English
新闻公告
More
化学进展 2022, Vol. 34 Issue (8): 1688-1705 DOI: 10.7536/PC210915 前一篇   后一篇

• 综述 •

从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能

王乐壹, 李牛*()   

  1. 南开大学材料科学与工程学院 天津 300350
  • 收稿日期:2021-09-10 修回日期:2021-12-17 出版日期:2022-08-20 发布日期:2022-04-01
  • 通讯作者: 李牛

Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates

Leyi Wang, Niu Li()   

  1. School of Materials Science and Engineering, Nankai University,Tianjin 300350, China
  • Received:2021-09-10 Revised:2021-12-17 Online:2022-08-20 Published:2022-04-01
  • Contact: Niu Li

铜离子改性的SSZ-13沸石是以氨气为还原剂选择催化还原柴油发动机尾气中氮氧化物反应(NH3-SCR)的优良催化剂。本文综述并具体分析了酸中心位点对于Cu-SSZ-13中铜离子落位、迁移的影响,以及骨架铝分布对其决定性的作用,强调了“成对”酸中心,“强铝对”对于催化剂水热稳定性的重要作用,并总结了目前控制“铝对”形成的方法。以此为基础分析了不同有机模板剂、共模板剂法制备的Cu-SSZ-13在催化NH3-SCR反应中的表现,为使用廉价模板剂或共模板剂替代TMADaOH合成具有良好NH3-SCR催化活性和水热稳定性的Cu-SSZ-13提供参考。

Cu-exchanged zeolite SSZ-13 (Cu-SSZ-13) has been proven to be an excellent catalyst for the NH3-SCR of NOx from diesel engine exhaust. This review summarizes the effect of Brønsted acid sites and framework Al atoms on the location and migration of Cu species in CHA cage, emphasizing the importance of paired Brønsted acid sites and ‘strong Al pairs’ in the hydrothermal stability of Cu-SSZ-13. The latest advances in methods to control the formation of framework ‘Al pairs’ is described as well. Based on the analysis of the catalytic performances of Cu-SSZ-13 synthesized with different organic templates, the possibility of synthesizing Cu-SSZ-13 with great catalytic performance and low cost is pointed out.

Contents

1 Introduction

2 Cu-SSZ-13 and selective catalytic reduction (SCR) of NOx

2.1 Property and function of Cu ions in Cu-SSZ-13

2.2 Al distribution in Cu-SSZ-13 and its effect on Cu species

2.3 Possible location of acid sites in Cu-SSZ-13

3 NH3-SCR performance of Cu-SSZ-13 synthesized by different organic structure directing agents

3.1 NH3-SCR performance of Cu-SSZ-13 synthesized by benzyltrimethylammonium hydroxide (BTMAOH)

3.2 NH3-SCR performance of Cu-SSZ-13 synthesized by Cu-tetraethylenepentamine complex (Cu-TEPA)

3.3 NH3-SCR performance of Cu-SSZ-13 synthesized by choline chloride (CC)

3.4 NH3-SCR performance of Cu-SSZ-13 synthesized by Tetraethylammonium hydroxide (TEAOH)

3.5 NH3-SCR performance of Cu-SSZ-13 synthesized by N,N-dimethyl-n-ethyl-cyclohexyl ammonium bromide (DMCHABr)

4 NH3-SCR performance of Cu-SSZ-13 synthesized by co-template method

4.1 NH3-SCR performance of Cu-SSZ-13 synthesized by N, N, N-trimethyl-1-adamantyl ammonium hydroxide (TMADaOH) and Cu-tetraethylenepentamine complex (Cu-TEPA)

4.2 NH3-SCR performance of Cu-SSZ-13 synthesized by tetraethylammonium hydroxide (TEAOH) and Cu-tetraethylenepentamine complex (Cu-TEPA)

