English
新闻公告
More
化学进展 2022, Vol. 34 Issue (12): 2667-2685 DOI: 10.7536/PC220403 前一篇   后一篇

• 综述 •

还原-氧化协同降解全/多卤代有机污染物

王楠1, 周宇齐2, 姜子叶1, 吕田钰1, 林进1, 宋洲2, 朱丽华1,*()   

  1. 1 华中科技大学化学与化工学院 武汉 430074
    2 湖北省地质实验测试中心 武汉 430034
  • 收稿日期:2022-04-05 修回日期:2022-06-23 出版日期:2022-12-24 发布日期:2022-07-20
  • 通讯作者: 朱丽华
  • 作者简介:

    朱丽华 华中科技大学化学与化工学院二级教授、华中大卓越学者,担任湖北省化学与化工学会分析化学专业委员会副主任委员。主要研究领域为环境催化化学与应用化学。发表SCI收录论文180余篇,其中高被引论文9篇,H指数51;连续七年入选Elsevier“中国高被引学者榜单”。主持国家自然科学基金面上项目及科技部“863”计划重大项目子课题多项。先后获全国宝钢优秀教师奖、全国优秀百篇博士论文提名奖的指导老师,教育部及湖北省自然科学奖二等奖。

  • 基金资助:
    国家自然科学基金面上项目(21976063); 国家自然科学基金面上项目(22076052); 湖北省自然科学基金面上项目(2019CFB432)

Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants

Nan Wang1, Yuqi Zhou2, Ziye Jiang1, Tianyu Lv1, Jin Lin1, Zhou Song2, Lihua Zhu1()   

  1. 1 School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology,Wuhan 430074, China
    2 Hubei Province Geological Experimental Testing Center,Wuhan 430034, China
  • Received:2022-04-05 Revised:2022-06-23 Online:2022-12-24 Published:2022-07-20
  • Contact: Lihua Zhu
  • Supported by:
    National Natural Science Foundation of China(21976063); National Natural Science Foundation of China(22076052); Natural Science Foundation of Hubei Province of China(2019CFB432)

全/多卤代有机污染物大多具有生态毒性、生物蓄积性、环境持久性及长距离迁移性,不仅危害环境与生态安全,而且可经食物链传递威胁人类健康。由于卤原子是吸电子基团且取代数目多,这类物质的最高占据分子轨道能较低,难于被氧化降解,相反较易被还原法脱卤降解。随卤原子取代数减少,脱卤产物难被进一步还原,而其毒性甚至高于母体污染物。注意到低卤代有机物更容易发生氧化降解,一些研究构建了还原-氧化接力降解体系,即先利用还原法将全/多卤代有机污染物还原为低卤代产物,再利用氧化法降解这些中间产物,从而实现深度/完全脱卤和矿化。本文根据催化反应类型对还原-氧化联用法进行了归纳,分类介绍了基于传统化学催化、光催化、电化学、光电化学及机械化学等构建还原-氧化协同降解体系的原理及应用,以期为开发高效的处置技术提供思路和建议。

Most of per- and poly-halogenated organic pollutants (PHOPs)possess biodiversity and bioaccumulation, long persistency and global transport throughout the environment and pose adverse effects on humans. Due to the strong electron-withdrawing ability and a large number of halogen atoms, PHOPs usually possess low positive position for highest occupied molecular orbital level and consequently are resistant to the oxidative degradation. Reductive technologies can efficiently degrade PHOPs, but they suffer from a problem of the accumulation of highly toxic less halogenated products, because the lower-halogenated products tend to be more difficult to reduce. In contrast, these lowly-halogenated products can be easily oxidized. Thus, the consecutive reduction and oxidation method has been developed to degrade PHOPs, in which the pre-reduction of PHOPs and the consecutive oxidation of dehalogenated intermediates are combined to realize the complete dehalogation and mineralization. Herein, this review summarizes the latest efforts to develop consecutive reduction and oxidation processes that are categorized as five types: catalysis, electrochemistry, photocatalysis, photoelectrochemistry and mechanochemistry. Particular attention is focused on the chemical design principles of consecutive reduction and oxidation processes that can help develop treatment technologies to efficiently eliminate PHOPs.

