST-1 synthesized in ILME-2.[38]. Copyright 2017, ACS
图5 离子液体微乳液辅助法制备一系列形貌可控的La-MOFs[41]
Fig. 5 Shape and size controlled synthesis of La-MOFs nanocrystals with the assistance of ionic liquid microemulsions[41]. Copyright 2013, ACS
图6 MOFs在无皂乳液中的可控生长示意图
Fig. 6 Schematic illustration of controllable growth of MOFs in surfactant-free emulsion
图7 (A) 乳液界面合成法合成壳层厚度可控的ZIF-8纳米球, (B) (a~c)空心ZIF-8的SEM图(d~i)Zn2+浓度不变时,不同浓度的2-MI得到中空ZIF-8纳米球的TEM图[43]
Fig.7 (A) ZIF-8 nanospheres with controllable shell thickness synthesized by emulsion-based interfacial approach. (B) SEM (a-c) of hollow ZIF-8 nanospheres and TEM (d-i) images of hollow ZIF-8 nanospheres obtained from 2-MI with different concentrations when the concentration of Zn2+ was constant[43]. Copyright 2014, ACS
图8 (A)无皂乳液模板法制备具有各种结构的分层Zr基MOFs示意图;(B)结构多样的Zr基MOFs的结构表征图,SEM(a~e)和TEM(f~j)[47]
Fig. 8 (A) Schematic illustration for the growth process of hierarchical Zr-based MOFs with different architectures by using the surfactant-free emulsion template strategy. (B) Structural characterizations of Zr-based MOFs with various architectures. SEM (a~e) and TEM (f~j)[47]. Copyright 2022, ACS
图9 Pickering乳液模板法制备MOFs/微颗粒复合物
Fig. 9 Preparation of MOFs/particle composites by Pickering emulsion template method
图10 Pickering乳液模板法制备MOFs/氧化石墨烯复合材料[54]
Fig. 10 Schematic illustration of Pickering emulsion template synthesis approach of the MOFs/graphene oxide composite[54]. Copyright 2015, ACS
图11 (a~e) ZIF-8三维多孔晶体的SEM图, (f)ZIF-8三维多孔晶体孔壁的SEM图 [57]
Fig. 11 (a~e) SEM images of 3D ZIF-8 monoliths, (f) SEM images of surface of the void wall of 3D ZIF-8 monoliths[57]. Copyright 2021, ACS
[1]
Zhang Z H, Fang H, Xue D X, Bai J F. ACS Appl. Mater. Interfaces, 2021, 13(37): 44956.

doi: 10.1021/acsami.1c13757     URL    
[2]
Moghadam G, Abdi J, Banisharif F, Khataee A, Kosari M. J. Mol. Liq., 2021, 341: 117323.

doi: 10.1016/j.molliq.2021.117323     URL    
[3]
He Z G, Liu Y Q, Wang J L, Lv Y J, Xu Y, Jia S Y. J. Clean. Prod., 2021, 321: 128947.

doi: 10.1016/j.jclepro.2021.128947     URL    
[4]
Xing W D, Ma Z F, Wang C, Lu J, Gao J, Yu C, Lin X Y, Li C X, Wu Y L. Sep. Purif. Technol., 2021, 278: 119624.

doi: 10.1016/j.seppur.2021.119624     URL    
[5]
Sun Y M, Jiang X D, Liu Y W, Liu D, Chen C, Lu C Y, Zhuang S Z, Kumar A, Liu J Q. J. Inorg. Biochem., 2021, 225: 111599.

doi: 10.1016/j.jinorgbio.2021.111599     URL    
[6]
Kida K, Okita M, Fujita K, Tanaka S, Miyake Y. CrystEngComm, 2013, 15(9): 1794.

doi: 10.1039/c2ce26847g     URL    
[7]
Tanaka S, Kida K, Okita M, Ito Y, Miyake Y. Chem. Lett., 2012, 41(10): 1337.

doi: 10.1246/cl.2012.1337     URL    
[8]
Sindoro M, Yanai N, Jee A Y, Granick S. Acc. Chem. Res., 2014, 47(2): 459.