4.3 NH3-SCR performance of bimetallic SSZ-13

5 Synthesis of CHA zeolite without organic structure directing agents (SSZ-13 with low Si/Al ratio)

6 Conclusion and outlook

()
图1 由双六元环与菱沸石笼构成的SSZ-13结构
Fig. 1 Structure of SSZ-13 constructed of CHA cage and double-six-rings (d6r)
图2 Cu-SSZ-13脱水、氧活化的Cu-CHA晶体结构描绘了两个6MR位点B(蓝色)和B'(橙色)和8MR位点D(绿色)(铜和氧骨架之间的键用虚线表示)[53]
Fig. 2 Crystallographic structure of dehydrated, O2 activated Cu-CHA portraying the two 6MR sites B (cyan) and B'(orange) and the 8MR site D (green). Suggested bonds between Cu and framework O are shown with dashed lines[53]. Copyright 2014, International Union of Crystallography
图3 SSZ-13六元环上不同的铝分布,(a) -Al-O-Si-O-Si-O-Al-形式的强铝对; (b) -Al-O-Si-O-Al-形式的弱铝对;(c)孤立铝
Fig. 3 Different arrangement of Al atoms between paired (a, b) and isolated (c) configurations in 6MR
图4 低温SCR催化反应循环(a)[49] 与铜物种的转化(b)
Fig. 4 Proposed low-temperature SCR catalytic cycle (a)[49] and conversion of Cu species (b). Copyright 2017, The American Association for the Advancement of Science
图5 CHA型沸石结晶过程中对硅原子和铝原子的分布的影响(a) 只有TMADa+导向时形成孤立铝 (b) TMADa+、Na+共同作用时形成铝对(c) 铝对数量随着溶液中Na+/TMADa+ (0~1)增加而线性增加, 当 Na+/TMADa+ = 1时达到最大值[62]
Fig. 5 Schematic Representation of the Organization of Si and Al Atoms in the Crystallizing Polyanionic CHA Framework To Form (a) Isolated Al with Only TMADa+ or (b) Paired Al in the Presence of TMADa+ and Na+; (c)Fraction of Al pairs rises as Na+/TMADa+ (0~1) in solution increases[62]. Copyright 2016, American Chemical Society
图6 不同Si/Al和Cu/Al下铜物种组成的预测图,颜色表示CuOH的比例,白线划分从只有[Z2CuII]区域到[Z2CuII]/[ZCuIIOH]混合区域,白色圆圈表示制备的Cu-SSZ-13样品的组成[16]
Fig. 6 Predicted Cu site compositional phase diagram versus Si:Al and Cu:Al ratios. Color scale indicates predicted fraction of CuOH. White line demarcates transition from [Z2CuII]-only region to mixed [Z2CuII]/[ZCuIIOH] region. White circles indicated compositions of synthesized Cu-SSZ-13 samples[16]. Copyright 2016, American Chemical Society
图7 CHA结构中4种不同的酸位,铝原子:黄色;硅原子:蓝色;氧原子:红色;氢原子:白色。a)同一个CHA笼中四个不同的酸位;b)O1属于两个四元环和一个八元环,处于双六元环两个六元环之间;c)O2属于一个六元环,一个四元环和一个八元环;d)O3属于两个四元环和一个六元环;e)O4属于一个四元环和两个八元环,处于连接两个六元环的四元环上[76]
Fig. 7 Four different acid site in SAPO-34. Atom types are designated by color: Al, yellow; Si and P, blue; O, red. (A) Four different acid site in same cage. (b) O1 belongs to two 4-T and one 8-T rings, connecting the two 6-T rings of the double 6-T ring layers; (c) O2 belongs to one 4-T, one 6-T, and one 8-T rings; (d) O3 belongs to two 4-T and one 6-T rings; (e) O4 belongs to one 4-T and two 8-T rings, forming the bridge between two double 6-T rings. The orientation of the proton with respect to the framework has only a pictorial meaning[76]. Copyright 2007, American Chemical Society