Contents

1 Introduction

2 Reductive or oxidative degradation of PHOPs

2.1 Perfluorinated compounds

2.2 Chlorophenols

2.3 Polybrominated diphenyl ethers

3 Consecutive Reductive and Oxidative degradation of PHOPs

3.1 Traditional chemical reduction and Fenton like oxidation

3.2 Photochemical reduction and oxidation

3.3 Electrochemical reduction and oxidation

3.4 Photo-electrocatalytic reduction and oxidation

3.5 Mechanochemical reduction and oxidation

3.6 Hydrated electron-mediated reduction and persulfate-based catalytic oxidation

4 Conclusion and outlook

()
表1 常见反应活性物种的标准氧化还原电位(E)[7?~9]。
Table 1 Standard redox potential of some common reactive species[7?~9].
图1 Al2O3和PDS联用机械化学法降解PFOA的机理示意图[16]
Fig.1 A schematic representation for MC degradation of PFOA in the presence of both Al2O3 and PDS[16]
表2 典型还原体系降解多溴二苯醚的活性物种[51,55,59,60????? ~66]
Table 2 Reactive species for reductive degradation of polybrominated diphenyl ethers[51,55,59,60????? ~66]
图2 电子进攻还原降解多溴二苯醚的示意图及降解反应速率与其富溴环溴取代数目之间的关系[67]
Fig.2 A schematic representation for electron-transfer- mediated degradation of polybrominated diphenyl ethers (PBDEs) and dependence of reductive debromination rate of PBDEs on Br number in the Br-rich ring[67]
图3 (a)典型多溴二苯醚的分子结构及其(b)光催化还原[67]或(c)氧化速率常数(或)[72]。其中$ k_{\text {red, BDE47 }}$表示BDE47的光催化还原降解速率常数
Fig.3 Structures of typical polybrominated diphenyl ethers (a) and their photocatalytic degradation rate constants via reduction[67] (b) or oxidation ( or kOx)[72] (c) pathway. $ k_{\text {red, BDE47 }}$ represents the photocatalytic reduction rate constant of BDE47
表3 还原-氧化协同体系降解全/多卤代有机污染物的效果
Table 3 Synergistically consecutive reduction and oxidation of per- and poly-halogenated organic pollutants
Pollutant, concentration
/mmol·L-1
Degradation reaction conditionsb Treatment efficiency /% ref
Degradation Dehalogenation TOC
removal
CnF2n+1COO- (n=2~7), 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 73-93 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - <0.5 - 99
Red-Ox - 95-100 - 99
C4F9$\mathrm{SO}_{3}^{2-}$, 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 32.4 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - <0.5 - 99
Red-Ox - 95.0 - 99
C6F13$\mathrm{SO}_{3}^{2-}$, 0.50 Red: UV-S$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 53.4 - 99
Ox: PDS (5 mmol·L-1),120 ℃, pH≥ 12, 40 min - <0.5 - 99
Red-Ox - 97 - 99
C8F17$\mathrm{SO}_{3}^{2-}$, 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 80.1 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - <0.5 - 99
Red-Ox - 100 - 99
C4F9C2H4COO-, 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 24 h - 17.8 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - 68.2 - 99
Ox-Red - 94.3 - 99
Ox-Red-Ox - 99.2 - 99
C6F13C2H4COO-, 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 68.7 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - 55.1 - 99
Red-Ox - 87.3 - 99
Ox-Red-Ox - 94.3 - 99
C8F17C2H4COO-, 0.50 Red: UV-$\mathrm{SO}_{4}^{2-}$, pH 12.0, 8 h - 75.7 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - 33.7 - 99
Ox-Red - 68.6 - 99
Ox-Red-Ox - 77.8 - 99
C4F9C2H4$\mathrm{SO}_{3}^{2-}$, 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 32.4 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - 49.0 - 99
Ox-Red - 60.8 - 99
Ox-Red-Ox - 95.7 - 99
C6F13C2H4$\mathrm{SO}_{3}^{2-}$, 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 53.4 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - 50.4 - 99
Ox-Red - 91.5 - 99
Ox-Red-Ox - 98.8 - 99
C8F17C2H4$\mathrm{SO}_{3}^{2-}$, 0.50 Red: UV-$\mathrm{SO}_{3}^{2-}$, pH 12.0, 8 h - 80.1 - 99
Ox: PDS (5 mmol·L-1), 120 ℃, pH≥ 12, 40 min - 18.9 - 99
Ox-Red - 72.6 - 99
Ox-Red-Ox - 81.8 - 99
PCP, 0.027 Pd/Fe@Al2O3 (1 g·L-1), HCOOH (20 mmol·L-1),He (10 min)-air (5 min)-O2 (20 mL·min-1, 5.75 h) 100 100 - 77
Pd/Fe@Al2O3 (1 g·L-1), HCOOH (20 mM), air (0.5 h)-O2 (20 mL·min-1, 5.5 h) 100 98 - 77
Pd/Fe@Al2O3 (1 g·L-1), HCOOH (20 mmol·L-1), O2 (20 mL·min-1, 6 h) 100 48 - 77
2,4.6-TCP 0.10 Fe/Cu bimetallic single-atom catalyst anchored on N-doped porous carbon (FeCuSA-NPC) as the cathode, Pt sheet as the anode, pH 5.0, potential (E) of -0.6 V, 1.5 h 90 - 84 (4 h) 85
