English
新闻公告
More
化学进展 2022, Vol. 34 Issue (12): 2700-2714 DOI: 10.7536/220501 前一篇   后一篇

• 综述 •

MOFs基材料高级氧化除菌

楚弘宇1,2, 王天予1,2, 王崇臣1,2,*()   

  1. 1 北京建筑大学建筑结构与环境修复功能材料北京市重点实验室 北京 100044
    2 北京建筑大学城市雨水系统与水环境教育部重点实验室 北京 100044
  • 收稿日期:2022-05-02 修回日期:2022-06-04 出版日期:2022-12-24 发布日期:2022-06-25
  • 通讯作者: 王崇臣
  • 作者简介:

    王崇臣 教授、博士、博士生导师,建筑结构与环境修复功能材料北京市重点实验室主任。研究领域为环境功能材料。入选北京市百千万人才、北京市高创计划百千万领军人才、长城学者和北京市高校青年教学名师奖。主持国家自然科学基金、北京自然科学基金、北京社科基金等项目10余项。发表代表性论文100余篇,其中16篇ESI高被引论文和5篇热点论文。担任Environmental Functional Materials、Chinese Chemical Letters、工业水处理、Chinese Journal of Structural Chemistry、环境化学、北京建筑大学学报等期刊副主编、编委。

  • 基金资助:
    国家自然科学基金(22176012); 北京市自然科学基金(8202016)

Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials

Hongyu Chu1,2, Tianyu Wang1,2, Chong-Chen Wang1,2()   

  1. 1 Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture,Beijing 100044, China
    2 Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture,Beijing 100044, China
  • Received:2022-05-02 Revised:2022-06-04 Online:2022-12-24 Published:2022-06-25
  • Contact: Chong-Chen Wang
  • Supported by:
    National Natural Science Foundation of China(22176012); Beijing Natural Science Foundation(8202016)

环境中的病原微生物对人类的健康造成了较大的威胁,传统抗菌剂不足以满足当今人类的需求,因此开发新型高效抗菌剂是目前重要的研究领域。由于具有较大的孔隙度、丰富的表面电荷、周期性分散的金属团簇和活性位点,金属有机框架(MOFs)基材料不仅能够通过可控地缓释金属离子实现除菌,还能通过光催化、活化过硫酸盐、类Fenton反应、电催化等高级氧化过程对细菌产生高效杀灭效果。本文系统总结了具有高级氧化除菌性能的MOFs材料及其复合物、衍生物和宏观器件的研究进展,对MOFs基材料的设计理念、抗菌性能和机理进行了讨论。最后提出了MOFs基材料在除菌领域所面对的挑战,并对其应用前景进行了展望。

The pathogenic bacteria have exerted great threat to the safety of human being. Conventional antibacterial agents like antibiotics suffer from some limitations against drug-resistant bacteria. Thus, it is imperative to design novel antibacterial agents for efficient bacteria removal. Due to the tunable pores, abundant surface charge, periodically dispersed metal clusters and rich active sites, metal-organic frameworks (MOFs) can efficiently remove bacteria not only via the slowly released metal ions, but also via the corresponding advanced oxidation processes (AOPs) including photocatalysis, persulfate activation, Fenton-like reaction and photo-electrocatalysis. This review summarizes recent progress of antibacterial performances over MOFs-based AOPs catalysts (pristine MOFs, MOFs composites, MOFs derivatives and MOFs monoliths), in which the design strategies, antibacterial properties and antibacterial mechanisms are discussed. Finally, the challenges and the potential applications of MOFs-based catalysts are proposed.