图8 不同铜离子含量Cu-SSZ-13-TEPA上的NH3-SCR性能: A) Cu-SSZ-13未老化;B) Cu3.25-SSZ-13 (10, 2.50) 750 ℃水热老化[29]
Fig. 8 NOx conversion over Cu-SSZ-13 catalysts: (A) Fresh Cu-SSZ-13 catalysts; (B) Cu3.25-SSZ-13 (10, 2.50) after hydrothermal aging[29]. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图9 CHA笼内CC二聚体优化模型的匹配的FTIR光谱及DFT计算[32]
Fig. 9 Match of the optimized CC dimer model within the CHA cage by FTIR spectroscopy and calculated by DFT[32]. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图10 a) Cu-SSZ-13催化剂上NOx的NH3-SCR催化活性曲线。进料条件: 0.200 g 催化剂, 1000 ppm NH3, 1000 ppm NO, 6%O2, 5%H2O,平衡气He,空速=50 000 h-1[54]; b) Cu-SSZ-13 (CC) 样品进行NH3-SCR反应的NO转化率. 进料条件: 1000 ppm NH3, 1000 ppm NO, 10%O2 平衡气He,空速= 30 000 h-1 [31]
Fig. 10 a) Catalytic activities profiles for NH3-SCR of NOx over Cu-SSZ-13. Reaction conditions: 0.200 g catalyst, 1000 ppm of NH3, 1000 ppm of NO, 6 vol% O2, 5 vol% H2O and balanced by He, GHSV~50 000 h-1[54]; b) NO conversion on the Cu-SSZ-13 (CC) sample for NH3-SCR. Conditions: 1000 ppm NH3, 1000 ppm NO, 10 vol% O2 balanced by He, GHSV= 30 000 h-1[31]. Copyright 2014, American Chemical Society
图11 Cu-SSZ-13-TEAOH在NH3-SCR反应中对NOx的催化活性。Cu-SSZ-13-TEAOH-HT-750是在750 ℃下水热老化的Cu-SSZ-13;Cu-SSZ-13-TEPA-TEAOH是在TEPA和TEAOH同时存在的情况下制备的。反应气体组成为500 ppm的NO、500 ppm的NH3、5%的H2O和7%的O2, 空速= 450 000 h-1 [34]
Fig. 11 Catalytic activity for the NH3-SCR of NOx reaction of Cu-SSZ-13-TEAOH. Cu-SSZ-13-TEAOH-HT-750 is the Cu-SSZ-13 above under hydrothermal aging at 750 ℃; Cu-SSZ-13-TEPA-TEAOH is synthesized in the presence of both TEPA and TEAOH. The reaction has been performed using a feed composed of 500 ppm of NO, 500 ppm of NH3, 5% of H2O and 7% of O2 with GHSV= 450 000 h-1 [34]. Copyright 2015, The Royal Society of Chemistry
图12 Cu-SSZ-13-DMCHA+在NH3-SCR反应中对NO的转化率与温度的关系。反应条件:500 ppm NO,500 ppm NH3,10% O2以及平衡气N2;空速: 80 000 h-1[37,38]
Fig. 12 Dependence of the NO conversion on temperature for the NH3-SCR over the Cu-SSZ-13-DMCHA+. Reaction conditions: 500 ppm NO, 500 ppm NH3, 10% O2, and N2 balance; GHSV: 80 000 h-1[37,38]. Copyright 2015, 2017, The Royal Society of Chemistry
图13 Cu-SSZ-13的NH3-SCR起燃曲线[41]
Fig. 13 Light-off NH3-SCR curves over the zeolite catalysts[41]. Copyright 2020, American Chemical Society
[1]
Kwak J H, Tran D, Szanyi J, Peden C H F, Lee J H. Catal. Lett., 2012, 142(3): 295.