0.025 Pd-loaded Cu/Cu2O/CuO heterostructure nanowire array (CuxO@Pd) as the photocathode, TiO2 nanorod array loaded FTO (TiO2 NR/FTO) as the photoanode, E = 0.3 V, xenon lamp irradiation, 2 h 98.5 84.5 42.2 91
2, 4-DCP 0.31 Pd/Fe@Al2O3 (1 g·L-1), HCOOH (20 mmol·L-1), He (10 min)-air (5 min)-O2 (20 mL·min-1, 5.75 h) 100 100 70% 77
Pd/Fe@Al2O3 (1 g·L-1), HCOOH (20 mmol·L-1), air (0.5 h)-O2 (20 mL·min-1, 5.5 h) 100 100 62% 77
Pd/Fe@Al2O3 (1 g·L-1), HCOOH (20 mmol·L-1), O2 (20 mL·min-1, 6 h) 100 97 75% 77
FeCuSA-NPC as the cathode, Pt sheet as the anode, pH 5.0, E = -0.6 V, 1.5 h - 92.5 88 (4 h) 85
0.12
Fe and P codoped carbon aerogel (Fe-P-CA) as the cathode, TiO2 NR/FTO photoanode, pH 7.0, E =-1.2 V, xenon lamp irradiation, 0.5 h 98 - - 89
0.31
Fe-P-CA cathode, TiO2 NR/FTO photoanode, pH 7.0, E = -1.2 V, O2 (300 mL·min-1 ), 0.5 h 98 91 - 89
Fe-P-CA cathode, TiO2 NR/FTO photoanode, pH 7.0, E = -1.2V, N2 (300 mL·min-1), 0.5 h 98 33 - 89
Two-compartment reactor, WO3/Mo@BiVO4 loaded FTO (WO3/Mo@BiVO4/FTO) as the photoanode, Pd/Ni foam as the cathode, 2, 4-DCP in cathode chamber, pH 2.42, E = 1.2 V, light irradiation, 4 h 100 100 - 90
0.61
Two-compartment reactor, WO3/Mo@BiVO4/FTO photoanode, Pd/Ni foam as the cathode, transfer phenol generated in cathode chamber to anode chamber, add 2, 4-DCP to cathode chamber, pH 2.42, E = 1.2 V, light irradiation, 4 h 100 100 45 90
0.031
CuxO@Pd photocathode, TiO2 NR/FTO photoanode, E = 0.3 V, xenon lamp irradiation, 2 h 99.5 91 44.2 91
2-CP, 0.20 5%Pd@CeO2 (0.1 g·L-1), 2 Pt sheets as cathode and anode, Fe2+ (0.05 mM), pH 3.0, current density (J) of 25 mA·cm-2, 1 h 100 100 70.33 87
5%Pd@CeO2 (0.1 g·L-1), 2 Pt sheets as cathode and anode, pH 3.0, J = 25 mA·cm-2, 1 h 92.0 - 33.45 87
2 Pt sheets as cathode and anode, Fe2+ (0.05 mM), pH 3, J = 25 mA·cm-2, 1 h 88.9 - 21.15 87
3-CP 0.39 PdFe alloy-embedded carbon aerogels (PdFe/CA) as the cathode, graphite sheet as the anode, N2 (300 mL·min-1), pH 5, current (I) of 20 mA, E = 2.5-3.0 V, 6 h - 56 48 84
0.20 PdFe/CA cathode, graphite sheet as the anode, O2, pH 5, I = 20 mA, E = 2.5-3.0 V, 6 h 100 100 100 84
0.16 FeCuSA-NPC cathode, Pt sheet as the anode, pH 5.0, E= -0.6 V, 1.5 h 100 - 90 (4 h) 85
5%Pd@CeO2 (0.1 g·L-1), 2 Pt sheets as cathode and anode, Fe2+ (0.05 mmol·L-1),pH 3.0, J = 25 mA·cm-2, 1 h 100 100 69.3 (6 h) 87
5%Pd@CeO2 (0.1 g·L-1), 2 Pt sheets as cathode and anode, pH 3.0, J = 25 mA·cm-2, 1 h 75.6 - 32.3 (6 h) 87
2 Pt sheets as cathode and anode, Fe2+ (0.05 mmol·L-1), pH 3.0, J = 25 mA·cm-2, 1 h 60.5 - 22.4 (6 h) 87
4-CP - Red: 0.5%Pd-0.5%Fe/C(1.25 g·L-1), NaOH (1.1 eqiv), H2 (10 mL·L-1), 1 h 100 100 - 78
After 1 h at Red, stop H2-purging, adjust solution pH to 5, add (10%), and react for another 1 h 100 100 - 78
0.16 FeCuSA-NPC cathode, Pt sheet as the anode, pH 5.0, E = -0.6 V, 1.5 h 100 100 92 (4 h) 85
FeCuSA-NPC cathode, Pt sheet as the anode, pH 5.0, O2, E = -0.6 V, 1.5 h 95 - 41 85
0.20 5%Pd@CeO2 (0.1 g·L-1), 2 Pt sheets as cathode and anode, Fe2+ (0.05 mmol·L-1), pH 3.0, J = 25 mA·cm-2, 6 h 100 100 71.7 87
5%Pd@CeO2 (0.1 g·L-1), 2 Pt sheets as cathode and anode, pH 3.0, J = 25 mA·cm-2, 6 h 83.1 - 34.5 87
2 Pt sheets as cathode and anode, Fe2+ (0.05 mmol·L-1), pH 3, J = 25 mA·cm-2, 6 h 78.2 - 20.6 87
CuxO@Pd photocathode, TiO2 NR/FTO photoanode, E = 0.3 V, xenon lamp irradiation, 2 h 99.8 90.5 46.2 91
p-chloroaniline, 0.039 CuxO@Pd photocathode, TiO2 NR/FTO photoanode, E = 0.3 V, xenon lamp irradiation, 2 h 99.8 98.7 59.2 91
BDE209 0.010 Fe0@Fe3O4 (10 g·L-1), pH 7.1, ultrasonic (US) irradiation, 36 h 80 11.9 - 73
Fe0@Fe3O4 (10 g·L-1), pH 7.1, US, 1.5 h; afterthat, add H2O2, US, 48 h 25 - - 73
Fe0@Fe3O4 (10 g·L-1), pH 7.1, US, 36 h; afterthat, add H2O2, US, 48 h 85 13.8 - 73
0.29 g Fe0 (0.16 g), ball-to-sample mass ratio (mb/ms) of 185:1, 400 rpm, 2 h 24.0 - - 98
Bi2O3 (0.68 g), mb/ms = 185:1, 400 rpm, 2 h 66.0 - - 98
Fe0 (0.16 g), Bi2O3 (0.68 g), mb/ms = 185:1, 400 rpm,
2 h
96.6 - - 98