Contents

1 Introduction

2 MOFs-based AOPs catalysts for bacteria removal

2.1 Pristine MOFs

2.2 Photosensitized MOFs

2.3 MOFs photo-electrodes

2.4 MOFs heterojunctions

2.5 MOFs derivatives

2.6 MOFs monoliths

3 Conclusions and outlooks

()
图1 (a) 超薄Cu-TCPP(BA)-MOF的除菌机理[49];(b) Zn50Co50-ZIF的合成路线[47];(c) PCN-224(Zr/Ti)的除菌机理和在伤口愈合治疗方面的应用[54];(d) PCN-224-Zn的ROS产生机制[55]
Fig. 1 (a) Illustration of antibacterial mechanism of the ultrathin Cu-TCPP(BA)-MOF[49] (Copyright 2022, Elsevier); (b) The synthetic process of Zn50Co50-ZIF[47] (Copyright 2019, Springer Nature); (c) Illustration of the enhanced bactericidal mechanism over PCN-224(Zr/Ti) and the application of PCN-224(Zr/Ti) for wound healing[54] (Copyright 2020, John Wiley and Sons); (d) Illustration of the proposed ROS production mechanisms over PCN-224-Zn[55] (Copyright 2022, Elsevier)
图2 (a) 聚多巴胺(PDA)修饰的卟啉MOF的除菌机理[57];(b) 二氢卟酚e6修饰的ZIF-8的制备途径及光诱导除菌机理[58]
Fig. 2 (a) Schematic illustration of the disinfection mechanism of Polydopamine (PDA)-modified MOF-PDA[57] (Copyright 2021, Elsevier); (b) Schematic illustration of fabrication and photo-inspired disinfection of Chlorin e6-modified ZIF-8[58] (Copyright 2020, Elsevier)
图3 太阳光驱动的Zr-NDC-2NH2光电催化体系的除菌机理[61]
Fig. 3 The solar-driven photo-electrocatalytic antibacterial mechanism over Zr-NDC-2NH2 [61] (Copyright 2022, Elsevier)
图4 构建MOF异质结的主要策略(MOF以A表示,MOFs的前驱体以A’表示,其他材料以B/C表示,其他材料的前驱体以B’/C’表示)
Fig. 4 The construction strategies for MOFs-based heterojunctions (MOF is represented by A, the precursor of MOFs is represented by A’, other materials are represented by B or C, and the precursor of other materials is represented by B’ or C’)
图5 (a) Ag/Ag3PO4-IRMOF-1异质结的可见光催化除菌机理[68];(b) MIL-88B @COF-200 @10%PANI三元复合物异质结在可见光下的ROS生成和除菌机制[72];(c) Ag-ZIF-67@GO纳米复合物异质结与PMS在可见光下的对大肠杆菌的去除机理[74]
Fig. 5 (a) Photoinduced antibacterial mechanisms of Ag/Ag3PO4-IRMOF-1 under visible light[68] (Copyright 2020, John Wiley and Sons); (b) Possible mechanisms of ROS generation and sterilization process over MIL-88B@COF-200@10%PANI under visible light[72] (Copyright 2021, Elsevier); (c) Proposed mechanisms of E. coli removal over Ag/ZIF-67@GO and PMS under visible light[74] (Copyright 2021, Elsevier)
图6 (a) PB/PCN-224异质结在660 nm光照下ROS和光热效应对细菌的协同作用[79];(b) PB@TCPP@UiO-66异质结的核壳结构、除菌过程和光催化机理[80];(c) Zn0.05TiOxNy@SCN和Zn0.05TiOxNy@MOF-5异质结的光生载流子迁移/分离的机制[82];(d) MnO2/ZIF-8异质结在太阳光下对大肠杆菌的去除机理[85];(e) ZIF-8@Zn-MoS2异质结在660 nm光照下的除菌机理[87]