doi: 10.1007/s10562-012-0771-y     URL    
[2]
Iwamoto M, Furukawa H, Mine Y, Uemura F, Mikuriya S I, Kagawa S. J. Chem. Soc., Chem. Commun., 1986(16): 1272.
[3]
Quincoces C E, Kikot A, Basaldella E I, González M G. Ind. Eng. Chem. Res., 1999, 38(11): 4236.

doi: 10.1021/ie980752q     URL    
[4]
Park J H, Park H J, Baik J H, Nam I S, Shin C H, Lee J H, Cho B K, Oh S H. J. Catal., 2006, 240(1): 47.

doi: 10.1016/j.jcat.2006.03.001     URL    
[5]
Corma A, Forne V, Palomares E. Selective catalytic reduction of NOx on Cu-beta zeolites. Selective catalytic reduction of NOx on Cu-beta zeolites. Appl. Catal. B Environ., 1997, 11: 233.
[6]
Kwak J, Tonkyn R, Kim D H, Szanyi J, Peden C. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J. Catal., 2010, 275: 187.

doi: 10.1016/j.jcat.2010.07.031     URL    
[7]
Fickel D W, Lobo R F. J. Phys. Chem. C, 2010, 114(3): 1633.

doi: 10.1021/jp9105025     URL    
[8]
Fickel D W, D’Addio E, Lauterbach J A, Lobo R F. Appl. Catal. B Environ., 2011, 102(3/4): 441.

doi: 10.1016/j.apcatb.2010.12.022     URL    
[9]
McEwen J S, Anggara T, Schneider W F, Kispersky V F, Miller J T, Delgass W N, Ribeiro F H. Catal. Today, 2012, 184(1): 129.

doi: 10.1016/j.cattod.2011.11.037     URL    
[10]
Gao F, Kwak J H, Szanyi J, Peden C H F. Top. Catal., 2013, 56(15/17): 1441.

doi: 10.1007/s11244-013-0145-8     URL    
[11]
Xie L J, Liu F D, Ren L M, Shi X Y, Xiao F S, He H. Environ. Sci. Technol., 2014, 48(1): 566.

doi: 10.1021/es4032002     URL    
[12]
Ma L, Cheng Y S, Cavataio G, McCabe R W, Fu L X, Li J H. Appl. Catal. B Environ., 2014, 156/157: 428.

doi: 10.1016/j.apcatb.2014.03.048     URL    
[13]
Zones S. US 4544538A, 1985.
[14]
Paolucci C, Iorio J R D, Ribeiro F H, Gounder R, Schneider W F. In Adv. Catal.; Song C. Ed.; Academic Press, 2016. 59.
[15]
Broach R. Weinheim: Wiley-CVH. 2010, DOI: 10.1002/9783527629565:27.

doi: 10.1002/9783527629565:27    
[16]
Paolucci C, Parekh A A, Khurana I, di Iorio J R, Li H, Albarracin Caballero J D, Shih A J, Anggara T, Delgass W N, Miller J T, Ribeiro F H, Gounder R, Schneider W F. J. Am. Chem. Soc., 2016, 138(18): 6028.

doi: 10.1021/jacs.6b02651     URL    
[17]
Elisa B, Pablo B, Stian S, Unni O, Carlo L F, Silvia B. Chem. Soc. Rev., 2018, 47: 8097.

doi: 10.1039/C8CS00373D     URL    
[18]
Giordanino F, Vennestrøm P N R, Lundegaard L F, Stappen F N, Mossin S, Beato P, Bordiga S, Lamberti C. Dalton Trans., 2013, 42(35): 12741.
[19]
Gao F, Washton N M, Wang Y L, Kollár M, Szanyi J, Peden C H F. J. Catal., 2015, 331: 25.

doi: 10.1016/j.jcat.2015.08.004     URL    
[20]
Fan C, Chen Z, Pang L, Ming S J, Zhang X F, Albert K B, Liu P, Chen H P, Li T. Appl. Catal. A Gen., 2018, 550: 256.

doi: 10.1016/j.apcata.2017.11.021     URL    
[21]
Miller S J,. Yuen L T. US 20080159950.
[22]
Itakura M, Goto I, Takahashi A, Fujitani T, Ide Y, Sadakane M, Sano T. Microporous Mesoporous Mater., 2011, 144(1/3): 91.

doi: 10.1016/j.micromeso.2011.03.041     URL    
[23]
Yamanaka N, Itakura M, Kiyozumi Y, Ide Y, Sadakane M, Sano T. Microporous Mesoporous Mater., 2012, 158: 141.