BDE47 0.010 Red: Fe/Ag (1g·L-1), no pH adjustment (≈7), US, 2 h 100 95 - 75
Ox: Fe/Ag (1g·L-1), pH 3, add H2O2 (4 mg·L-1 for each time) at 0, 1, 2, 3, 4, 6, 8, 10, 15 and 20 min, total reation time (ttol) of 30 min 10 - - 75
Red-Ox 100 100 100 75
0.010 Red: Zn0 (0.3 g·L-1), cetyltrimethylammonium chloride (CTAB, 0.05 g·L-1), pH 4, N2, 2 h 98.6 40.2 - 79
After 2 h reaction at Red, adjust solution pH to 3,and then add both H2O2 (30, 30 and 10 mg·L-1) and Fe2+ (15, 15 and 5 mg·L-1) at 0, 20 and 90 min, ttol in the seconde stage of 2 h 100 88.6 - 79
0.010 rGO/TiO2 (0.1 g·L-1), Ar-saturated CH3CN-H2O (v/v/, 1∶1), CH3OH (0.25 mol·L-1), xenon lamp irradiation, 14 h 100 25 - 72
rGO/TiO2 (0.1 g·L-1), air-saturated H2O, xenon lamp irradiation, 14 h 54.3 43.8 - 72
rGO/TiO2 (0.1 g·L-1), air-saturated H2O, CH3OH (0.12 mmol·L-1), xenon lamp irradiation, 14 h 100 100 - 72
TBBPA 0.009 Red: Fe/Ag (0.8 g·L-1), no pH adjustment (≈7), US, 70 min 100 >98 - 76
Ox: Fe-Ag (0.8 g·L-1), pH 3, US, add H2O2 (2 mg·L-1 min-1) at 10 min, further react for 20 min 40 - - 76
Red-Ox 100 100% 99.2 76
0.018 Red: MoS2/SnIn4S8 (0.5 g·L-1), pH 7, N2 (10 mL·min-1), visible light irradiation, 6 h 100 93.1 0 81
Ox: MoS2/SnIn4S8 (0.5 g·L-1), pH 12, O2 (10 mL·min-1), visible light irradiation, 6 h 93.4 - 21.3 81
Red-Ox 100 93.1 60.2 81
0.10 Red: TiO2 (0.6 g·L-1), CH3OH (0.5 mmol·L-1), pH 12, N2, Hg lamp (365~366 nm) irradiation, 4 h 90 90 - 80
Ox: TiO2 (0.6 g·L-1), CH3OH (0.5 mmol·L-1), pH 12, N2, Hg lamp (365~366 nm) irradiation, 4 h 70 60 - 80
Red (2 h)-Ox (2 h) 92 40 - 80
0.037 Red: Pd-Fe nanoparticles modified Ni foam (Pd/Fe@Ni) as cathode, graphite anode, pH 3, J = 0.083 mA·cm-2, N2 (1.5 L·min-1), 1 h 100 89 - 82
Ox: Pd/Fe@Ni cathode, graphite anode, pH 3, J = 0.083 mA·cm-2, O2 (1.5 L·min-1), 1 h 83 43 - 82
Red (0.5 h)-Ox (0.5 h) 100 80 - 82
2,4,6-TBP,0.10 AgPd nanoparticles supported on β-cyclodextrin polymers (AgPd@CDs; 0.5 g·L-1), H2O2 (5 mmol·L-1), pH 7.0, 1.5 h 11.9 - - 86
Ti sheet as cathode, RuO2/Ti sheet as anode, J = 5.0 mA·cm-2, pH 7.0, 1.5 h 21.2 - - 86
Ti sheet as cathode, RuO2/Ti sheet as anode, CDs (0.5 g·L-1), pH 7.0, 1.5 h 45.0 0 45.0 86
Ti sheet as cathode, RuO2/Ti sheet as anode, AgPd@CDs (0.5 g·L-1), pH 7.0, J = 5.0 mA·cm-2, 1.5 h 100 73 73 86
4-BP,0.58 two cathode chambers (C) and one anode (A) chamber, bimetallic Pd-Fe nanoparticles loaded graphene (Pd/Fe@Gr) as cathodes, Ti/IrO2/RuO2 anode, pH 7.0, J = 25 mA·cm-2, H2 (0.5 h)-air (5 h) 100 (C)
99.5 (A)
82.5 (C)
89.1 (A)
94.9 (C)
93.4 (A)
83
图4 rGO/TiO2光催化还原(Red)、氧化(Ox)及还原-氧化(Red-Ox)联用降解BDE47的脱溴率变化[72]
Fig.4 Photocatalytic debromination of BDE47 over rGO/TiO2 via different pathways including reduction (Red), oxidation (Ox) or consecutive reduction and oxidation (Red-Ox)[72]
图5 Fe、Cu双金属单原子催化剂负载的氮掺杂多孔碳(FeCuSA-NPC)阴极和Pt片阳极介导的电化学还原-氧化降解4-氯酚的机理示意图[85]
Fig.5 A schematic representation for synchronous reduction-oxidation of 4-chlorophenol using a bifunctional Fe/Cu bimetallic single-atom catalyst anchored on N-doped porous carbon (FeCuSA-NPC) as anode and Pt sheet as cathode[85]
图6 双光电极体系光电化学还原-氧化联用降解对氯苯胺的反应示意图[91]
Fig.6 A schematic representation for synergetic photoelectrocatalytic (PEC) reduction-oxidation of p-chloroaniline using dual photo-electrodes[91]
[1]
Fujii S, Polprasert C, Tanaka S, Hong Lien N P, Qiu Y. J. Water Supply Res. Technol. Aqua, 2007, 56(5): 313.
[2]
Wu Z H, Li R X, Zhang Y F, Zhu L Y. J. Hazard. Mater., 2021, 420: 126675.
[3]
Zhou J, Li S J, Liang X X, Feng X M, Wang T C, Li Z, Zhu L Y. J. Hazard. Mater., 2021, 404: 124134.
[4]
Shan G Q, Xiang Q, Feng X M, Wu W, Yang L P, Zhu L Y. Sci. Total. Environ., 2021, 781: 146747.
[5]
Shan G Q, Qian X, Chen X, Feng X M, Cai M H, Yang L P, Chen M, Zhu L Y, Zhang S F. J. Hazard. Mater., 2021, 411: 125049.
[6]
Chen M, Zhu L Y, Wang Q, Shan G Q. Environ. Pollut., 2021, 268: 115887.
[7]
Buxton G V, Greenstock C L, Helman W P, Ross A B, Phys. Chem. Ref. Data, 1988, 17: 513.
[8]
Xu Y, Schoonen M A A. Am. Mineral., 2000, 85: 543.
[9]
Yang S Y, Zhang Y T, Zheng D. Progress in Chemistry, 2016, 28: 934.
(杨世迎, 张宜涛, 郑迪. 化学进展, 2016, 28: 934.).