doi: 10.1021/ar400151n     URL    
[9]
Wang W J, Sun Z H, Chen S C, Qian J F, He M Y, Chen Q. Appl. Organomet. Chem., 2021, 35(8): e6288.
[10]
Qiu L G, Li Z Q, Wu Y, Wang W, Xu T, Jiang X. Chem. Commun., 2008,(31): 3642.
[11]
Tanaka S, Kida K, Nagaoka T, Ota T, Miyake Y. Chem. Commun., 2013, 49(72): 7884.

doi: 10.1039/c3cc43028f     URL    
[12]
Cong S L, Yang Y F, Li K S, He F, Liu J, Yuan H, Wang X Q, Zhang R L, Chu J, Gong M, Wu B H, Xiong S X, Zhou A N. ACS Appl. Electron. Mater., 2022, 4(1): 233.

doi: 10.1021/acsaelm.1c00973     URL    
[13]
Cabrera-Munguia D A, LeÓn-Campos M I, Claudio-Rizo J A, Solís-Casados D A, Flores-Guia T E, Cano Salazar L F. Bull. Mater. Sci., 2021, 44(4): 1.

doi: 10.1007/s12034-020-02288-z     URL    
[14]
Brown A J, Brunelli N A, Eum K, Rashidi F, Johnson J R, Koros W J, Jones C W, Nair S. Science, 2014, 345(6192): 72.

doi: 10.1126/science.1251181     URL    
[15]
CarnÉ-Sánchez A, Imaz I, Cano-Sarabia M, Maspoch D. Nature. Chem., 2013, 5(3): 203.

doi: 10.1038/nchem.1569     URL    
[16]
Valtchev V, Tosheva L. Chem. Rev., 2013, 113(8): 6734.

doi: 10.1021/cr300439k     URL    
[17]
Huo J, Marcello M, Garai A, Bradshaw D. Adv. Mater., 2013, 25(19): 2717.

doi: 10.1002/adma.201204913     URL    
[18]
Ujiiye-Ishii K, Kwon E, Kasai H, Nakanishi H, Oikawa H. Cryst. Growth Des., 2008, 8(2): 369.

doi: 10.1021/cg700708g     URL    
[19]
Lovell P A, Schork F J. Biomacromolecules, 2020, 21(11): 4396.

doi: 10.1021/acs.biomac.0c00769     URL    
[20]
Anjali T G, Basavaraj M G. Langmuir, 2019, 35(1): 3.

doi: 10.1021/acs.langmuir.8b01139     URL    
[21]
Li C, Li Q, Kaneti Y V, Hou D, Yamauchi Y, Mai Y Y. Chem. Soc. Rev., 2020, 49(14): 4681.

doi: 10.1039/D0CS00021C     URL    
[22]
Bradley L C, Stebe K J, Lee D. J. Am. Chem. Soc., 2016, 138(36): 11437.

doi: 10.1021/jacs.6b05633     pmid: 27548642
[23]
Guan B Y, Yu L, Lou X W D. J. Am. Chem. Soc., 2016, 138(35): 11306.

doi: 10.1021/jacs.6b06558     URL    
[24]
Qiu L G, Xu T, Li Z Q, Wang W, Wu Y, Jiang X, Tian X Y, Zhang L D. Angew. Chem. Int. Ed., 2008, 47(49): 9487.

doi: 10.1002/anie.200803640     URL    
[25]
Wee L H, Wiktor C, Turner S, Vanderlinden W, Janssens N, Bajpe S R, Houthoofd K, van Tendeloo G, de Feyter S, Kirschhock C E A, Martens J A. J. Am. Chem. Soc., 2012, 134(26): 10911.

doi: 10.1021/ja302089w     URL    
[26]
Sun L B, Li J R, Park J, Zhou H C. J. Am. Chem. Soc., 2012, 134(1): 126.

doi: 10.1021/ja209698f     URL    
[27]
Bradshaw D, Garai A, Huo J. Chem. Soc. Rev., 2012, 41(6): 2344.

doi: 10.1039/c1cs15276a     pmid: 22182916
[28]
Li Y T, Zhang D J, Guo Y N, Guan B Y, Tang D H, Liu Y L, Huo Q S. Chem. Commun., 2011, 47(27): 7809.