doi: 10.1016/j.micromeso.2012.03.030     URL    
[24]
Joichi Y, Shimono D, Tsunoji N, Takamitsu Y, Sadakane M, Sano T. Cryst. Growth Des., 2018, 18(9): 5652.

doi: 10.1021/acs.cgd.8b00963     URL    
[25]
Yamanaka N, Itakura M, Kiyozumi Y, Sadakane M, Sano T. Bull. Chem. Soc. Jpn., 2013, 86(11): 1333.

doi: 10.1246/bcsj.20130189     URL    
[26]
Kim Y J, Lee J K, Min K M, Hong S B, Nam I S, Cho B K. J. Catal., 2014, 311: 447.

doi: 10.1016/j.jcat.2013.12.012     URL    
[27]
Kim Y J, Kim P S, Kim C H. Appl. Catal. A Gen., 2019, 569: 175.

doi: 10.1016/j.apcata.2018.10.032     URL    
[28]
Ren L M, Zhu L F, Yang C G, Chen Y M, Sun Q, Zhang H Y, Li C J, Nawaz F, Meng X J, Xiao F S. Chem. Commun., 2011, 47(35): 9789.

doi: 10.1039/c1cc12469b     URL    
[29]
Chen J W, Zhao R, Zhou R X. ChemCatChem, 2018, 10(22): 5182.

doi: 10.1002/cctc.201801234     URL    
[30]
Shan Y L, Shi X Y, Yan Z D, Liu J J, Yu Y B, He H. Catal. Today, 2019, 320: 84.

doi: 10.1016/j.cattod.2017.11.006     URL    
[31]
Chen B H, Xu R N, Zhang R D, Liu N. Environ. Sci. Technol., 2014, 48(23): 13909.
[32]
Xu R, Zhang, Ning L, Chen B, Shi Z. Chem. Cat. Chem., 2016, 7: 3842.
[33]
Juna B, Bong H S. Chem. Sci., 2018, 9: 7787.

doi: 10.1039/c8sc02581a     pmid: 30429987
[34]
Martín N, Moliner M, Corma A. Chem. Commun., 2015, 51(49): 9965.

doi: 10.1039/C5CC02670A     URL    
[35]
Corma A, Li C, Moliner M. Angew. Chem. Int. Ed., 2018, 57: 15330.
[36]
Bhadra B N, Seo P W, Khan N A, Jun J W, Kim T W, Kim C U, Jhung S H. Catal. Today, 2017, 298: 53.

doi: 10.1016/j.cattod.2017.05.073     URL    
[37]
Wang X, Wu Q M, Chen C Y, Pan S X, Zhang W P, Meng X J, Maurer S, Feyen M, Müller U, Xiao F S. Chem. Commun., 2015, 51(95): 16920.
[38]
Xiong X, Yuan D Z, Wu Q M, Chen F, Meng X J, Lv R H, Dai D, Maurer S, McGuire R, Feyen M, Müller U, Zhang W P, Yokoi T, Bao X H, Gies H, Marler B, de Vos D E, Kolb U, Moini A, Xiao F S. J. Mater. Chem. A, 2017, 5(19): 9076.

doi: 10.1039/C7TA01749A     URL    
[39]
Martínez-Franco R, Moliner M, Thogersen J R, Corma A. ChemCatChem, 2013, 5(11): 3316.

doi: 10.1002/cctc.201300141     URL    
[40]
Chen M Y, Sun Q M, Yang X G, Yu J H. Inorg. Chem. Commun., 2019, 105: 203.

doi: 10.1016/j.inoche.2019.05.010     URL    
[41]
Xu R, Wang Z, Liu N, Chen B H. ACS Catal., 2020, 10: 6197.

doi: 10.1021/acscatal.0c01063     URL    
[42]
Paolucci C, di Iorio J R, Schneider W F, Gounder R. Acc. Chem. Res., 2020, 53(9): 1881.