Fig. 6 (a) The ROS generation process and photothermal effects against bacteria over PB-PCN-224 under 660 nm light[79] (Copyright 2021, Elsevier); (b) The core-shell structure, the bacteria killing processes, and rational photocatalytic mechanism for PB@TCPP@UiO-66[80] (Copyright 2019, American Chemical Society); (c) The photogenerated charges transfer/separation mechanisms over Zn0.05TiOxNy@SCN/Zn0.05TiOxNy@MOF-5[82] (Copyright 2020, Elsevier); (d) The plausible mechanism of MnO2/ZIF-8 against E. coli under solar light[85] (Copyright 2021, Elsevier); (e) The antibacterial mechanism of ZIF-8@Zn-MoS2 heterojunction under 660 nm light[87] (Copyright 2022, Elsevier)
表1 MOFs基异质结用于高级氧化(AOPs)除菌性能
Table 1 AOPs disinfection over different MOFs heterojunctions
图7 (a) Ag/ZnO@C中空颗粒对大肠杆菌的去除机理[89];(b) Ag-ZnO-C毛虫状材料及其膜材料的光催化机理[90];(c) C-Ti-MOF的TEM图[95];(d) CuS@HKUST-1在近红外光下的光热和光动力机制[97]
Fig. 7 (a) Mechanism for the enhanced E. coli inactivation over Ag/ZnO@C[89] (Copyright 2020, Elsevier); (b) Photocatalytic mechanisms of caterpillar-like Ag-ZnO-C and its membrane[90] (Copyright 2022, Royal Society of Chemistry); (c) The TEM image of C-Ti-MOF[95] (Copyright 2022, Elsevier); (d) Photothermal and photodynamic mechanism of CuS@HKUST-1 under NIR light[97] (Copyright 2020, Elsevier)
表2 MOFs基衍生物的AOPs除菌性能
Table 2 AOPs for disinfection over MOFs derivatives
图8 (a) PCN-224/GQD复合物的除菌机理[112];(b) CdS@MIL-101异质结膜器件中的载流子转移及防生物附着应用[91];(c) 负载MIL-100(Fe)/PANI的铁丝网的可见光催化除菌过程及机理[88];(d) UiO-66聚合物薄膜的制备方法、光生电子转移机制及除菌机制[117]
Fig. 8 (a) The disinfection mechanism of PCN-224/GQD composites[112] (Copyright 2020, Elsevier); (b) In situ anti-biofouling properties and charge transfer of CdS@MIL-101 membranes[91] (Copyright 2020, Elsevier); (c) Photocatalytic disinfection mechanisms toward Fe mesh @MIL-100(Fe)/PANI under visible light[88] (Copyright 2020, Elsevier); (d) Schematic illustration of fabrication process, photo-generated charge transfer routes, and the disinfection mechanism of UiO-66 films[117] (Copyright 2020, American Chemical Society)
图9 (a) 负载PCN-224 和Ag纳米颗粒的 KCT膜的除菌机理[118];(b) 锆基MOFs/PCL 混合基质膜的制备和除菌性能[119]
Fig. 9 (a) Plausible disinfection mechanisms of KCT containing PCN-224 and Ag-NPs[118] (Copyright 2021, Elsevier); (b) Schematic illustration for the synthesis and antimicrobial activity of zirconium-based MOFs/PCL mixed-matrix membranes[119] (Copyright 2017, American Chemical Society)
[1]
Willyard C. Nature, 2017, 543(7643): 15.
[2]
Huh A J, Kwon Y J. J. Control. Release, 2011, 156(2): 128.
[3]
Joh G, Choi Y S, Shin J, Lee J. J. Water Supply Res. T., 2011, 60(4): 219.
[4]