doi: 10.1039/c1cc12479j     URL    
[29]
Landfester K, Willert M, Antonietti M. Macromolecules, 2000, 33(7): 2370.

doi: 10.1021/ma991782n     URL    
[30]
Capek I. Adv. Colloid Interface Sci., 2004, 110(1/2): 49.

doi: 10.1016/j.cis.2004.02.003     URL    
[31]
Xia T F, Zhu F L, Jiang K, Cui Y J, Yang Y, Qian G D. Dalton Trans., 2017, 46(23): 7549.

doi: 10.1039/C7DT01604B     URL    
[32]
Rieter W J, Taylor K M L, An H Y, Lin W L, Lin W B. J. Am. Chem. Soc., 2006, 128(28): 9024.

doi: 10.1021/ja0627444     URL    
[33]
Taylor K M L, Rieter W J, Lin W B. J. Am. Chem. Soc., 2008, 130(44): 14358.

doi: 10.1021/ja803777x     URL    
[34]
Sun W Z, Zhai X S, Zhao L. Chem. Eng. J., 2016, 289: 59.

doi: 10.1016/j.cej.2015.12.076     URL    
[35]
Yin H M, Li L Q, Li J J, Feng S, Guo Y, Wang J Q. Mod. Chem. Ind., 2018(10): 175.
(殷慧敏, 李良清, 李佳佳, 丰洒, 郭宇, 王金渠. 现代化工, 2018(10): 175.).
[36]
He N P, Li C, Zhao X Z, Li Y H, Zhang X H, Qiao Y Y. Polym. Adv. Technol., 2022, 33(3): 750.

doi: 10.1002/pat.5552     URL    
[37]
Rogers R D, Seddon K R. Science, 2003, 302(5646): 792.

doi: 10.1126/science.1090313     pmid: 14593156
[38]
Zheng W Z, Hao X L, Zhao L, Sun W Z. Ind. Eng. Chem. Res., 2017, 56(20): 5899.

doi: 10.1021/acs.iecr.7b00694     URL    
[39]
Bai T T, Ge R L, Gao Y N, Chai J L, Slattery J M. Phys. Chem. Chem. Phys., 2013, 15(44): 19301.

doi: 10.1039/c3cp53441c     URL    
[40]
Meng Y L, Li Z, Chen J, Xia C G. Prog. Chem., 2011, 23: 2442.
(孟雅莉, 李臻, 陈静, 夏春谷. 化学进展, 2011, 23: 2442.).
[41]
Shang W T, Kang X C, Ning H, Zhang J L, Zhang X G, Wu Z H, Mo G, Xing X Q, Han B X. Langmuir, 2013, 29(43): 13168.

doi: 10.1021/la402882a     URL    
[42]
Davis K A, Matyjaszewski K. Adv. Polym. Sci., 2002, 159.
[43]
Yang Y F, Wang F W, Yang Q H, Hu Y L, Yan H, Chen Y Z, Liu H R, Zhang G Q, Lu J L, Jiang H L, Xu H X. ACS Appl. Mater. Interfaces, 2014, 6(20): 18163.

doi: 10.1021/am505145d     URL    
[44]
Jeong G Y, Ricco R, Liang K, Ludwig J, Kim J O, Falcaro P, Kim D P. Chem. Mater., 2015, 27(23): 7903.

doi: 10.1021/acs.chemmater.5b02847     URL    
[45]
Li Y H, Qiao Y Y, Li C, He N P, Wen J, Zhao X Z, Zhang X H, Li B Y. Acta Polym. Sin., 2021,(9): 1174.
(李禹红, 乔瑶雨, 李超, 何乃普, 闻静, 赵晓竹, 张学辉, 黎白钰. 高分子学报, 2021,(9): 1174.).
[46]
Pham M H, Vuong G T, Fontaine F G, Do T O. Cryst. Growth Des., 2012, 12(6): 3091.

doi: 10.1021/cg300297p     URL    
[47]
Li K, Zhao Y C, Yang J, Gu J L. Nat. Commun., 2022, 13: 1879.

doi: 10.1038/s41467-022-29535-7     URL    
[48]
Cui J D, Feng Y X, Lin T, Tan Z L, Zhong C, Jia S R. ACS Appl. Mater. Interfaces, 2017, 9(12): 10587.