doi: 10.1021/acs.accounts.0c00328     URL    
[43]
Gao F, Peden C H F. Catal., 2018, 8: 140.
[44]
Lee H, Song I, Jeon S W, Kim D H. J. Phys. Chem. Lett., 2021, 12(12): 3210.

doi: 10.1021/acs.jpclett.1c00181     URL    
[45]
Song J, Wang Y L, Walter E D, Washton N M, Mei D H, Kovarik L, Engelhard M H, Prodinger S, Wang Y, Peden C H F, Gao F. ACS Catal., 2017, 7(12): 8214.

doi: 10.1021/acscatal.7b03020     URL    
[46]
Luo J Y, Gao F, Kamasamudram K, Currier N, Peden C H F, Yezerets A. J. Catal., 2017, 348: 291.

doi: 10.1016/j.jcat.2017.02.025     URL    
[47]
Kwak J H, Zhu H, Lee J H, Peden C H F, Szanyi J. Chem. Commun., 2012, 48: 4758.

doi: 10.1039/c2cc31184d     URL    
[48]
Gao F, Walter E D, Kollar M, Wang Y L, Szanyi J, Peden C H F. J. Catal., 2014, 319: 1.

doi: 10.1016/j.jcat.2014.08.010     URL    
[49]
Paolucci C, Khurana I, Parekh A A, Li S C, Shih A J, Li H, di Iorio J R, Albarracin-Caballero J D, Yezerets A, Miller J T, Delgass W N, Ribeiro F H, Schneider W F, Gounder R. Science, 2017, 357(6354): 898.

doi: 10.1126/science.aan5630    
[50]
Martini A, Borfecchia E, Lomachenko K A, Pankin I A, Negri C, Berlier G, Beato P, Falsig H, Bordiga S, Lamberti C. Chem. Sci., 2017, 8(10): 6836.

doi: 10.1039/c7sc02266b     pmid: 29147509
[51]
Borfecchia E, Lomachenko K A, Giordanino F, Falsig H, Beato P, Soldatov A V, Bordiga S, Lamberti C. Chem. Sci., 2015, 6(1): 548.

doi: 10.1039/c4sc02907k     pmid: 28936309
[52]
Gao F, Walter E D, Karp E M, Luo J Y, Tonkyn R G, Kwak J H, Szanyi J, Peden C H F. J. Catal., 2013, 300: 20.

doi: 10.1016/j.jcat.2012.12.020     URL    
[53]
Andersen C W, Bremholm M, Vennestrøm P N R, Blichfeld A B, Lundegaard L F, Iversen B B. IUCrJ, 2014, 1(6): 382.

doi: 10.1107/S2052252514020181     URL    
[54]
Mlekodaj K, Dedecek J, Pashkova V, Tabor E, Sklenak S. J. Phys. Chem. C, 2019, 123: 7968.

doi: 10.1021/acs.jpcc.8b07343    
[55]
Luo J Y, Wang D, Kumar A, Li J H, Kamasamudram K, Currier N, Yezerets A. Catal. Today, 2016, 267: 3.

doi: 10.1016/j.cattod.2015.12.002     URL    
[56]
Andersen C W, Borfecchia E, Bremholm M, Jørgensen M R V, Vennestrøm P N R, Lamberti C, Lundegaard L F, Iversen B B. Angew. Chem., 2017, 129(35): 10503.
[57]
Paolucci C, Iorio J D R, Ribeiro F, Gounder R, Schneide W F. Adv Catal., 2016, 59: 2.
[58]
Barthomeuf D. J. Phys. Chem., 1993, 97(39): 10092.
[59]
Zhang R Q, McEwen J S, Kollár M, Gao F, Wang Y L, Szanyi J, Peden C H F. ACS Catal., 2014, 4(11): 4093.

doi: 10.1021/cs500563s     URL    
[60]
Godiksen A, Isaksen O L, Rasmussen S B, Vennestrøm P N R, Mossin S. ChemCatChem, 2018, 10(2): 366.