Tan Z K, Gong J L, Fang S Y, Li J, Cao W C, Chen Z P. Appl. Surf. Sci., 2022, 590: 153059.
[5]
Ji H D, Qi J J, Zheng M S, Dang C Y, Chen L, Huang T B, Liu W. Prog. Chem., 2022, 34(01): 207.
(冀豪栋, 齐娟娟, 郑茂盛, 党晨原, 陈龙, 黄韬博, 刘文. 化学进展, 2022, 34(01): 207.).
[6]
Qi Y, Ren S S, Che Y, Ye J W, Ning G L. Acta Chim. Sin., 2020, 78(07): 613.
(齐野, 任双颂, 车颖, 叶俊伟, 宁桂玲. 化学学报, 2020, 78(07): 613.).
[7]
Chai Z Z, Tian Q Z, Ye J W, Zhang S Q, Wang G Y, Qi Y, Che Y, Ning G L. J. Mater. Sci., 2020, 55(10): 4408.
[8]
Ye J W, Cheng H, Li H, Yang Y Y, Zhang S Q, Rauf A, Zhao Q, Ning G L. J. Colloid Interface Sci., 2017, 504: 448.
[9]
Li R, Chen T T, Pan X L. ACS Nano, 2021, 15(3): 3808.
[10]
Li M H, Liu Y B, Li F, Shen C S, Kaneti Y V, Yamauchi Y, Yuliarto B, Chen B, Wang C C. Environ. Sci. Technol., 2021: 55(19):13209.
[11]
Gao J K, Huang Q, Wu Y H, Lan Y Q, Chen B L. Adv. Energy Sustain. Res., 2021, 2(8): 2100033.
[12]
Li X, Wang B, Cao Y H, Zhao S, Wang H, Feng X, Zhou J W, Ma X J. ACS Sustainable Chem. Eng., 2019, 7(5): 4548.
[13]
Wang R D, He L C, Zhu R R, Jia M X, Zhou S H, Tang J S, Zhang W Q, Du L, Zhao Q H. J. Hazard. Mater., 2022, 427: 127852.
[14]
Du X D, Wang C C, Liu J G, Zhao X D, Zhong J, Li Y X, Li J, Wang P. J. Colloid Interface Sci., 2017, 506: 437.
[15]
Li J J, Wang C C, Fu H F, Cui J R, Xu P, Guo J, Li J R. Dalton Trans., 2017, 46(31): 10197.
[16]
Jing H P, Wang C C, Zhang Y W, Wang P, Li R. RSC Adv., 2014, 4(97): 54454.
[17]
Wang F X, Yi X H, Wang C C, Deng J G. Chin. J. Catal., 2017, 38(12): 2141.
[18]
Hou S L, Dong J, Jiang X L, Jiao Z H, Zhao B. Angew. Chem. Int. Ed., 2019, 58(2): 577.
[19]
Liu J L, Zhu D D, Guo C X, Vasileff A, Qiao S Z. Adv. Energy Mater., 2017, 7(23): 1700518.
[20]
Wang C Y, Fu H F, Wang P, Wang C C. Appl. Organomet. Chem., 2019, 33(8): e5021.
[21]
Wang C Y, Yu B Y, Fu H F, Wang P, Wang C C. Polyhedron, 2019, 159: 298.
[22]
Wang C Y, Ma L S, Wang C C, Wang P, Gutierrez L, Zheng W W. Environ. Funct. Mater., 2022, 1(1): 49.
[23]
Verma G, Kumar S, Vardhan H, Ren J Y, Niu Z, Pham T, Wojtas L, Butikofer S, Echeverria Garcia J C, Chen Y S, Space B, Ma S Q. Nano Res., 2021, 14(2): 512.
[24]
Chen S J, Li X J, Duan J, Fu Y, Wang Z Y, Zhu M, Li N. Chem. Eng. J., 2021, 419: 129653.
[25]
Liu A, Wang C C, Wang C Z, Fu H F, Peng W, Cao Y L, Chu H Y, Du A F. J. Colloid Interface Sci., 2018, 512: 730.
[26]
Chu H Y, Fu H F, Liu A, Wang P, Cao Y L, Du A F, Wang C C. Polyhedron, 2020, 188: 114684.
[27]
Sheberla D, Bachman J C, Elias J S, Sun C J, Shao-Horn Y, Dincă M. Nat. Mater., 2017, 16(2): 220.