doi: 10.1021/acsami.7b00512     URL    
[49]
Li C, He N P, Zhao X Z, Zhang X H, Li W, Zhao X R, Qiao Y Y. ChemistrySelect, 2022, 7(4): e202103927.
[50]
Wang S Z, McGuirk C M, Ross M B, Wang S Y, Chen P C, Xing H, Liu Y, Mirkin C A. J. Am. Chem. Soc., 2017, 139(29): 9827.

doi: 10.1021/jacs.7b05633     URL    
[51]
Herzig E M, White K A, Schofield A B, Poon W C K, Clegg P S. Nature Mater., 2007, 6(12): 966.

doi: 10.1038/nmat2055     URL    
[52]
He Y J, Qi S T, Zhao S Y. Prog. Chem., 2007, 19: 1443.
(贺拥军, 齐随涛, 赵世永. 化学进展, 2007, 19: 1443.).
[53]
Ma J, Hu J, Tang Y, Gu H X, Jiang M, Zhang J M. J. Colloid Interface Sci., 2020, 572: 160.

doi: 10.1016/j.jcis.2020.03.076     URL    
[54]
Bian Z J, Xu J, Zhang S P, Zhu X M, Liu H L, Hu J. Langmuir, 2015, 31(26): 7410.

doi: 10.1021/acs.langmuir.5b01171     URL    
[55]
Zhu H, Zhang Q, Zhu S P. Chem. Eur. J., 2016, 22(26): 8751.

doi: 10.1002/chem.201600313     URL    
[56]
Jin P, Tan W L, Huo J, Liu T T, Liang Y, Wang S Y, Bradshaw D. J. Mater. Chem. A, 2018, 6(41): 20473.

doi: 10.1039/C8TA06766J     URL    
[57]
Sun Y, Zhu Y, Zhang S M, Binks B P. Langmuir, 2021, 37(28): 8435.

doi: 10.1021/acs.langmuir.1c00757     URL    
[58]
Furukawa S, Reboul J, Diring S, Sumida K, Kitagawa S. Chem. Soc. Rev., 2014, 43(16): 5700.

doi: 10.1039/c4cs00106k     pmid: 24811425
[59]
Fan X X, Wang W, Li W, Zhou J W, Wang B, Zheng J, Li X G. ACS Appl. Mater. Interfaces, 2014, 6(17): 14994.

doi: 10.1021/am5028346     URL    
[1] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[2] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[3] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[4] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[5] 张元霞, 鲍艳, 马建中. 两亲性Janus粒子的合成及其在Pickering乳液中的应用[J]. 化学进展, 2021, 33(2): 254-262.
[6] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.
[7] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[8] 田诗伟, 毛国梁, 张珈瑜, 历娜, 姜梦圆, 吴韦. 开关型Pickering乳液体系[J]. 化学进展, 2020, 32(4): 434-453.
[9] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[10] 李嘉伟, 任颜卫, 江焕峰. 金属有机框架材料在CO2化学固定中的应用[J]. 化学进展, 2019, 31(10): 1350-1361.
[11] 梁茜, 王诚, 雷一杰, 刘亚迪, 赵波, 刘锋. 金属有机框架材料在质子交换膜燃料电池中的潜在应用[J]. 化学进展, 2018, 30(11): 1770-1783.
[12] 郭爽, 陈志强, 任笑菲, 张永民*, 刘雪锋*. CO2响应型乳液体系[J]. 化学进展, 2017, 29(7): 695-705.
[13] 殷俞*, 张壮壮, 徐丹, 文志豪, 杨志峰, 袁爱华. 多孔材料基π络合吸附材料的合成及其应用[J]. 化学进展, 2017, 29(6): 628-636.
[14] 卫林峰, 马建中, 张文博, 鲍艳. 氧化石墨烯和石墨烯量子点的两亲性调控及其在Pickering乳液聚合中的应用[J]. 化学进展, 2017, 29(6): 637-648.
[15] 姜宁, 邓志勇, 王公应, 刘绍英. 金属有机框架材料的制备及在吸附分离CO2中的应用[J]. 化学进展, 2014, 26(10): 1645-1654.
阅读次数
全文


摘要

MOFs在乳液中的可控生长