doi: 10.1002/cctc.201701357     URL    
[61]
Schmieg S J, Oh S H, Kim C H, Brown D B, Lee J H, Peden C H F, Kim D H. Catal. Today, 2012, 184(1): 252.

doi: 10.1016/j.cattod.2011.10.034     URL    
[62]
di Iorio J R, Gounder R. Chem. Mater., 2016, 28(7): 2236.

doi: 10.1021/acs.chemmater.6b00181     URL    
[63]
Iorio J R D, Li S, Jones C B, Nimlos C T, Gounder R. J. Am. Chem. Soc., 2020, 142: 4807.

doi: 10.1021/jacs.9b13817     pmid: 32053365
[64]
Villaescusa L A, Bull I, Wheatley P S, Lightfoot P, Morris R E. J. Mater. Chem., 2003, 13(8): 1978.

doi: 10.1039/B300728F     URL    
[65]
Bates S A, Verma A A, Paolucci C, Parekh A A, Anggara T, Yezerets A, Schneider W F, Miller J T, Delgass W N, Ribeiro F H. J. Catal., 2014, 312: 87.

doi: 10.1016/j.jcat.2014.01.004     URL    
[66]
Guo Y, Sun T J, Gu Y M, Liu X W, Ke Q L, Wei X L, Wang S D. Chem. Asian J., 2018, 13(21): 3222.

doi: 10.1002/asia.201800930     URL    
[67]
Devos J, Bols M L, Plessers D, Goethem C V, Seo J W, Hwang S J, Sels B F, Dusselier M. Chem. Mater., 2020, 32(1): 273.

doi: 10.1021/acs.chemmater.9b03738     URL    
[68]
Dědeek J, Sobalík Z, Wichterlová B. Catal. Rev., Sci. Eng., 2012, 54: 135.

doi: 10.1080/01614940.2012.632662     URL    
[69]
Mackenzie, Smith M. Pergamon, 2002.
[70]
Engelhardt G, Michel A. John Willey and Sons: New York, 1987.
[71]
Duer M. Blackwell Science: Oxford, 2002.
[72]
Dedecek J, Kaucky D, Wichterlova B. Chem. Commun., 2001, 11: 970.
[73]
Dedecek J, Kaucky D, Wichterlova B, Gonsiorova O. Phy. Chem., 2002, 4: 5406.
[74]
Dedecek J, Lucero M J, Li C B, Gao F, Klein P, Urbanova M, Tvaruzkova Z, Sazama P, Sklenak S. J. Phys. Chem. C, 2011, 115(22): 11056.
[75]
Sklenak S, Dědeček J, Li C B, Wichterlová B, Gábová V, Sierka M, Sauer J. Phys. Chem. Chem. Phys., 2009, 11(8): 1237.

doi: 10.1039/b807755j     pmid: 19209368
[76]
Martins G A V, Berlier G, Coluccia S, Pastore H O, Superti G B, Gatti G, Marchese L. J. Phys. Chem. C, 2007, 111(1): 330.

doi: 10.1021/jp063921q     URL    
[77]
Smith L J, Davidson A, Cheetham A K. Catal. Lett., 1997, 49(3/4): 143.

doi: 10.1023/A:1019097019846     URL    
[78]
Jeanvoine Y, Ángyán J G, Kresse G, Hafner J. J. Phys. Chem. B, 1998, 102(38): 7307.

doi: 10.1021/jp981667z     URL    
[79]
Gale J D, Shah R, Payne M C, Stich I, Terakura K. Catal. Today, 1999, 50(3/4): 525.

doi: 10.1016/S0920-5861(98)00487-8     URL    
[80]
Bordiga S, Regli L, Cocina D, Lamberti C, Bjørgen M, Lillerud K P. J. Phys. Chem. B, 2005, 109(7): 2779.

doi: 10.1021/jp045498w     URL    
[81]
[2021-09-01]https://america.iza-structure.org/IZA-SC/framework.php?STC=CHA
[82]
Goto I, Itakura M, Shibata S, Honda K, Ide Y, Sadakane M, Sano T. Microporous Mesoporous Mater., 2012, 158: 117.