doi: 10.1038/nmat4766     pmid: 27723738
[28]
Amini S, Amiri M, Ebrahimzadeh H, Seidi S, Hejabri kandeh S. J. Food Compos. Anal., 2021, 104: 104128.
[29]
Deng Z H, Zhang W J, Zheng S R, Xu Z Y. J. Chromatogr. A, 2021, 1657: 462569.
[30]
Wyszogrodzka G, Marszałek B, Gil B, Dorożyński P. Drug Discov. Today, 2016, 21(6): 1009.
[31]
Liu A, Wang C Z, Chu C, Chu H Y, Chen X, Du A F, Mao J, Zheng W W, Wang C C. J. Environ. Chem. Eng., 2018, 6(4): 4961.
[32]
Nong W Q, Wu J, Ghiladi R A, Guan Y G. Coord. Chem. Rev., 2021, 442: 214007.
[33]
Ettlinger R, Lächelt U, Gref R, Horcajada P, Lammers T, Serre C, Couvreur P, Morris R E, Wuttke S. Chem. Soc. Rev., 2022, 51(2): 464.

doi: 10.1039/d1cs00918d     pmid: 34985082
[34]
Soltani S, Akhbari K. CrystEngComm, 2022, 24(10): 1934.
[35]
Chowdhuri A R, Das B, Kumar A, Tripathy S, Roy S, Sahu S K. Nanotechnology, 2017, 28(9): 095102.
[36]
Zhao Y, Chen L, Wang Y N, Song X Y, Li K Y, Yan X F, Yu L M, He Z Y. Nano Res., 2021, 14(12): 4417.
[37]
Li X M, Wu D H, Hua T, Lan X Q, Han S P, Cheng J H, Du K S, Hu Y Y, Chen Y C. Sci. Total. Environ., 2022, 804: 150096.
[38]
Wang C C, Wang X. Ind. Water Treat., 2020, 40(11): 1.
(王崇臣, 王恂. 工业水处理, 2020, 40(11): 1. ).
[39]
Zhao C, Li Y, Chu H Y, Pan X, Ling L, Wang P, Fu H F, Wang C C, Wang Z H. J. Hazard. Mater., 2021, 419: 126466.
[40]
Yi X H, Ma S Q, Du X D, Zhao C, Fu H F, Wang P, Wang C C. Chem. Eng. J., 2019, 375: 121944.
[41]
Wang C, Yi X H, Wang P. Appl. Catal., B., 2019, 247: 24.
[42]
Zhang W T, Huang W G, Jin J Y, Gan Y H, Zhang S J. Appl. Catal. B Environ., 2021, 292: 120197.
[43]
Wang F X, Wang C C, Du X D, Li Y, Wang F, Wang P. Chem. Eng. J., 2022, 429: 132495.
[44]
Tian A, Shi X G, Tan H C, Li B X, Ma J W, Yang H. Chin. J. Rare Met., 2021, 45(1): 41.
(田昂, 史晓国, 谭昊存, 李秉轩, 马嘉蔚, 杨合. 稀有金属, 2021, 45(1): 41.).
[45]
Liu X M, Zhang L, Wang J. J. Materiomics, 2021, 7(3): 440.
[46]
Ali Akbar Razavi S, Morsali A. Coord. Chem. Rev., 2019, 399: 213023.
[47]
Ahmed S A, Bagchi D, Katouah H A, Hasan M N, Altass H M, Pal S K. Sci. Rep., 2019, 9: 19372.
[48]
Chen H Y, Yuan X Z, Jiang L B, Wang H, Yu H B, Wang X X. Appl. Catal. B Environ., 2022, 302: 120823.
[49]
Bai Y, Nie G Z, He Y, Li C, Wang X B, Ye L Q. J. Taiwan Inst. Chem. Eng., 2022, 132: 104154.
[50]
Zhao Y W, Wang J N, Pei R J. J. Am. Chem. Soc., 2020, 142(23): 10331.
[51]
Chen L Z, Gong Q B, Chen Z. Prog. Chem., 2021(8): 1280.
(陈立忠, 龚巧彬, 陈哲. 化学进展, 2021(8): 1280.).
[52]
Zhao C, Pan X, Wang Z H, Wang C C. Chem. Eng. J., 2021, 417: 128022.
[53]
Qian X K, Ren Q B, Wu X F, Sun J, Wu H Y, Lei J. ChemistrySelect, 2018, 3(2): 657.
[54]
Chen M, Long Z, Dong R H, Wang L, Zhang J J, Li S X, Zhao X H, Hou X D, Shao H W, Jiang X Y. Small, 2020, 16(7): 1906240.
[55]
Jiang X, Liu S M, Wang W, Shi S L, Zeng Z X, Chen C. Appl. Surf. Sci., 2022, 575: 151769.
[56]
Feng J J, Zhang P P, Wang A J, Liao Q C, Xi J L, Chen J R. New J. Chem., 2012, 36(1): 148.
[57]
Han D L, Yu P L, Liu X M, Xu Y D, Wu S L. Rare Met., 2022, 41(2): 663.
[58]
Li J, Gopal A, Karaosmanoglu S, Lin J F, Munshi T, Zhang W J, Chen X F, Yan L. Colloids Surf. B Biointerfaces, 2020, 190: 110900.
[59]
Mu F H, Dai B L, Zhao W, Zhang L L, Xu J M, Guo X J. Chin. Chem. Lett., 2020, 31(7): 1773.
[60]
Deng X, Li R, Wu S K, Wang L, Hu J H, Ma J, Jiang W B, Zhang N, Zheng X S, Gao C, Wang L J, Zhang Q, Zhu J F, Xiong Y J. J. Am. Chem. Soc., 2019, 141(27): 10924.