doi: 10.7536/PC151121    
[10]
Tang H Q, Xiang Q Q, Lei M, Yan J C, Zhu L H, Zou J. Chem. Eng. J., 2012, 184: 156.
[11]
Liu Y, Chen S, Quan X, Yu H, Zhao H, Zhang Y. Environ. Sci. Technol., 2015, 49 (22), 13528.
[12]
Li S, Zhang G, Zhang W, Zheng H, Zhu W, Sun N, Zheng Y, Wang P, Chem. Eng. J., 2017, 326, 756.
[13]
Liu C S, Higgins C P, Wang F, Shih K. Sep. Purif. Technol., 2012, 91: 46.
[14]
Song Z, Tang H Q, Wang N, Wang X B, Zhu L H. Adv. Environ. Res., 2014, 3(3): 185.
[15]
Guo L, Yuan Y J, Feng L Z, Zhang Z, Gong J M. Acta Sci Circum, 2020, 40(06): 2045.
(郭丽, 袁颐进, 冯丽贞, 张哲, 龚静鸣. 环境科学学报, 2020, 40(06): 2045.).
[16]
Wang N, Lv H Q, Zhou Y Q, Zhu L H, Hu Y, Majima T, Tang H Q. Environ. Sci. Technol., 2019, 53(14): 8302.