doi: 10.1016/j.micromeso.2012.03.032     URL    
[83]
Imai H, Hayashida N, Yokoi T, Tatsumi T. Microporous Mesoporous Mater., 2014, 196: 341.

doi: 10.1016/j.micromeso.2014.05.043     URL    
[84]
He C, Li N, Xiang S, Proceedings of the 16th National molecular sieve Congress, 2011.
[85]
Chen T H, Wang K X, Luo W L, Yuan Z Y, Wang J Z, Ding D T, Li H X, Hu C. Chem. Phys. Lett., 1996, 252(5/6): 375.

doi: 10.1016/0009-2614(96)00199-6     URL    
[86]
Muraoka K, Chaikittisilp W, Yanaba Y, Yoshikawa T, Okubo T. Angew. Chem., 2018, 130(14): 3804.

doi: 10.1002/ange.201713308     URL    
[87]
Gao F, Mei D H, Wang Y L, Szanyi J, Peden C H F. J. Am. Chem. Soc., 2017, 139(13): 4935.

doi: 10.1021/jacs.7b01128     URL    
[88]
Zammit M, DiMaggio C L, Kim C H, Lambert C, Muntean G G, Peden C H, Parks J E, Howden K. Office of Scientific and Technical Information (OSTI), 2013.
[1] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[2] 潘迪, 刘鹏, 张宏斌, 唐颐. 沸石的连续流动相合成[J]. 化学进展, 2020, 32(7): 873-881.
[3] 赵新红, 高向平, 郝志鑫, 张晓晓. 多级孔磷酸铝分子筛的合成、表征及催化应用[J]. 化学进展, 2016, 28(5): 686-696.
[4] 范功端, 林茹晶, 苏昭越, 许仁星. 沸石咪唑酯骨架材料用于水中污染物的去除[J]. 化学进展, 2016, 28(12): 1753-1761.
[5] 谢利娟, 石晓燕, 刘福东, 阮文权. 菱沸石在柴油车尾气NOx催化净化中的应用[J]. 化学进展, 2016, 28(12): 1860-1869.
[6] 历阳, 孙洪满, 王有和, 许本静, 阎子峰. 沸石分子筛的绿色合成路线[J]. 化学进展, 2015, 27(5): 503-510.
[7] 寇龙, 王有和, 彭鹏, 阎子峰. 介孔沸石分子筛的制备[J]. 化学进展, 2014, 26(04): 522-528.
[8] 彭鹏, 张占全, 王有和, Fazle Subhan, 阎子峰. 多级孔分子筛的制备与催化应用[J]. 化学进展, 2013, 25(12): 2028-2037.
[9] 陈立峰, 史静, 张亚红, 唐颐*. 核壳型沸石复合材料和反应器[J]. 化学进展, 2012, 24(07): 1262-1269.
[10] 杜晓明 李静 吴尔冬. 沸石吸附储氢研究进展[J]. 化学进展, 2010, 22(01): 248-254.
[11] 汪洋,马利勇,朱宁,陈丰秋,詹晓力. 分级孔沸石材料的合成、表征及其催化应用* [J]. 化学进展, 2009, 21(09): 1722-1733.
[12] 王聪,刘秀凤,崔瑞利,张宝泉. 沸石分子筛膜缺陷的形成及修复*[J]. 化学进展, 2008, 20(12): 1860-1867.
[13] 王德举,刘仲能,李学礼,谢在库. 介孔沸石材料*[J]. 化学进展, 2008, 20(05): 637-643.
[14] 翟尚儒,魏莉,杨东江,吴东,孙予罕. 硅铝基微孔/介孔复合分子筛的制备与应用*[J]. 化学进展, 2006, 18(10): 1330-1337.
[15] 袁冰,乔卫红,李宗石,王桂茹,程侣柏. 沸石分子筛在Friedel-Crafts酰基化反应中的应用[J]. 化学进展, 2005, 17(04): 686-691.