doi: 10.1021/jacs.9b06239     pmid: 31200598
[61]
Valenzuela L, Amariei G, Ezugwu C I, Faraldos M, Bahamonde A, Mosquera M E G, Rosal R. Sep. Purif. Technol., 2022, 285: 120351.
[62]
Pan C, Mao Z, Yuan X, Zhang H J, Mei L, Ji X Y. Adv. Sci., 2022, 9(11): 2105747.
[63]
Low J, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29(20): 1601694.
[64]
Chen D D, Yi X H, Wang C C. Chin. J. Inorg. Chem., 2020, 36(10): 1805.
(陈丹丹, 衣晓虹, 王崇臣. 无机化学学报, 2020, 36(10): 1805.).
[65]
Zhou Y C, Wang P, Fu H F, Zhao C, Wang C C. Chin. Chem. Lett., 2020, 31(10): 2645.
[66]
Liu B, Lv M Y, Jiang W, Gao B H, Li Y X, Zhou S, Wang D D, Liu C B, Che G B. CrystEngComm, 2021, 23(42): 7496.
[67]
Zhou Y C, Wang C C, Wang P, Fu H F, Zhao C. Chin. J. Inorg. Chem., 2020, 36(11): 2100.
(周云彩, 王崇臣, 王鹏, 付会芬, 赵晨. 无机化学学报, 2020, 36(11): 2100.).
[68]
Naimi Joubani M, Zanjanchi M A, Sohrabnezhad S. Appl. Organomet. Chem., 2020, 34(5): e5575.
[69]
Chen D D, Yi X H, Ling L, Wang C C, Wang P. Appl. Organomet. Chem., 2020, 34(9): e5795.
[70]
Lin Y M, Li D Z, Hu J H, Xiao G C, Wang J X, Li W J, Fu X Z. J. Phys. Chem. C, 2012, 116(9): 5764.
[71]
Chen D D, Yi X H, Zhao C, Fu H F, Wang P, Wang C C. Chemosphere, 2020, 245: 125659.
[72]
Lv S W, Liu J M, Yang F E, Li C Y, Wang S. Chem. Eng. J., 2021, 409: 128269.
[73]
Wang J L, Wang S Z. Chem. Eng. J., 2018, 334: 1502.
[74]
Kohantorabi M, Giannakis S, Moussavi G, Bensimon M, Gholami M R, Pulgarin C. J. Hazard. Mater., 2021, 413: 125308.
[75]
Chen J, Ning C, Zhou Z, Yu P, Zhu Y, Tan G, Mao C. Prog. Mater. Sci., 2019, 99: 1.
[76]
Li J, Liu X M, Tan L, Cui Z D, Yang X J, Liang Y Q, Li Z Y, Zhu S L, Zheng Y F, Yeung K W K, Wang X B, Wu S L. Nat. Commun., 2019, 10: 4490.
[77]
Cheng L, Gong H, Zhu W W, Liu J J, Wang X Y, Liu G, Liu Z. Biomaterials, 2014, 35(37): 9844.
[78]
Han D L, Li Y, Liu X M, Li B, Han Y, Zheng Y F, Yeung K W K, Li C Y, Cui Z D, Liang Y Q, Li Z Y, Zhu S L, Wang X B, Wu S L. Chem. Eng. J., 2020, 396: 125194.
[79]
Luo Y, Liu X M, Tan L, Li Z Y, Yeung K W K, Zheng Y F, Cui Z D, Liang Y Q, Zhu S L, Li C Y, Wang X B, Wu S L. Chem. Eng. J., 2021, 405: 126730.
[80]