doi: 10.1021/acs.est.9b00486     pmid: 31149813
[17]
Wu Y Y, Hu Y X, Han M Q, Ouyang Y M, Xia L C, Huang X F, Hu Z F, Li C H. Chem. Eng. J., 2021, 425: 130672.
[18]
Yang Y Q, Ji W Q, Li X Y, Zheng Z H, Bi F K, Yang M H, Xu J C, Zhang X D. Chem. Eng. J., 2021, 420: 129934.
[19]
Maria J R, Paula R, Beatriz G R, Ane U, Inmaculada O. Sep. Purif. Technol., 2020, 240: 116637.
[20]
Zhan Y H, Qin Y X, Chen B L, Zhou Z, Cao H M, Liang Y. Environ. Chem., 2022(1): 46.
(詹宇航, 秦雅鑫, 陈博磊, 周珍, 曹慧明, 梁勇. 环境化学, 2022(1): 46.).
[21]
Panchangam S C, Lin A Y C, Shaik K L, Lin C F. Chemosphere, 2009, 77(2): 242.

doi: 10.1016/j.chemosphere.2009.07.003     pmid: 19665756
[22]
Li X Y, Zhang P Y, Jin L, Shao T, Li Z M, Cao J J. Environ. Sci. Technol., 2012, 46(10): 5528.
[23]
Song Z, Dong X L, Wang N, Zhu L H, Luo Z H, Fang J D, Xiong C H. Chem. Eng. J., 2017, 317: 925.
[24]
Song Z, Dong X L, Fang J D, Xiong C H, Wang N, Tang X M. J. Hazard. Mater., 2019, 377: 371.
[25]
Wang J Z, Cao C S, Zhang Y, Zhang Y Q, Zhu L Y. Appl. Catal. B Environ., 2021, 286: 119911.
[26]
Yuan Y, Feng L, He X, Liu X, Xie N, Ai Z, Zhang L, Gong J. J. Hazard. Mater., 2022, 432: 127176.
[27]
Niu J F, Wang C, Shang E X. Sci. Sin. Technol., 2017, 47(12): 1233.
(牛军峰, 王冲, 商恩香. 中国科学: 技术科学, 2017, 47(12): 1233.).
[28]
Lin H, Niu J F, Ding S Y, Zhang L L. Water Res., 2012, 46(7): 2281.
[29]
Niu J F, Lin H, Gong C, Sun X M. Environ. Sci. Technol., 2013, 47(24): 14341.
[30]
Ma Q C, Liu L, Cui W, Zhao J, Ma Q. RSC Adv., 2015, 5: 84856.
[31]
Zhong C, Wei K, Han W, Wang L, Sun X, Li J. J. Electroanal. Chem., 2013, 705: 68.
[32]
Niu J F, Lin H, Xu J L, Wu H, Li Y Y. Environ. Sci. Technol., 2012, 46(18): 10191.
[33]
Lin H, Niu J F, Xu J L, Huang H O, Li D, Yue Z H, Feng C H. Environ. Sci. Technol., 2013, 47(22): 13039.
[34]
García-Gómez C, Drogui P, Zaviska F, Seyhi B, Gortáres-Moroyoqui P, Buelna G, Neira-Sáenz C, Estrada-alvarado M, Ulloa-Mercado R G. J. Electroanal. Chem., 2014, 732: 1.
[35]
Hori H, Nagaoka Y, Yamamoto A, Sano T, Yamashita N, Taniyasu S, Kutsuna S, Osaka I, Arakawa R. Environ. Sci. Technol., 2006, 40(3): 1049.
[36]
Cao H M, Zhang W L, Wang C P, Liang Y N, Sun H W. Chemosphere, 2022, 292: 133436.
[37]
Liu G, Feng C, Shao P. Environ. Sci. Technol., 2021,.
[38]
Shirom M, Stein G. J. Chem. Phys., 1971, 55: 3372.
[39]
Ma X J, Zhou Y M, Gu S Q, Mei S, Zhu G Y, Yu M, Wu Y Q, Ping Y H, Hong K, Zhang J, Mao P, Wu Z Y. Chemosphere, 2022, 287: 132228.
[40]
Song Z, Tang H Q, Wang N, Zhu L H. J. Hazard. Mater., 2013, 262: 332.
[41]
Qu Y, Zhang C, Li F, Chen J, Zhou Q. Water Res., 2010, 44: 2939.
[42]
Bentel M J, Yu Y C, Xu L H, Li Z, Wong B M, Men Y J, Liu J Y. Environ. Sci. Technol., 2019, 53(7): 3718.
[43]
Park H, Vecitis C D, Cheng J, Choi W, Mader B T, Hoffmann M R. J. Phys. Chem. A, 2009, 113: 690.
[44]
Lim J, Yang Y, Hoffmann M R. Environ. Sci. Technol., 2019, 53: 6972.
[45]
Fukushima M, Tatsumi K. Environ. Sci. Technol., 2001, 35(9) : 1771.
[46]
Vallejo M, San Román M F, Ortiz I. Environ. Sci. Technol., 2013, 47(21): 12400.