Luo Y, Li J, Liu X M, Tan L, Cui Z D, Feng X B, Yang X J, Liang Y Q, Li Z Y, Zhu S L, Zheng Y F, Yeung K W K, Yang C, Wang X B, Wu S L. ACS Cent. Sci., 2019, 5(9): 1591.
[81]
Oh W D, Lok L W, Veksha A, Giannis A, Lim T T. Chem. Eng. J., 2018, 333: 739.
[82]
Younis S A, Serp P, Nassar H N. J. Hazard. Mater., 2021, 410: 124562.
[83]
Wang S Q, Zheng H, Zhou L, Cheng F, Liu Z, Zhang H P, Zhang Q Y. Biomaterials, 2020, 260: 120314.
[84]
Fei J B, Cui Y, Yan X H, Qi W, Yang Y, Wang K W, He Q, Li J B. Adv. Mater., 2008, 20(3): 452.
[85]
Liang Z D, Wang H Q, Zhang K N, Ma G, Zhu L S, Zhou L, Yan B. Chem. Eng. J., 2022, 428: 131349.
[86]
Zhu M, Liu X M, Tan L, Cui Z D, Liang Y Q, Li Z Y, Kwok Yeung K W, Wu S L. J. Hazard. Mater., 2020, 383: 121122.
[87]
Wang C F, Luo Y, Liu X M, Cui Z D, Zheng Y F, Liang Y Q, Li Z Y, Zhu S L, Lei J, Feng X B, Wu S L. Bioact. Mater., 2022, 13: 200.
[88]
An J B, Li Y L, Chen W, Li G Q, He J H, Feng H X. Environ. Res., 2020, 191: 110067.
[89]
Niu B X, Wu D P, Wang J S, Wang L, Zhang W L. Appl. Surf. Sci., 2020, 528: 146965.
[90]
Liu Y, Wan Y C, Kong C C, Cheng P, Cheng Q, Liu Q Z, Liu K, Xia M, Guo Q H, Wang D. Environ. Sci.: Nano, 2022, 9(3): 975.
[91]
Ni L F, Zhu Y J, Ma J, Wang Y Y. Water Res., 2021, 188: 116554.
[92]
Li Y X, Han Y C, Wang C C. Chem. Eng. J., 2021, 405: 126648.
[93]
Wang F, Fu H F, Wang F X, Zhang X W, Wang P, Zhao C, Wang C C. J. Hazard. Mater., 2022, 423: 126998.
[94]
Sha L, Ji X X, Si H Y, Zhang L Q, Li C W, Wu Q, Zhao X, Chen H L. J. Chem. Technol. Biotechnol., 2021, 96(9): 2579.
[95]
Xie L, Yang H, Wu X, Wang L, Zhu B, Tang Y, Bai M, Li L, Cheng C, Ma T. Biosaf. Health, 2022, 4(2): 135.
[96]
Wang S H, Riedinger A, Li H B, Fu C H, Liu H Y, Li L L, Liu T L, Tan L F, Barthel M J, Pugliese G, de Donato F, Scotto D’Abbusco M, Meng X W, Manna L, Meng H, Pellegrino T. ACS Nano, 2015, 9(2): 1788.
[97]
Yu P L, Han Y J, Han D L, Liu X M, Liang Y Q, Li Z Y, Zhu S L, Wu S L. J. Hazard. Mater., 2020, 390: 122126.
[98]
Yao Y Y, Wang C H, Na J, Hossain M S A, Yan X, Zhang H, Amin M A, Qi J W, Yamauchi Y, Li J S. Small, 2022, 18(8): 2104387.
[99]
Westerhoff P, Atkinson A, Fortner J, Wong M S, Zimmerman J, Gardea-Torresdey J, Ranville J, Herckes P. Nat. Nanotechnol., 2018, 13(8): 661.