doi: 10.1021/es403246g     pmid: 24099517
[47]
Shen X T, Zhu L H, Liu G X, Tang H Q, Liu S S, Li W Y. New J. Chem., 2009, 33(11): 2278.
[48]
Huang A Z, Wang N, Lei M, Zhu L H, Zhang Y Y, Lin Z F, Yin D Q, Tang H Q. Environ. Sci. Technol., 2013, 47(1): 518.
[49]
Huang A Z, Zhang Z M, Wang N, Zhu L H, Zou J. J. Hazard. Mater., 2016, 302: 158.
[50]
Xue N D, Chen X Y, Liu H B. Chin. J. Environ. Eng., 2016, 10(5): 2157.
(薛南冬, 陈宣宇, 刘寒冰. 环境工程学报, 2016, 10(5): 2157.)
[51]
Keum Y S, Li Q X. Environ. Sci. Technol., 2005, 39(7): 2280.
[52]
Yu K, Gu C, Boyd S A, Liu C, Sun C, Teppen B J, Li H. Environ. Sci. Technol., 2012, 46(16): 8969.
[53]
Li A, Tai C, Zhao Z S, Wang Y W, Zhang Q H, Jiang G B, Hu J T. Environ. Sci. Technol., 2007, 41(19): 6841.
[54]
Fu R B, Xu Z, Peng L, Bi D S. Environ. Sci. Pollut. Res., 2016, 23: 23983.
[55]
Liang D W, Yang Y H, Xu W W, Peng S K, Lu S F, Xiang Y. J. Hazard. Mater., 2014, 278: 592.
[56]
Zhuang Y, Jin L T, Luthy R G. Chemosphere, 2012, 89(4): 426.

doi: 10.1016/j.chemosphere.2012.05.078     pmid: 22732301
[57]
Wang R, Lu G N, Lin H Z, Huang K B, Tang T, Xue X L, Yang X J, Yin H, Dang Z. Environ. Pollut., 2017, 222: 331.

doi: S0269-7491(16)31229-5     pmid: 28034557
[58]
Luo S, Yang S G, Sun C, Gu J D. Sci. Total. Environ., 2012, 429: 300.
[59]
Wang R, Tang T, Lu G N, Zheng Z Q, Huang K B, Li H F, Tao X Q, Yin H, Shi Z Q, Lin Z, Wu F C, Dang Z. Sci. Total. Environ., 2019, 661: 18.

doi: 10.1016/j.scitotenv.2019.01.166    
[60]
Zhao Y K, Wang Y Y, Ji H W, Ma W H, Chen C C, Zhao J C. Prog. Chem., 2017, 29(9): 911.
(赵玉坤, 汪园园, 籍宏伟, 马万红, 陈春城, 赵进才. 化学进展, 2017, 29(9): 911.).

doi: 10.7536/PC170510    
[61]
Sun C Y, Zhao D, Chen C C, Ma W H, Zhao J C. Environ. Sci. Technol., 2009, 43(1): 157.
[62]
Lei M, Wang N, Zhu L H, Xie C S, Tang H Q. Chem. Eng. J., 2014, 241: 207.
[63]
Lei M, Wang N, Zhu L H, Tang H Q. Chemosphere, 2016, 150: 536.
[64]
Lei M, Wang N, Zhu L H, Zhou Q L, Nie G, Tang H Q. Appl. Catal. B Environ., 2016, 182: 414.
[65]
Li L, Chang W, Wang Y. Chem. Eur. J., 2014, 20: 11163.
[66]
Wang R, Tang T, Wei Y C, Dang D, Huang K B, Chen X W, Yin H, Tao X Q, Lin Z, Dang Z, Lu G N. Environ. Int., 2019, 127: 5.

doi: S0160-4120(18)32753-3     pmid: 30889398
[67]
Guo S, Zhu L H, Majima T, Lei M, Tang H Q. Environ. Sci. Technol., 2019, 53(8): 4433.
[68]
Bonin P M L, Edwards P, Bejan D, Lo C C, Bunce N J, Konstantinov A D. Chemosphere, 2005, 58(7): 961.
[69]
Konstantinov A, Bejan D, Bunce N J, Chittim B, McCrindle R, Potter D, Tashiro C. Chemosphere, 2008, 72(8): 1159.

doi: 10.1016/j.chemosphere.2008.03.046     pmid: 18472139
[70]
Peverly A A, Pasciak E M, Strawsine L M, Wagoner E R, Peters D G. J. Electroanal. Chem., 2013, 704: 227.
[71]
Su J Y, Lu N, Zhao J J, Yu H T, Huang H, Dong X L, Quan X. J. Hazard. Mater., 2012, 231/232: 105.
[72]
Lei M, Wang N, Guo S, Zhu L, Ding Y, Tang H. Chem. Eng. J., 2018, 345: 586.
[73]
Tan L, Lu S Y, Fang Z Q, Cheng W, Tsang E P. Appl. Catal. B Environ., 2017, 200: 200.
[74]
Moradi M, Eslami A. J. Water Process. Eng., 2020, 36: 101288.
[75]
Luo S, Yang S, Xue Y, Liang F, Sun C. J. Hazard. Mater., 2011, 192: 1795.