doi: 10.1038/s41565-018-0217-9     pmid: 30082812
[100]
Maynard A D, Kidd J. Nat. Nanotechnol., 2018, 13(8): 673.

doi: 10.1038/s41565-018-0230-z     pmid: 30082811
[101]
Yang S J, Tang R, Dai Y N, Wang T H, Zeng Z N, Zhang L P. Sep. Purif. Technol., 2021, 279: 119524.
[102]
Zhang M, Wang G H, Wang D, Zheng Y Q, Li Y X, Meng W Q, Zhang X, Du F F, Lee S X. Int. J. Biol. Macromol., 2021, 175: 481.

doi: 10.1016/j.ijbiomac.2021.02.045     pmid: 33571589
[103]
Li P, Li J Z, Feng X, Li J, Hao Y C, Zhang J W, Wang H, Yin A X, Zhou J W, Ma X J, Wang B. Nat. Commun., 2019, 10: 2177.
[104]
Liu X L, Xiao Y, Zhang Z Y, You Z F, Li J L, Ma D X, Li B Y. Chin. J. Chem., 2021, 39(12): 3462.
[105]
Duan C, Meng J R, Wang X Q, Meng X, Sun X L, Xu Y J, Zhao W, Ni Y H. Carbohydr. Polym., 2018, 193: 82.
[106]
Jia S Y, Ji D X, Wang L M, Qin X H, Ramakrishna S. Small Struct., 2022, 3(4): 2100222.
[107]
Qian L W, Lei D, Duan X, Zhang S F, Song W Q, Hou C, Tang R H. Carbohydr. Polym., 2018, 192: 44.
[108]
Huang G H, Xu D X, Qin Z M, Liang Q, Xu C H, Lin B F. Chem. Eng. J., 2020, 395: 125181.
[109]
Firouzjaei M D, Shamsabadi A A, Aktij S A, Seyedpour S F, Sharifian Gh M, Rahimpour A, Esfahani M R, Ulbricht M, Soroush M. ACS Appl. Mater. Interfaces, 2018, 10(49): 42967.
[110]
Yang Y, Liu H L, Han M J, Sun B B, Li J B. Angew. Chem., 2016, 128(43): 13816.
[111]
Chu Z Y, Wang W N, Zhang C Y, Ruan J, Chen B J, Xu H M, Qian H S. Chem. Eng. J., 2019, 375: 121927.
[112]
Nie X L, Wu S L, Mensah A, Wang Q Q, Huang F L, Wei Q F. Chem. Eng. J., 2020, 395: 125012.
[113]
Sapsford K E, Berti L, Medintz I L. Angew. Chem. Int. Ed., 2006, 45(28): 4562.
[114]
Chen J Z, Wu X J, Yin L S, Li B, Hong X, Fan Z X, Chen B, Xue C, Zhang H. Angew. Chem., 2015, 127(4): 1226.
[115]
Yan Z P, Sun Z J, Liu X, Jia H X, Du P W. Nanoscale, 2016, 8(8): 4748.
[116]
He Y Y, Wang Y F, Shi J F, Lu X B, Liu Q L, Liu Y W, Zhu T T, Wang D B, Yang Q. Chem. Eng. J., 2022, 446: 136866.
[117]
Hao L W, Jiang R J, Fan Y, Xu J N, Tian L M, Zhao J, Ming W H, Ren L Q. ACS Sustainable Chem. Eng., 2020, 8(42): 15834.
[118]
Nie X L, Wu S L, Liao S Q, Chen J F, Huang F L, Li W, Wang Q Q, Wei Q F. J. Hazard. Mater., 2021, 416: 125786.
[119]
Liu M, Wang L, Zheng X H, Xie Z G. ACS Appl. Mater. Interfaces, 2017, 9(47): 41512.
[120]
Shi Y J, Ma J X, Chen Y N, Qian Y K, Xu B, Chu W H, An D. Sci. Total. Environ., 2022, 804: 150024.
[121]
You J H, Guo Y Z, Guo R, Liu X W. Chem. Eng. J., 2019, 373: 624.
[122]
Shi Y, Rong X, Chen C, Wu M, Takai Y, Qiu X, Wang C C, Shimasaki Y, Oshima Y. J. Fac. Agr., Kyushu Univ., 2021, 66(2): 211.
[123]
Qiu X C, Liu L, Xu W, Chen C, Li M, Shi Y H, Wu X Y, Chen K, Wang C C. Antioxidants, 2022, 11(5): 945.
[124]
Li J, Wang H, Yuan X Z, Zhang J J, Chew J W. Coord. Chem. Rev., 2020, 404: 213116.
[125]
Zhou S Y, Gao J, Zhu J Y, Peng D L, Zhang Y M, Zhang Y T. J. Membr. Sci., 2020, 610: 118219.
[126]
Wang Z Y, Qi J Y, Lu X H, Jiang H C, Wang P P, He M R, Ma J. J. Membr. Sci., 2021, 630: 119327.
[127]
Ferreira D P, Costa S M, Felgueiras H P, Fangueiro R. Key Eng. Mater., 2019, 812: 66.
[128]
Wang X P, Chen X Z, Alcântara C C J, Sevim S, Hoop M, Terzopoulou A, de Marco C, Hu C Z, de Mello A J, Falcaro P, Furukawa S, Nelson B J, Puigmartí-Luis J, Pané S. Adv. Mater., 2019, 31(27): 1970192.
[129]
Qi X Y, Chang Z Y, Zhang D, Binder K J, Shen S S, Huang Y Y S, Bai Y, Wheatley A E H, Liu H W. Chem. Mater., 2017, 29(19): 8052.
[130]
Zhang J W, Li P, Zhang X N, Ma X J, Wang B. ACS Appl. Mater. Interfaces, 2020, 12(41): 46057.
[131]
Ma D, Li P, Duan X Y, Li J Z, Shao P P, Lang Z L, Bao L X, Zhang Y Y, Lin Z G, Wang B. Angew. Chem., 2020, 132(10): 3933.
[132]
Zheng W T, Qiu J L, Yuan R R, Liu F Q. Environ. Prot. Chem. Ind., 2021(3): 287.
(郑文婷, 邱金丽, 袁冉冉, 刘福强. 化工环保, 2021(3): 287.).
[133]
Wang J S, Yi X H, Xu X T, Ji H D, Alanazi A M, Wang C C, Zhao C, Kaneti Y V, Wang P, Liu W, Yamauchi Y. Chem. Eng. J., 2022, 431: 133213.
[134]
Yi X H, Ji H D, Wang C C, Li Y, Li Y H, Zhao C, Wang A, Fu H F, Wang P, Zhao X, Liu W. Appl. Catal. B Environ., 2021, 293: 120229.
[1] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[7] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[8] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[9] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[10] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[11] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[12] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[13] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[14] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[15] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
阅读次数
全文


摘要

MOFs基材料高级氧化除菌