doi: 10.1016/j.jhazmat.2011.07.015     pmid: 21807460
[76]
Luo S, Yang S G, Sun C, Wang X D. Water Res., 2011, 45(4): 1519.

doi: 10.1016/j.watres.2010.10.039     pmid: 21190709
[77]
Yalfani M S, Georgi A, Contreras S, Medina F, Kopinke F D. Appl. Catal. B Environ., 2011, 104(1/2): 161.
[78]
Wu W, Yu J W, Liu S J, Liu Y, Ma X X, Xia C H. Environ Chem, 2018, 37: 2522.
(武雯, 于嘉文, 刘苏静, 刘莺, 马宣宣, 夏传海. 环境化学, 2018, 37: 2522.).
[79]
Wei L Y, Zhou B, Xiao K, Yang B, Yu G, Li J Y, Zhu C Z, Zhang J M, Duan H B. J. Hazard. Mater., 2020, 385: 121551.
[80]
Guo Y G, Lou X Y, Xiao D X, Xu L, Wang Z H, Liu J S. J. Hazard. Mater., 2012, 241/242: 301.
[81]
Weng R G, Tian F, Yu Z D, Ma J C, Lv Y C, Xi B D. Chemosphere, 2021, 285: 131542.
[82]
Hou Y P, Peng Z B, Wang L, Yu Z B, Huang L R, Sun L F, Huang J. J. Hazard. Mater., 2018, 343: 376.
[83]
Xu D D, Song X Z, Qi W Z, Wang H, Bian Z Y. Chem. Eng. J., 2018, 333: 477.
[84]
Shen X Q, Xiao F, Zhao H Y, Chen Y, Fang C, Xiao R, Chu W H, Zhao G H. Environ. Sci. Technol., 2020, 54(7): 4564.
[85]
Zhao K, Quan X, Su Y, Qin X, Chen S, Yu H T. Environ. Sci. Technol., 2021, 55(20): 14194.

doi: 10.1021/acs.est.1c04943     pmid: 34618424
[86]
Guo P C, Yang C W, Chu Z Q, Zhang X, Sheng G P. Appl. Catal. B Environ., 2021, 297: 120467.
[87]
Xie W J, Song C C, Ren W, Zhang J Y, Chen L, Sun J. Chemosphere, 2021, 274: 129654.
[88]
Zhang J, Ji Q H, Lan H C, Zhang G, Liu H J, Qu J H. Environ. Sci. Technol., 2019, 53(24): 14586.

doi: 10.1021/acs.est.9b05389     pmid: 31762267
[89]
Zhang L Q, Wang Y B, Su P D, Mao R, Zhao J L. J. Clean. Prod., 2021, 298: 126808.
[90]
Li K J, Yang Y, Bacha A U R, Feng Y Q, Ajmal S, Nabi I, Zhang L W. Chem. Eng. J., 2019, 378: 122191.
[91]
Zhang J, Zhang G, Lan H C, Qu J H, Liu H J. Environ. Sci. Technol., 2021, 55(5): 3296.

doi: 10.1021/acs.est.0c07271     pmid: 33544573
[92]
Sui H, Rong Y Z, Song J, Zhang D G, Li H B, Wu P, Shen Y Y, Huang Y J. J. Hazard. Mater., 2018, 342: 201.
[93]
Wang H, Huang J, Zhang K, Yu Y, Liu K, Yu G, Deng S, Wang B. J. Hazard. Mater., 2014, 264: 230.
[94]
Zhang Q W, Matsumoto H, Saito F, Baron M. Chemosphere, 2002, 48(8): 787.

pmid: 12222772
[95]
Lv H Q, Wang N, Zhu L H, Zhou Y Q, Li W J, Tang H Q. Green Chem., 2018, 20(11): 2526.
[96]
Zhang K L, Huang J, Yu G, Zhang Q W, Deng S B, Wang B. Environ. Sci. Technol., 2013, 47(12): 6471.
[97]
Yan X, Liu X T, Qi C D, Wang D L, Lin C Y. RSC Adv., 2015, 5(104): 85785.
[98]
Zhang Z, Wang N, Zhu L, Lv H, Dong X, Chai H, Tang H. J. Environ. Chem. Eng., 2017, 5: 915.
[99]
Liu Z K, Bentel M J, Yu Y C, Ren C X, Gao J Y, Pulikkal V F, Sun M, Men Y J, Liu J Y. Environ. Sci. Technol., 2021, 55(10): 7052.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[3] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[6] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[7] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[8] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[9] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[10] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[11] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[12] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[13] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[14] 吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.
[15] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.